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In this paper we discuss a new perspective on how the central nervous system (CNS) represents and
solves some of the most fundamental computational problems of motor control. In particular, we consider
the task of transforming a planned limb movement into an adequate set of motor commands. Io carry out
this task the CGNS must solve a complex inverse dynamic problem. This problem involves the transforma-
tion from a desired motion to the forces that are needed to drive the limb. The inverse dynamic problem
is a hard computational challenge because of the need to coordinate multiple limb segments and because
of the continuous changes in the mechanical properties of the limbs and of the environment with which
they come in contact. A number of studies of motor learning have provided support for the idea that the
CNS creates, updates and exploits internal representations of limb dynamics in order to deal with the
complexity of inverse dynamics. Here we discuss how such internal representations are likely to be built
by combining the modular primitives in the spinal cord as well as other building blocks found in higher
brain structures. Experimental studies on spinalized frogs and rats have led to the conclusion that the
premotor circuits within the spinal cord are organized into a set of discrete modules. Each module, when
activated, induces a specific force field and the simultaneous activation of multiple modules leads to the
vectorial combination of the corresponding fields. We regard these force fields as computational primitives
that are used by the CNS for generating a rich grammar of motor behaviours.
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1. INTRODUCTION

When we learn to move our limbs and to act upon the
environment, our brain becomes to all effects an expert in
physics. While we are still very far away from under-
standing how this feat is accomplished, great strides have
been made in the last few decades through the combined
efforts of biologists, computer scientists, physicians, physi-
cists, psychologists and engineers. In this paper we review
some of this progress. In particular we focus on one issue:
What are the building blocks or, to borrow from linguis-
tics, the ‘modules’ that the brain may use for generating
the competence in physics that is necessary to act and
move? And what do we know of how and where these
modules are engraved into the circuits of the central
nervous system (CNS)?

To illustrate the complexities of ordinary motor beha-
viours, let us consider the task that the CNS must solve
every time a planned gesture is transformed into an
action. If the goal is to move the hand from an initial
position to another point in space, then clearly there are
a number of possible hand trajectories that could achieve
this goal: the solution of this elementary motor problem
is not unique. Even after the CNS has chosen a particular
path for the hand, its implementation can be achieved
through multiple combinations of joint motions at the
shoulder, elbow and wrist—again the solution is not
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unique. Finally, because there are many muscles around
each joint, the net force generated by their activation can
be produced by a variety of combinations of muscles.

Perhaps what makes the issue of sensorimotor transduc-
tion such a complex problem is the fact that we have not
found a satisfactory way to incorporate motor learning
into our thinking about motor planning. While everybody
agrees that throughout our life we learn a great variety of
movements and that the memory of these movements is
stored more or less permanently in the cortical areas of
the frontal and parietal lobes and the cerebellum, we do
not know whether we use fragments of what has been
learned when we produce a motor response to a new
contingency (Toni et al. 1998; Shadmehr & Holcomb
1997) In this paper we adopt the point of view that motor
learning consists of tuning the activity of a relatively
small group of neurons and that these neurons constitute
a ‘module’. Combining modules may be a mechanism for
producing a vast repertoire of motor behaviours in a
simple manner.

2. THE PROBLEM OF INVERSE DYNAMICS

According to the laws of Newtonian physics, if we want
to impress a motion upon a stone with mass m, we must
apply a force, F, that is directly proportional to the
desired acceleration, a. This is the essence of Newton’s
equation I'=ma. A desired motion may be expressed as a
sequence of positions, x, that we wish the stone to assume
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at subsequent instants of time, £. This sequence is called a
‘trajectory’ and is mathematically represented as a func-
tion, x = x(f). To use Newton’s equation for deriving the
needed time sequence of forces, we must calculate the first
temporal derivative of the trajectory, the velocity and
then the second temporal derivative, the acceleration.
Finally, we obtain the desired force from this acceleration.
The above calculation is an example of what in robotics
1s called an ‘inverse dynamic problem’. The ‘direct’
dynamic problem is that of computing the trajectory
resulting from the application of a force, F(¢). The solution
of this problem requires a complex computational
process, called integration, through which the motion of
the stone, that is the function x(¢), is derived from the
known acceleration, a(t) = F(t) [m.

Direct problems are the bread and butter of physicists,
who may be concerned, for example, with predicting the
motion of a comet from the known pattern of gravita-
tional forces. Unlike physicists, the brain deals most often
with inverse problems: we routinely recognize objects and
people from their visual images—an ‘inverse optical
problem’—and we find out effortlessly how to distribute
the forces exerted by several muscles to move our limb in
the desired way—an inverse dynamic problem.

In the biological context, the inverse dynamic problem
assumes a somewhat different form from the case of the
moving stone. One of the central questions in motor
control is how the CGNS may form the motor commands
that guide our limbs. One proposal is that the CNS solves
an inverse dynamic problem (Hollerbach & Flash 1982).
A system of second-order nonlinear differential equations
is generally considered to be an adequate description of
the passive limb dynamics. A compact representation for
such a system is

D(Q: 97 q) = T(t% (161)

where ¢, ¢ and ¢ represent the limb configuration
vector—for example, the vector of joint angles—and its
first and second time derivatives. The term t(¢) is a vector
of generalized forces, for example, joint torques, at time ¢.
Conceptually, this nothing else than
Newton’s F'=ma applied to a multi-articular rigid body.
In practice, the expression for D may have a few terms
for a two-joint planar arm (see figure 44) or it may take
several pages for more realistic models of the arm’s multi-
joint geometry. The inverse dynamic approach to the
control of multijoint limbs consists in solving explicitly for
a torque trajectory, t(¢), given a desired trajectory of the
limb, ¢, (f). This is done by plugging ¢, (t) on the left side
of equation (1):

(6) = Dlgp(1), 4n(1), 4n(1))- (16)

Another significant computational challenge comes
from the need to perform changes of representation, or,
more technically, coordinate transformations, between
the description of a task and the specification of the body
motions. Tasks, such as ‘bring the hand to the glass of
water on the table’, are often described most efficiently
and parsimoniously with respect to fixed reference points
in the environment. For example, the glass may be 10 cm
to the left of a corner of the table. The hand may be
20 cm to the right of the same corner. So, the hand will

expression is
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need to be displaced 30 cm along a straight line in the left
direction. This is a very simple description of the needed
movement. However, this description cannot be used to
derive the joint torques, as specified by equation (14). To
this end, one must represent the trajectory of the hand in
terms of the corresponding angular motions at each joint.
This is a complex transformation known in robotics as
‘inverse kinematics’ (Brady ef al. 1982).

Does the brain carry out similar inverse dynamic
calculations for moving the arm on a desired trajectory?
A clear-cut answer is still to come but several alternatives
have emerged from studies in robotics and computational
neuroscience.

3. SOLUTIONS BASED ON FEEDBACK

Many of the problems that the brain must face to
control movements are indeed similar to those that engi-
neers must solve to control robots. In spite of the great
differences between the multijjoint vertebrate system and
current robotic arms, the field of neuroscience, unques-
tionably, has derived benefits from the theories and proce-
dures that have guided the construction of man-made
limbs. For instance, from early on, neuroscientists have
been influenced by the notion of feedback. Feedback
control is a way to circumvent the computation of inverse
dynamics. At each point in time, some sensory signal
provides the information about the actual position of the
limb. This position is compared with a desired position
and the difference between the two is a measure of the
error at any given time. Then, a force may be produced
with amplitude approximately proportional to the ampli-
tude of the error in the direction of the desired position.
This method of control is appealing because of its great
simplicity.

Multiple feedback mechanisms have been found in
both vertebrates and invertebrates. These mechanisms
were discovered by Sherrington at the beginning of the
last century (Sherrington 1910). They have been shown to
control the muscles’ level of contraction, the production
of force and the position of joints. Sherrington observed
that when a muscle is stretched the stretch is countered
by an increase in muscle activation. This ‘stretch reflex’ is
caused by sensory activity that originates in the muscle
spindles—receptors embedded within the muscle fibres.
Sherrington put forward the daring hypothesis that
complex movements may be obtained by combining
stretch reflexes as well as other reflexes in a continuous
sequence or ‘chain’ In this way, movement patterns as
complex as the locomotion cycle could be generated by
local reflexes, without central supervision. A similar idea
was later proposed by Merton (1972), who suggested that
central commands via the gamma system might initiate
the execution of movement, not by directly activating the
muscles, but by triggering a stretch reflex through the
modulation of muscle spindle activities. Both Sherrington
and Merton’s hypotheses are attempts at explaining
movements as automatic responses to sensory feedback,
thus limiting the role and the arbitrariness of voluntary
commands.

However, both Sherrington’s ideas on compounding of
reflexes and Merton’s hypothesis have taken a new
form following subsequent experiments which clearly
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demonstrated the generation of movements in the absence
of sensory activities. For example, Taub & Berman (1968)
found that monkeys can execute various limb movements
after the surgical section of the pathways that convey all
sensory information from the limb to the nervous system.
Shortly thereafter, Vallbo (1970) was able to record
muscle spindle discharges in human subjects and to
compare these discharges with the activation of the
muscles, as revealed by electromyography (EMG). Vallbo’s
study showed that, in a voluntary movement, muscle acti-
vation does not lag but leads the spindle discharges,
contrary to the predictions of Merton’s hypothesis.

In addition to the experimental findings described
above, the idea that biological movements may be carried
out by feedback mechanism has been challenged based on
consideration about limb stability and reflex delays. It
takes more than 40 ms before a signal generated by the
muscle spindles may reach the supraspinal motor centres
and it takes 40—60 ms more before a motor command
may be transformed into a measurable contraction of the
muscles. These transmission delays may cause instability
(Hogan et al. 1987). The effects of delays are even greater
when the limb interacts with the environment. For
example, if a robotic arm were to contact a rigid surface,
a delay of 30 ms would initiate a bouncing motion also
known as ‘chattering’ instability. This instability is again
due to the fact that the control system could detect the
contact only after it has occurred. This would cause a
back-up motion that would move the arm away from the
surface. Then, the controller would move again towards
the surface and so on in a repeated bouncing motion.

4. SOLUTIONS BASED ON FEED-FORWARD

An alternative to feedback control would be for the
CNS to pre-programme the torques that the muscles must
generate for moving the limbs along the desired trajec-
tories. This method is often referred to as ‘feed-forward
control’. The torques needed to move the arm can only be
computed after the angular motions of the shoulder,
elbow and wrist have been derived from the desired
movement of the hand—that is after an inverse kine-
matics problem has been solved. Investigations in robot
control in the late 1970s and early 1980s showed that both
the inverse kinematic and inverse dynamic problems may
be efficiently implemented in a digital computer for many
robot geometries (Brady ef al. 1982). On the basis of these
studies, Hollerbach & Flash (1982) put forward the
hypothesis that the brain may be carrying out inverse
kinematic and dynamic computations when moving the
arm in a purposeful way. Their experimental investigation
of arm-reaching movements, combined with
dynamics calculations, showed that all components of the
joint torque played a critical role in the generation of the
observed hand trajectories. In particular, Hollerbach &
Flash found that while executing reaching movements the
subjects were accurately compensating for the dynamic
interactions between shoulder and elbow joints.

Evidence that the brain is carefully compensating for
the interaction torques was further provided by more
recent studies of Ghez and of Thach and their co-workers.
Sainburg ef al. (1993) studied the movements of subjects
suffering from a rare peripheral neuropathy. A conse-

inverse
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quence of this disease is the complete loss of propriocep-
tive information from the upper and lower limbs. These
investigators found that the abnormal motions observed
in these subjects could be accounted for by lack of
compensation for the joint interaction torques. A similar
conclusion was reached later by Bastian et al. (1996) about
the movements produced by patients suffering from cere-
bellar lesions. In summary, a substantial body of evidence
suggests that the CNS generates motor commands that
effectively represent the complex dynamics of multjjoint
limbs. However, there are different ways for achieving
this representation.

5. MEMORY-BASED COMPUTATIONS

A rather direct way for a robot to compute inverse
dynamics is based on carrying out explicitly the algebraic
operations after representing variables such as positions,
velocity acceleration, torque and inertia. Something
similar to this approach had been first proposed by
Raibert (1978). He started from the observation that
inverse dynamic can be represented as the operation of a
memory that associates a vector of joint torques to each
value of joint angles, angular velocities and angular
accelerations. A brute-force approach to dynamics would
simply be to store a value of torque for each possible value
of position, velocity and acceleration—a computational
device that computer scientists call a ‘look-up table’. This
approach is extremely simple and in fact look-up tables
were implicit in early models of motor learning, such as
those proposed by Albus (1971) and Marr (1969).
However, a closer look at the demands for memory size in
a reasonable biological context shows that the look-up
table approach may be impracticable.

The number of entries in a look-up table grows expo-
nentially with the number of independent components
that define each table entry. Being well aware of this
problem, Raibert suggested splitting the arm dynamics
computations in a combination of smaller subtables: one
can obtain the net torque by adding (i) a term that
depends on the joint angles and on the angular accelera-
tions to (ii) a term that depends on the joint angles and
on the angular velocities. These two terms may be stored
in separate tables. Assuming a resolution of only ten
values per variable, the control of a two-joint limb would
require two tables with 10* entries each. For a more
complete arm model, with seven-joint coordinates, each
table would have 10" entries. These are still exceedingly
large numbers. A method for reducing the size of look-up
tables was suggested by Raibert & Horn (1978), who
represented the dynamic problem as a sum of three
elements, each one requiring a table that depended only
on the joint angles. Thus, the two-joint limb involved
tables with 100 entries and the seven-joint limb tables
with 107 entries.

6. THE EQUILIBRIUM-POINT HYPOTHESIS

The work of Raibert (1978) and Hollerbach (1980)
showed that inverse dynamics of complex limbs may be
computed with a reasonable number of operations and
with reasonable memory requirements. However, this
work did not provide any direct evidence that the brain is
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ever engaged in such computations. Furthermore, on a
purely theoretical basis, explanations based on computing
inverse dynamics are unsatisfactory because there is no
allowance for the inevitable mechanical vagaries asso-
ciated with any interaction with the environment. For
instance, if an external force perturbs the trajectory of the
arm, dramatic consequences may follow. When we pick
up a glass of water, we must update the pattern of torques
that our muscles must apply to generate a movement of
the arm. When we open a door, we must deal with a
constraint, the hinge, whose location in space is only
approximately known. One may say that most of our
actions are executed upon a poorly predictable mechan-
ical environment. It would then be erroneous to suggest
that a stored pattern of neuromuscular activations corre-
sponds to some particular movement. Instead, the move-
ment that arises from that pattern is determined by the
interaction of the muscle forces with the dynamics of the
environment.

Hogan (19854) developed this concept in a theory
known as impedance control. Hogan’s ideas relate to
earlier experiments of Feldman (1966) and Bizzi and co-
workers. In one of these experiments, Polit & Bizzi (1979)
trained monkeys to execute movements of the forearm
towards a visual target. The monkeys could not see their
moving arm nor could they perceive it as their proprio-
ceptive inflow had been surgically interrupted by the
transection of cranial and thoracic dorsal roots—a
procedure called ‘deafferentation’. Surprisingly, Polit &
Bizzi found that, despite such radical deprivation of
sensory information, the monkeys could successfully
reach the visual targets. What was more unexpected was
that the monkeys could reach the intended target even
when their arm had been displaced from the initial
location just prior to the initiation of an arm movement.
This result did not seem to be compatible either with the
idea that goal-directed movements are executed by a pre-
programmed sequence of joint torques or with the
hypothesis that sensory feedback is essential to reach the
desired limb position.

The performance of the deafferented monkey can be
accounted for by the hypothesis that the centrally gener-
ated motor commands modulate the stiffness and rest-
length of muscles that act as flexors and extensors about
the elbow joint. As a consequence, the elastic behaviour
of the muscles, like that of an opposing spring, defines a
single equilibrium position of the forearm. A position that
ultimately is reached in spite of externally applied pertur-
bations, without need for feedback corrections. This result
led to a question concerning the execution of target-
directed movements. Are these movements executed just
by setting the equilibrium point of a limb to the final
target? Or does the descending motor command specify
an entire trajectory as a smooth shift of the same equili-
brium point? Bizzi et al. (1984) addressed this question in
another experiment. If, as suggested by the first hypoth-
esis, there is a sudden jump of the limb’s equilibrium to
the target location, an elastic force driving the hand
towards the target would appear from the onset of the
movement. This force would be directed all the time
towards the target. The experiment of Bizzi and co-
workers disproved this hypothesis. As in the work of Polit
& Bizzi (1979), they instructed deafferented monkeys to
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execute arm movements towards a visual target but with
the vision of the arm blocked by an opaque screen. As
soon as the EMG activity indicated the onset of a move-
ment, a motor drove the arm right on the target. If this
were the equilibrium position specified by the muscle
commands at that time, the arm should have remained in
place. On the contrary, the experimenters could observe
an evident motion backward towards the starting position
followed by a forward motion towards the target. This
finding indicate that the muscular activation does not
specify a force or a torque, as suggested by the inverse
dynamic models, nor a final target position. Instead, the
response to the initial displacement suggests that the acti-
vation of the muscles produces a gradual shift of the
limb’s equilibrium from the start to end location. Accord-
ingly, at all times the limb is attracted by an elastic force
towards the instantaneous equilibrium point. If during a
goal-directed movement, the limb is forcefully moved
ahead towards the target, the elastic force will drive it
towards the lagging equilibrium point, as observed in the
exp eriment.

The sequence of equilibrium positions produced during
movement by all the muscular activations has been called
by Hogan (19855) a‘virtual trajectory’. The virtual trajec-
tory is a sequence of points where the elastic forces gener-
ated by all the muscles cancel each other. By contrast, the
actual trajectory is the result of the interaction of these
elastic forces with other dynamic components such as
limb inertia, muscle velocity—tension properties and joint
viscosity. To intuitively illustrate this distinction, consider
a ball attached to a rubber band. When the band is
displaced from its equilibrium position, a restoring force
1s generated with amplitude proportional to the displace-
ment. If we move the free end of the rubber band, we
control the equilibrium position. As we move the rubber
band along a trajectory, the ball will follow a trajectory
that results from the interaction of the elastic force with
the mass of the ball.

The idea of a virtual trajectory provides a new unified
perspective for dealing with (i) the mechanics of muscles,
(ii) the stability of movement, and (iii) the solution of the
inverse dynamic problem. In fact, a strictly necessary and
sufficient condition for a virtual trajectory to exist is that
the motor commands directed to the muscle define a
sequence of stable equilibrium positions. If this require-
ment is met, then there exists a single well-defined trans-
formation from the high-dimensional representation of
the control signal as a collection of muscle activations, to
a low-dimensional sequence of equilibrium points. An
advantage of this low-dimensional representation is that,
unlike muscle activations, the virtual trajectory may be
directly compared with the actual movement of the limb.

The relationship between actual and virtual trajectory
1s determined by the dynamics of the system and by the
stiffness, which transforms a displacement from the equi-
librium into a restoring force. In the limit of infinite stiff-
ness, the actual trajectory would match exactly the
virtual trajectory. On the other end, with low stiffness
values, the difference between virtual and actual trajec-
tory may become quite large. In a work that combined
observations of hand movements and computer simula-
tions, Flash (1987) tested the hypothesis that multjoint
arm movements are obtained by the CNS shifting the
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equilibrium position of the hand along a straight and
rectilinear motion from the start to end position. As
shown by Morasso (1981), approximately straight hand
paths characterize planar hand movements between pairs
of targets. If the same movements are analysed at a finer
level of detail, however, the paths present certain degrees
of inflection and curvature, depending on the direction of
movement and on the work-space location. In the simula-
tions Flash made the that the hand
equilibrium trajectories (but not necessarily the actual
trajectories) are invariantly straight. In addition, she
assumed that the equilibrium trajectory had a unimodal
velocity profile. The results obtained from the simulation
captured the subtle inflections and the curvatures of the
actual trajectories. Moreover, the direction of curvature
in different work-space locations and with different
movement directions matched quite closely the observed
movements.

It must be stressed that the stiffness values used in this
simulation were taken from measurements that had been
performed not during movements but while subjects were
maintaining their arm at rest in different locations
(Mussa-1Ivaldi et al. 1985). Katayama & Kawato (1993)
and then Gomi & Kawato (1997) repeated Flash’s simula-
tion using lower values of stiffness and found, not surpris-
ingly, that in order to reproduce the actual trajectory of
the hand, the virtual trajectory had to follow a much
more complicated pathway. The results obtained by Gomi
& Kawato are at variance with those of Won & Hogan
(1995), who were able to show that for relatively slow and
low-amplitude arm trajectories the virtual equilibrium
point was close to the actual trajectory. Clearly, the
complexity of the virtual trajectory depends critically
upon the elastic field surrounding the equilibrium point.
Experimental estimates of the elastic field under static
conditions have shown that the local stiffness, i.e. the
ratio of force and displacement, changes at different
distances from the equilibrium point (Shadmehr et al.
1993). Specifically, found that the stiffness
decreased with this distance. This is a nonlinear feature of
the elastic field. Accordingly if, as in Gomi & Kawato
(1997), one attempted to derive the equilibrium point
using a linear estimate based on the stiffness at the
current position, one would overestimate the distance
between current and equilibrium position. At present,
however, there is not yet an acceptable technique for
measuring the elastic force field generated by the muscles
during movement. But, if the shape of the virtual trajec-
tory is a complex path, as in Gomi & Kawato’s simula-
tions, then the apparent computational simplicity of the
earlier formulation of the equilibrium-point hypothesis is
lost.

Another challenge to the equilibrium-point hypothesis
comes from the work of Lackner & Dizio (1994) who
asked subjects to execute reaching hand movements while
sitting at the centre of a slowly rotating room. Because of
this rotation, a Coriolis force proportional to the speed of
the hand perturbs the subject’s arm. The Coriolis force
acts perpendicularly to the direction of motion. Lackner
& Dizio found that, under this condition, there is a
systematic residual error at the final position in the direc-
tion of the Coriolis force. This finding seems incomp atible
with the equilibrium-point hypothesis because the
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Coriolis force depends upon hand velocity but not upon
hand position. Therefore, it should not alter the location
of the final equilibrium point. However, the experimental
results of Lackner & Dizio are in apparent contrast with
other experimental findings obtained with similar force
fields. In particular, Shadmehr & Mussa-Ivaldi (1994)
used an instrumented manipulandum for applying a
velocity-dependent field to the hand of the subjects. In
this paradigm the perturbation acted specifically on the
arm dynamics and did not affect in any way other
systems, such as the vestibular apparatus. Shadmehr &
Mussa-Ivaldi, as well as Gandolfo et al. (1996) found that
the final position of the movement was not substantially
affected by the presence of velocity-dependent fields, in
full agreement with the equilibrium-point hypothesis.
The cause of the discrepancy between these results and
those of Lackner & Dizio (1994) has yet to be deter-
mined.

7. BUILDING BLOCKS FOR COMPUTATION
OF DYNAMICS: SPINAL FORCE FIELDS

Recent electrophysiological studies of the spinal cord of
frogs and rats by Bizzi and co-workers (Bizzi et al. 199];
Giszter et al. 1993; Mussa-Ivaldi et al. 1990; Tresch & Bizzi
1999) suggest a new theoretical framework that combines
some features of inverse dynamic computations with the
equilibrium-point hypothesis. In these studies, electrical
stimulation of the interneuronal circuitry in the lumbar
spinal cord of frogs and rats has been shown to impose a
specific balance of muscle activation. The evoked syner-
gistic contractions generate forces that direct the
hindlimb towards an equilibrium point in space (figure 1).
To measure the mechanical responses of the activated
muscles, Bizzi et al. (1991), Giszter et al. (1993) and Mussa-
Ivaldi et al. (1990) attached the right ankle of the frog to
a force transducer. 1o record the spatial variations of the
force vectors generated by the leg muscles, they placed
the frog’s leg at a location within the leg’s work-space.
Then, they stimulated a site in the spinal cord and
recorded the direction and amplitude of the elicited
1sometric force at the ankle. This stimulation procedure
was repeated with the ankle placed at each of nine to 16
locations spanning a large portion of the leg’s work-space.
The collection of the measured forces corresponded to a
well-structured spatial pattern, called a vector field. In
most instances, the spatial variation of the measured force
vectors resulted in a field that was at all times both
convergent and characterized by a single equilibrium
point.

In general, the activation of a region within the spinal
cord does not produce a stationary force field. Instead,
following the onset of stimulation, the force vector
measured at each limb location changes continuously
with time (figure 2). As the force vectors elicited by a
stimulus change, so does the equilibrium position: the
sites occupied by the equilibrium position at subsequent
instants of times define a spatial trajectory. The time-
varying field is the expression of a mechanical wave that
summarizes the combined action of the muscles that are
affected by the stimulation. Mechanical waves of the
same kind can be used to describe the operation of central

pattern generators and of other natural structures
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Figure 1. Force fields induced by microstimulation of the spinal cord in spinalized frogs. (From Bizzi et al. 1991.) (a) The
hindlimb was placed at a number of locations on the horizontal plane (indicated by the dots). At each location a stimulus

was derived at a fixed site in the lumbar spinal cord. The ensuing force was measured by a six-axes force transducer. (b) Peak
force vectors recorded at the nine locations shown in (a). (¢) The work-space of the hindlimb was partitioned into a set of
non-overlapping triangles. Each vertex is a tested point. The force vectors recorded on the three vertices are used to estimate, by

linear interpolation, the forces in the interior of the triangle. (d) Interpolated force field.
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Figure 2. Temporal evolution of a spinal force field. Following the stimulation of a site in the spinal cord, the force vectors
change in a continuous fashion. The result is a mechanical wave, described here by a sequence of frames ordered by increasing
latency from the onset of the stimulus. The frames are separated by intervals of 86 ms. The dot indicates the location of the static
equilibrium point (where the estimated force vector vanishes) in each frame. (From Mussa-Ivaldi e/ al. 1990.)
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involved in the control of motor behaviour. At all laten-
cies after the onset of stimulation, the force field
converges towards an equilibrium position. The temporal
sequence of these equilibrium positions provides us with
an image of a virtual trajectory, as in the sequence of
frames of figure 2. Sometimes we found that the virtual
trajectories observed after electrical stimulation followed
circular pathways starting and ending at the same point
(Mussa-1Ivaldi et al. 1990). In contrast, the virtual trajec-
tories inferred by Flash (1987) and Won & Hogan (1995)
from reaching arm movements followed rectilinear and
smooth pathways, from start to final position of the hand.
This is not a surprising discrepancy given the great differ-
ence in experimental conditions, limb mechanics and
neural structures involved in these studies. Despite these
differences, however, it is remarkable that the essential
biomechanics of the moving limb is the same for the
hindlimb of the spinalized frog and for the arm of the
human subject. In both cases, movement is described as a
smooth temporal evolution of a convergent force field
produced by the spring-like properties of the neuro-
muscular apparatus.

In the spinal frog, different groups of leg muscles were
activated as the stimulating electrodes were moved to
different loci of the lumbar spinal cord in the rostro-
caudal and mediolateral direction. After mapping most of
the premotor regions in the lumbar cord with the tech-
nique of electrical microstimulation, Bizzi et al. (1991)
reached the conclusion that there were at least four areas
from which distinct types of convergent force fields were
elicited. These results were confirmed by Saltiel el al.
(1998) with the more selective method of chemical micro-
stimulation. N-methyl-D-aspartate iontophoresis applied
to a large number of sites of the lumbar spinal cord
revealed a map comparable with that obtained with elec-
trical microstimulation.

Perhaps the most interesting aspect of the investigation
of the spinal cord in frogs and rats was the discovery that
the fields induced by the focal activation of the cord
follow a principle of vectorial summation (figure 3).
Specifically, Mussa-Ivaldi et al. (1994) developed an
experimental paradigm involving the
stimulation of two distinct sites in the frog’s spinal cord.
They found that the simultaneous stimulation of two sites
led to vector summation at the ankle of the forces gener-
ated by each site separately. When the pattern of forces
recorded at the ankle following co-stimulation were
compared with those computed by summation of the two
individual fields, Mussa-Ivaldi et al. (1994) found that ‘co-
stimulation fields” and ‘summation fields’ were equivalent
in more than 87% of cases. Similar results have been
obtained by Tresch & Bizzi (1999) by stimulating the
spinal cord of the rat. Recently, Kargo & Giszter (2000)
showed that force field summation underlies the control of
limb trajectories in the frog.

Vector summation of force fields implies that the
complex nonlinearity that characterizes the interactions
both among neurons and between neurons and muscles is
in some way eliminated. More importantly, this result has
led to a novel hypothesis for explaining movement and
posture based on combinations of a few basic elements.
The few active force fields stored in the spinal cord may
be viewed as representing motor primitives from which,

simultaneous
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Figure 3. Spinal force fields add vectorially. Fields A and B
were obtained in response to stimulations delivered to two
different spinal sites. The & field was obtained by stimulating
simultaneously the same two sites. It matches closely
(correlation coefficient larger than 0.9) the force field in +,
which was derived by adding pairwise the vectors in A and

in B. This highly linear behaviour was found to apply to
more than 87% of dual stimulation experiments. (From
Mussa-Ivaldi et al. 1994.)

through superposition, a vast number of movements can
be fashioned by impulses conveyed by supraspinal path-
ways. Through computational analysis, Mussa-Ivaldi &
Giszter (1992) and Mussa-Ivaldi (1997) verified that this
view of the generation of movement and posture has the
competence required for controlling a wide repertoire of
motor behaviours.

The fields generated by focal activation of the spinal
cord are nonlinear functions of limb position, velocity
and time: ¢,(q, ¢, t) (figure 2). Consistent with the obser-
vation that these fields add vectorially, one may modify
the formulation of the inverse dynamic problem by repla-
cing the generic torque function, t(¢), with a superposi-
tion of spinal fields:

Dig, 4, ) = D_abila. i ). (2)

Here, each spinal field is tuned by a (non-negative) scalar
cocefficient, ¢;, that represents a descending supraspinal
command. We should stress that in this model, the
descending commands do not alter the shape of the
fields—that is their dependence upon state and time. This
is consistent with the empirical observation that the
pattern of force orientation of spinal fields remained
invariant in time and with different intensities of stimula-
tion (Giszter el al. 1993). Thus, it is plausible to assume
that the supraspinal signals select the spinal fields by
determining how much each one contributes to the total
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Figure 4. A simplified model of limb dynamics. The
mechanics of the arm in the horizontal plane are approxi-
mated by a two-joint mechanism (a). Shoulder and elbow are
modelled as two revolute joints with angles ¢, (with respect to
the torso) and ¢, (with respect to the forearm), respectively.
() The dynamics are described by two nonlinear equations
that relate the joint torques at the shoulder (D;) and at the
elbow (D,) to the angular position velocity and acceleration
of both joints. The parameters that appear in these expressions
are the lengths of the two segments (/; and /,); their masses
(m, and my); and their moments of inertia (/; and 7,). The
numerical values used in the simulations are the same as
those listed in Shadmehr & Mussa-Ivaldi (1994, tablel) and
correspond to values estimated from an experimental subject.
The terms 8, and (3, describe the viscoelastic behaviour of the
resting arm. They are simulated here by linear stiffness and
viscosity matrices.

field. The computational model of equation (2) is simply
a reformulation of inverse dynamics, with the additional
constraint that joint torque is produced by the modulation
of a set of pre-defined primitives, the fields ¢,(q, ¢, ?).
How does the nervous system derive the tuning coefli-
cients, ¢;, from the specification of a desired movement?
We do not yet have an answer to this question. However,
a simple mathematical analysis demonstrates that the
model is competent to generate movements similar to
those observed in experimental studies. In particular, the
superposition of few stereotyped fields is sufficient to
control the movements of the two-joint arm shown in
figure 4. To demonstrate this, we begin by defining a set of
force fields that capture the main qualitative features of
the spinal force fields. Here we focus on two specific
features: (i) the convergence of the field towards a single
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equilibrium point, and (ii) the tendency of muscle forces
to grow, reach a peak and then smoothly decrease when a
muscle is stretched. A simple way to capture both features
is to represent the force fields as gradients of Gaussian
potential functions. Each field in this model (figure 5a) is
centred at an arm configuration, ¢0 and generates a joint
torque that depends upon the distance of the limb from
this configuration:

1(¢, §) = K(g — q0)e” ™™ K= 4 By, (3)

The exponential term ensures that the joint torques do
not keep growing as the limb moves away from the equili-
brium point. The last term, Bg, represents a viscous dissi-
pative component in its simplest form.

The field y(¢, ¢) depends upon the state of motion of
the limb but not upon time. In contrast, it is reasonable to
assume that the modules implemented by the neural
circuits in the spinal cord have well-defined timing prop-
erties, established for example by recurrent patterns of
interconnections. A simple way to introduce stereotyped
temporal features in our model is to express each force
field as a product of the constant viscoelastic term, y, and
a time function f{t):

d(g, ¢, 1) =S (1) x x(q, ). (4)

The separation of time and state dependence is also
consistent with the observation that the forces generated
by electrical stimulation of the spinal cord maintain a
relatively constant orientation while the overall field
amplitude changes in time following each stimulus
(Giszter et al. 1993). Always for sake of simplicity, here we
consider only time-functions that have the form of a
smooth step (figure 5b,c) and its first derivative (figure
5d,e) (a smooth pulse’).

This model provides us with a way to design a family
of stereotyped force fields with features that are qualita-
tively consistent with empirical observations. Here we
have derived a small family of eight fields by combining
the four fields of figure 6a with each of the time-functions
of figure 5. In the end, we have a model of an arm that
may only be operated by specifying eight positive
numbers, the coefficients ¢; of equation (2). The simula-
tion results in figure 6¢ show that by modulating these
eight numbers it is possible to approximate the minimum-
jerk movements of figure 6b. The procedure for deter-
mining the coefficients is described in Mussa-Ivaldi
(1997). Briefly, for each desired movement in figure 65,
one derives the corresponding joint angle trajectory,
¢p(t). Then, the dynamics equation (2) is projected on
cach field, evaluated along the desired trajectory. The
result of this operation is a system of eight algebraic equa-
tions in the eight unknowns ¢;:

8
Z D0 = A
i=1

with

.5 8), (5)

D, = J¢/(%(t)> qn(t), t) @ b, (gn(t), gp(t), t)dt

&, = [900(0) (0, 00 Dlay0, 0, )
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Figure 5. A simplified model of spinal force fields. The force field in (a) is the gradient of a Gaussian potential function defined
over the angular coordinates of the mechanism in figure 4. The force vectors converge towards a stable equilibrium point
indicated by the small cross. Gaussian potentials are smooth functions defined over the entire limb work-space. The gradient
defines a stable equilibrium and the forces grow in amplitude within a region defined by the variance of the Gaussian potential.
This behaviour simulates the tendency of muscle-generated forces to grow until a critical amount of stretch is reached. At that
point the forces yield and then begin to decline. It is worth observing that in this mechanical context, the variance of the
Gaussian potential has the dimension of compliance (the inverse of stiffness). The functions of time in () and (d) are a smooth
step and a smooth pulse, respectively. When they multiply the field in (a) they generate the wave functions depicted in (¢) and
(¢). The time corresponding to each frame is indicated by the shaded areas in (4) and (d). The step field enforces a persistent
equilibrium position. The pulse field is a transient response that emulates the response to spinal stimulation shown in figure 2.

A standard non-negative least-squares method is used to
derive the coeflicients with the additional requirement that
these are greater than or equal to zero. This is an impor-
tant condition reflecting the fact that muscles cannot push.

Phal. Trans. R. Soc. Lond. B (2000)

The same condition is also sufficient to ensure the stability
of posture and movement by imposing that the forces
generated by each field converge towards the equilibrium
point. Another significant issue, from a computational
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Figure 6. The vectorial superposition of few force fields is competent to reproduce the kinematics and dynamics of arm
movements. These movement simulations have been obtained by combining step and pulse fields generated by four Gaussian
potentials. The gradients of these potentials are shown in (a). The least-squares procedure defined by equations (3) and
(4)—described in more detail in Mussa-Ivaldi (1997)—was used to approximate the desired trajectories in (5). The outcome of
the procedure is a set of constant coefficients that modulate a linear combination of the step and pulse fields (equation (2)). The
trajectories generated by these linear combinations are shown in (¢). When the arm dynamics are perturbed by the application of
the force field shown in figure 7b, the resulting hand movement are distorted as shown in (d). These trajectories have been
obtained by applying the same coefficients as in (¢). There is a striking similarity between the simulated perturbations and the

experimentally observed responses shown in figure 74.

standpoint, is to ensure that equation (5) may be inverted.
We know from elementary algebra that this is contingent
upon the matrix @ being full rank, a condition that is met
by the class of nonlinear force fields used here (Poggio &
Girosi1990; Mussa-Ivaldi & Giszter 1992).

Remarkably, the simulation results of this extremely
simplified example are not only consistent with the kine-
matics of reaching, but also with the responses observed
(figure 7d) when unexpected mechanical perturbations
(figure 7b) are imposed upon the moving hand. In this
case, the trajectories executed by experimental subjects
display a distinctive pattern of deflections. The same
pattern was produced by the simulation (figure 64) when
the same perturbing field was added to the dynamics of
the model arm with the same coeflicients used to generate
the reaching movements of figure 6¢.

Obviously, the repertoire of behaviours generated by
equation (2) depends on the functional form of the fields
that, at present, still needs to be accurately determined.
In the current model we have strongly simplified the
velocity-dependent forces by neglecting the known
nonlinear features of muscle force wversus velocity
dependence. Instead, here we are focusing on the conver-
gent features of the static fields generated by the spinal
cord. A particularly significant feature of this field is that

Phil. Trans. R. Soc. Lond. B (2000)

they have a broad but limited region where they exert an
influence. This feature is captured by the variance of the
Gaussian potentials and may be characterized as the
motor counterpart of a receptive field. A computational
analysis by Schaal & Atkeson (1998) indicated that on-
line learning of complex behaviours is successful only
when the receptive fields of the motor primitives are suffi-
ciently small. If each primitive had a large region of influ-
ence, the tuning of its parameters might interfere
disruptively with neighbouring regions. Remarkably, the
force fields elicited by stimulation of muscles and spinal
cord have consistently large domains of action.

The vector fields generated by the spinal cord offer a
clear example of the impedance control that has been
discussed in § 6. The experiments suggest that the circuitry
in the spinal cord—and perhaps also in other areas of the
nervous system—is organized in independent units, or
modules. While each module generates a specific field,
more complex behaviours may be easily produced by
superposition of the fields generated by concurrently active
modules. Thus, we may regard these force fields as inde-
pendent elements of a representation of dynamics. Recent
simulation studies (Mussa-Ivaldi 1997) have demonstrated
that by using this modular representation, that is by
adding convergent force fields, the CNS may learn to
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Figure 7. Adaptation to external force fields. (a) Sketch of the experimental apparatus. Subjects executed planar arm movements
while holding the handle of an instrumented manipulandum. A monitor (not shown) placed in front of the subjects and above
the manipulandum displayed the location of the handle as well as targets of reaching movements. The manipulandum was
equipped with two computer-controlled torque motors, two joint-angle encoders and a six-axes force transducer mounted on the
handle. (») Velocity-dependent force field corresponding to the expression
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The manipulandum was programmed to generate a force F that was linearly related to the velocity of the hand, v = [v,, v,].
Note that the matrix B has a negative and a positive eigenvalue. The negative eigenvalue induces a viscous damping at 23°
whereas the positive eigenvalue induces an assistive destabilizing force at 113°. (¢) Unperturbed reaching trajectories executed by
a subject when the manipulandum was not producing disturbing forces (null field). (d) Initial responses observed when the force
field shown in (4) was applied unexpectedly. The circles indicate the target locations. (Modified from Shadmehr & Mussa-Ivaldi

1994.)

reproduce and control the dynamics of a multjoint limb
coupled with the dynamics of the environment.

8. EVIDENCE FOR INTERNAL MODELS

The findings on the spinal cord suggest that the CNS is
capable of representing the dynamic properties of the
limbs. This representation is an internal model. The term
‘internal model’ refers to two distinct mathematical
transformations: (i) the transformation from a motor
command to the consequent behaviour, and (i) the trans-
formation from a desired behaviour to the corresponding
motor command (Jordan & Rumelhart 1992; Kawato &
Wolpert 1998; MclIntyre et al. 1998). A model of the first
kind is called a ‘forward model’. Forward models provide
the controller with the means not only to predict the
expected outcome of a command, but also to estimate the
current state in the presence of feedback delays (Miall &
Wolpert 1996). A representation of the mapping from
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planned actions to motor commands is called an ‘inverse
model’. Studies by Wolpert et al. (1998) proposed that the
neural structures within the cerebellum perform sensori-
motor operations equivalent to a combination of multiple
forward and models. Strong experimental
evidence for the biological and behavioural relevance of
internal models has been offered by numerous recent
experiments (Brashers-Krug et al. 1996; Flanagan &
Wing 1997; Flash & Gurevich 1992; Gottlieb 1996; Sabes
et al. 1998; Shadmehr & Mussa-Ivaldi 1994). In particular,
the experimental results obtained by Shadmehr &
Mussa-Ivaldi (1994) demonstrate clearly the formation of
internal models. Their experimental subjects were asked
to make reaching movements in the presence of externally
imposed forces. These forces were produced by a robot
whose free end-point was held as a pointer by the subjects
(figure 7). The subjects were asked to execute reaching
movements towards a number of visual targets. Since the
force field produced by the robot significantly changed

inverse
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Figure 8. Time-course of adaptation. Average and

standard deviation of hand trajectories executed during

the training period in the force field of figure 7). Performance
is plotted during the (a) first, () second, (¢) third and

(d) final set of 250 movements. All trajectories shown here
were under no-visual feedback condition. (From Shadmehr
& Mussa-Ivaldi 1994.)

the dynamics of the reaching movements, the subjects’
movements, initially, grossly distorted when
compared with the undisturbed movements. However,
with practice, the subjects’ hand trajectories in the force
field converged to a path similar to that produced in
absence of any perturbing force (figure 8).

Subjects’ recovery of performance is due to learning.
After the training had been established, the force field
was unexpectedly removed for the duration of a single
hand movement. The resulting trajectories (figure 9),
named after-effects, were approximately mirror images of
those that the same subjects produced when they had
initially been exposed to the force field. The emergence of
after-effects indicates that the CNS had composed an
internal model of the external field. The internal model
was generating patterns of force that effectively anticipated
the disturbing forces that the moving hand was encoun-
tering. The fact that these learned forces compensated for
the disturbances applied by the robotic arm during the
subjects’ reaching movements indicates that the CNS
programmes these forces in advance. The after-effects
demonstrate that these forces are not the products of some
reflex compensation of the disturbing field.

It is of interest to ask what are the properties of the
internal model, and in particular whether the model
could generalize to regions of the state space where the
disturbing forces were not experienced. Recent experi-
ments by Gandolfo et al. (1996) were designed to test the
generalization of motor adaptation to regions where
training had not occurred. In these experiments, subjects
were asked to execute point-to-point planar movements

were

Phil. Trans. R. Soc. Lond. B (2000)

5cm

Figure 9. After-effects of adaptation. Average and standard
deviations of hand trajectories executed at the end of training
in the field when the field was unexpectedly removed on
random trials. Compare these trajectories with the
initial-exposure movements of figure 7d. (From Shadmehr

& Mussa-Ivaldi 1994.)

between targets placed in one section of the work-space.
Their hand grasped the handle of the robot, which was
used to record and perturb their trajectories. Again, as in
the experiments of Shadmehr & Mussa-Ivaldi (1994),
adaptation was quantified by the amount of the after-
effects observed when the perturbing forces were discon-
tinued.

As a way of establishing the generalization of motor
learning, Gandolfo et al. (1996) perturbed only the trajec-
tories made to a subset of the targets and searched for
after-effects in movements that had not been exposed to
perturbations. The amount of the after-effect made it
possible to quantify the force field that the subjects
expected to encounter during their movements in the
trained as well as in the novel directions. The same inves-
tigators found that the after-effects were present, as
expected, along the trained directions, but the magnitude
of the after-effects decayed smoothly with increasing
distance from the trained directions. This finding indi-
cates that the ability of the CNS to compensate for
external forces is restricted to those regions of state space
where the perturbations have been experienced by the
moving arm. However, most importantly, subjects were
also able to compensate to some extent for forces experi-
enced at neighbouring work-space locations. There is a
remarkable degree of consistency between these results on
dynamic adaptation and some studies of the responses to
perturbations in the perceived kinematics. For example,
Ghahramani et al. (1996) exposed subjects to a localized
shift in the visual presentation of a target and observed
the adaptive changes in reaching movements of the hand
induced by this shift at a number of surrounding loca-
tions. They found that the adaptive responses decayed
smoothly with distance from the training location, where
the visual information was presented. In a different set of
experiments, Martin ef al. (1996) trained subjects to
throw a ball at a visual target, while wearing prism spec-
tacles that displayed the visual field. They found that
learning did not generalize between right and left hand.
However, they could occasionally, although
observe generalization across different throwing patterns
executed with the same hand. A somewhat contrasting
result was recently obtained by Vetter et al. (1999), who
did not observe a decay in generalization after remapping

rarely,
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Figure 10. Evidence of motor memory consolidation. The left
panels show the learning curves for three groups of subjects.
Learning in a perturbing force field was quantified by a corre-
lation coeflicient between the trajectories in the field and the
average trajectory before any perturbation had been applied.
On the right are the mean performances in experiment days 1
and 2. Subjects in the control group («) practised reaching
movements against a force field (task A) in the first day and
then were tested again in the same field during the second
day. Subjects in the no-break group (4) during the first day
practised movements in the field of task A. Then they
immediately practised movements in a different field (task B).
On the second day they practised again in the field of task A.
Finally, subjects of the 4 h break group (¢) during the first day
were exposed to the fields of tasks A and B but with a breaking
interval of 4 h between the two. Their performance was
measured on task A in day 2. Learning curves and mean
performance were significantly higher in day 2 both for the
control group and for the 4h break group. In contrast,
subjects in the no-break group did not display any difference
in performance from day 1 to day 2. (From Brashers-Krug
etal. 1996.)

of the target location in a pointing paradigm similar to
that of Ghahramani et al. (1996).

The experiments on dynamic adaptation have shown
that subjects adapt to a new environment by forming a
representation of the external force field that they
encounter when making reaching movements. Does this
representation form an imprint in long-term memory?
Brashers-Krug et al. (1996) investigated this question by
exposing their subjects to perturbing force fields that
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interfered with the execution of reaching movements
(figure 10). After practising reaching movements, these
subjects were able to compensate for the imposed forces
(task A) and were able to guide the cursor accurately to
the targets despite the disturbing forces. This group of
subjects, which was tested 24h later with the same
disturbing forces, demonstrated not only retention of the
acquired motor skill, but also additional learning.
Surprisingly, they performed at a significantly higher
level on day 2 than they had on day 1. A second group of
subjects was trained on day 1 with a different pattern of
forces (task B), immediately after performing task A. In
task B the manipulandum produced forces opposite in
direction to those applied during task A. When this
second group of subjects was tested for retention of task A
on day 2, the investigators found that the subjects did not
retain any of the skills that had been learned earlier. This
phenomenon is known as retrograde interference. Next,
Brashers-Krug e/ al. (1996) investigated whether the
susceptibility to retrograde interference decreased with
time. They found that retrograde interference decreased
monotonically with time as the interval between task A
and B increased (figure 10). When 4 h passed before task
B was learned, the skill learned in task A was completely
retained—the initial learning had consolidated. What is
remarkable in these results is that motor memory is trans-
formed with the passage of time and in absence of further
practice, from an initial fragile state to a more solid state.

9. CORTICAL PRIMITIVES

While the internal representation of limb’s dynamics
based on modules is of central importance for the execu-
tion of motor tasks, voluntary movements are often speci-
fied and planned in terms of goals. Recordings of cell
activity from primates’ premotor areas of the frontal lobe
have revealed the presence of neurons active during
various forms of grasping. Each neuron is selectively
active for a specific type of grasping. Rizzolatti et al.
(1990) interpreted their findings as an indication of a
‘vocabulary of actions’. The words of the vocabulary are
represented by neuronal populations, each of which
specifies a given motor act. It is of interest that these
neurons are active not only during the act of grasping,
but also when the primate simply looks at the objects
that, eventually, will be picked up. Neurons with similar
visuomotor properties have been found in the parietal
lobe where neurons selectively active during manipula-
tions are present in the anterior intraparietal area
(Sakata et al. 1995).

Cells active prior and during reaching moments were
also found in the parietal lobe by Mountcastle et al. (1975)
and in the frontal motor area by Georgopoulos et al.
(1988). However, unlike the cells representing grasping,
directionally tuned arm-reaching neurons display contin-
uous parameterization of directional movements.

While the significance and the functional role of
distributed and categorical cortical codes remains to be
investigated, a question of great importance 1s to
understand how the codes representing reaching and
manipulation may be combined with each other by the
brain to span a repertoire of purposeful behaviours. At
present, we know that spinal force fields implementing
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the execution of motor commands are combined by
vectorial superposition. However, we do not know the
rules that govern the combination of reaching and manip-
ulation goals. If there is a system of high-order primitives
that code for goals, then it remains to be established how
these goals may be combined and translated into move-
ments so that their concurrent activation leads to mean-
ingful results.

10. CONCLUSION

In this paper we have shown that the problem of plan-
ning and execution of a visuomotor task can be divided
into a set of subprocesses. Actions are first planned in
reference to the objects and the geometry of the
surrounding environment. Then, once a movement is
specified in the environment, it must be translated into
motions of multiple body segments. Finally, the execution
phase requires the solution of an inverse dynamic
problem. Various schemes have been proposed in order to
represent and solve the complex dynamics of the multi-
joint apparatus: look-up tables, equilibrium-point trajec-
tory, combination of spinal cord modules and the
formation of internal models of dynamics.

Motor patterns come into fragments or modules. These
modules find their ultimate expression in the force fields
generated by the concurrent activation of multiple
muscles. Our current understanding of the spinal cord
suggests that this structure provides the brain with a first
vocabulary of such synergistic force fields. What we found
to be remarkable is that there seems to be only a handful
of words in this vocabulary in spite of all the muscle
combinations that could be realized. It will certainly be
important to understand what are the origin and the
rationale for this particular choice of spinal force fields.
By focusing on the mechanics of force fields we have not
only found a system of modules but also a very simple
syntax: fields can be literally added with each other to
generate a rich repertoire of behaviours. This additive
property is likely to be the basis for our ability to
compensate complex patterns of force disturbances, as it
has been seen in many of the experiments that we have
reviewed. And, ultimately, the internal model of a limb’s
dynamics is nothing else than another field which relates
the forces generated by the muscular apparatus to the
state of motion of the limb.
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