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Locomotion can be investigated by factorization of electromyographic (EMG) signals,

e.g., with non-negative matrix factorization (NMF). This approach is a convenient concise

representation of muscle activities as distributed in motor modules, activated in specific

gait phases. For applying NMF, the EMG signals are analyzed either as single trials, or

as averaged EMG, or as concatenated EMG (data structure). The aim of this study is to

investigate the influence of the data structure on the extracted motor modules. Twelve

healthy men walked at their preferred speed on a treadmill while surface EMG signals

were recorded for 60 s from 10 lower limb muscles. Motor modules representing relative

weightings of synergistic muscle activations were extracted by NMF from 40 step cycles

separately (EMGSNG), from averaging 2, 3, 5, 10, 20, and 40 consecutive cycles (EMGAVR),

and from the concatenation of the same sets of consecutive cycles (EMGCNC). Five

motor modules were sufficient to reconstruct the original EMG datasets (reconstruction

quality >90%), regardless of the type of data structure used. However, EMGCNC was

associated with a slightly reduced reconstruction quality with respect to EMGAVR. Most

motor modules were similar when extracted from different data structures (similarity

>0.85). However, the quality of the reconstructed 40-step EMGCNC datasets when using

the muscle weightings from EMGAVR was low (reconstruction quality ∼40%). On the

other hand, the use of weightings from EMGCNC for reconstructing this long period of

locomotion provided higher quality, especially using 20 concatenated steps (reconstruction

quality ∼80%). Although EMGSNG and EMGAVR showed a higher reconstruction quality

for short signal intervals, these data structures did not account for step-to-step variability.

The results of this study provide practical guidelines on the methodological aspects of

synergistic muscle activation extraction from EMG during locomotion.
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INTRODUCTION

Surface electromyography (EMG) represents indirectly the neu-

ral inputs from many sources (supraspinal, reflex activities,

somatosensory information) to the muscles and has therefore

been widely used to define neural strategies to perform motor

tasks (Lacquaniti et al., 2012). An increasing number of investiga-

tions have been applying factorization analyses on multi-muscle

surface EMG signals in order to extract basic motor patterns

or modules (also called muscle synergies) that concisely repre-

sent the neural strategies for recruiting muscles during locomotor

tasks (Ivanenko et al., 2005; Cappellini et al., 2006; Lacquaniti

et al., 2012; Oliveira et al., 2013a). These investigations reported

a low-dimensional model for representing the neural control

of muscles during human locomotion, which is characterized

by activation signals that define the instants of recruitment

of specific motor modules related to biomechanical sub-tasks

(Lacquaniti et al., 2012).

Human locomotion is a largely automatized motor behavior,

therefore the step-to-step variability of the main neural inputs

to the muscles is limited. Studies applying factorization analysis

focusing on human locomotion usually report a low-dimensional

set of four to six motor modules to represent neural inputs

to the muscles (Ivanenko et al., 2004; Lacquaniti et al., 2012).

Differences in the number of motor modules needed for an accu-

rate description (i.e., dimensionality) may be related to a variable

number of muscles included in the EMG dataset and differ-

ent low-pass filtering among studies (Hug et al., 2012; Steele

et al., 2013). In addition, there is a wide range of number of

step cycles used for extracting representative motor modules; for

example, some studies used 4–12 cycles (Monaco et al., 2010),

others 10–25 cycles (Merkle et al., 1998; Ivanenko et al., 2004,

2005; Gizzi et al., 2011; Oliveira et al., 2013a; Sartori et al.,

2013b), and in some cases up to 30 cycles (Clark et al., 2010).

The number of step cycles used for the estimation of the syner-

gistic activation is relevant for applications to biofeedback and

rehabilitation technologies, when the extracted motor modules

are used either for feedback purposes or as a basis for control-

ling the interaction with robotic devices. For example, because the
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motor modules provides a concise representation of relative mus-

cle activations, their online estimation can be used by a training

supervisor to focus the attention of the patient on those muscles

that are abnormally activated during a certain phase of the step

cycle.

Previous investigations extracting motor modules from sin-

gle trials reported reconstruction quality over 90% (Ivanenko

et al., 2004, 2005), whereas analyses in which consecutive step

cycles were concatenated and analyzed together resulted in a

lower reconstruction quality (Gizzi et al., 2011; Oliveira et al.,

2012, 2013a,b). Reduced reconstruction quality in concatenated

analyses may be an effect of natural step-to-step variability con-

tained in surface EMG signals, which may be crucial for specific

kinematic adjustments during locomotion. Recently, de Rugy

et al. (2013) have raised concerns about the use of factoriza-

tion analysis because they noticed that even small reconstruction

errors in muscle activity could correspond to relatively impor-

tant changes in force production. Therefore, although EMG

factorization analysis is a promising tool for locomotion reha-

bilitation and robotic control (Gizzi et al., 2012; Moreno et al.,

2013; Sartori et al., 2013a), there are many aspects that still

remain unclear for an optimal and consistent application of such

methodology.

In this study we explored the differences in the extracted

motor modules when varying the EMG data structure by com-

paring the factorization results when using single step EMG

(EMGSNG), averaged EMG (EMGAVR), and concatenated EMG

(EMGCNC). Applications in neurotechnologies for rehabilitation,

e.g., biofeedback, would benefit from the analysis on the short-

est time interval (single cycles) that would allow adaptive/reactive

responses. However, single cycle factorization would present fast

variations on a cycle basis. These variations may be relevant in

some applications, e.g., in patients with high intrinsic step-to-

step variability, but not in others. The hypothesis of the study was

that the use of different data structures (single trials, averaging or

concatenating EMG signals) to identify motor modules influences

the extracted dimensionality and/or the modules. The results

obtained are of practical relevance when using EMG factorization

for the study of human locomotion.

METHODS

SUBJECTS

Twelve healthy men (age: 28 ± 4 years; body mass: 80.8 ± 8 kg;

body height: 178 ± 4 cm) volunteered for the experiment. One

subject was left-dominant and all others were right-dominant.

Exclusion criteria included history of knee or ankle ligament

injury, current lower-extremity injury, recent (within 6 months)

low back injury, or vestibular dysfunction. All subjects provided

written informed consent before participation and the procedures

were approved by the ethical committee of Northern Jutland

(N-20130015).

EXPERIMENTAL SETUP

In a single session subjects were initially asked to perform

familiarization to the treadmill (Woodway Pro, Foster Court

Waukesha, USA) by walking for 5 min. Subsequently, preferred

walking speed was determined following previous literature (Choi

and Bastian, 2007) and after a 2-min rest period, subjects walked

at the selected speed for 5 min during which surface EMG and

walking cadence were recorded from the last 60 s (see Figure 1A

for illustration).

DATA COLLECTION

EMG signals were recorded in bipolar derivations with pairs

of Ag/AgCl electrodes (Ambu Neuroline 720 01-K/12; Ambu,

Ballerup, Denmark) with 22 mm of center-to-center spacing.

Prior to electrode placement the skin was shaved and lightly

abraded. A reference electrode was placed on the right tibia.

The EMG signals were recorded from a portable EMG ampli-

fier (Biovision EMG-Amp, Germany) stored in a backpack

together with a mini-computer. The EMG signals were sampled

at 2000 Hz (12 bits per sample), band-pass filtered (second-

order, zero lag Butterworth, bandwidth 10–500 Hz). The EMG

signals were recorded from the following muscles of the right

side (dominant side for 11 out of 12 subjects) according to

Barbero et al. (2011): tibialis anterior (TA), soleus (SO), gas-

trocnemius lateralis (GL), gastrocnemius medialis (GM), vastus

lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps

femoris (BF), semitendinosus (ST), and gluteus maximus (GX).

A uniaxial accelerometer was placed on the right tibia, which

measured the vertical acceleration synchronized to the EMG

measurements.

DATA ANALYSIS

Accelerometry

Data from tibia vertical acceleration were low-pass filtered

(60 Hz) and step cycles were determined following previously

reported methods (Kersting, 2011). Individual step cycles were

time-normalized to 200 data points for one step cycle.

Surface EMG

The segmentation for EMG factorization was defined from the

accelerometer data, from which step cycles were determined. After

segmentation, the surface EMG signals from the 10 muscles were

band-pass filtered (20–500 Hz), full-wave rectified, low-pass fil-

tered (10 Hz) and time-normalized in order to obtain 200 data

points for one step cycle.

Motor modules extraction

For each subject, non-negative matrix factorization (NMF, Lee

and Seung, 2001) was applied in order to process the EMGSNG

extraction and identify motor modules and activation signals

from the 40 consecutive step cycles separately. Subsequently, the

vectors representing muscle weightings and activation signals

were averaged for each subject which could be compared to motor

modules from the other two processing methods. In addition,

NMF was applied in EMG datasets containing two, three, five,

10, 20, and 40 consecutive step cycles in two processing modal-

ities. The first (EMGAVR) consisted of averaging the different

number of step cycles for subsequent extraction of motor mod-

ules. The second method (EMGCNC) consisted of the concatena-

tion of a given amount of step cycles for subsequent extraction

of motor modules. In this case, all variability from sequen-

tial step cycles is accounted for during NMF analysis, which

may reduce reconstruction quality for longer datasets including
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FIGURE 1 | Illustrative sample of surface EMG signals (A) from 40

consecutive walking step cycles. (B) Non-negative matrix factorization

provides similar muscle weightings by using 4 and 5 motor modules

(similarity >0.9 for the first four motor modules), however differences in the

activation signals can be qualitatively observed, especially for M1 and M3.

The reconstruction of the original EMG dataset is shown in (C). The original

EMG (black lines) from some muscles (i.e., VL, VM, BF, ST) is well

reconstructed by using both 4 modules (Rec 4 modules, red lines) or five

modules (Rec 5 modules, blue lines). On the other hand, muscles such as TA,

RF, and GX exhibited better reconstruction only by using 5 modules.

a greater number of consecutive cycles (see Figures 1B,C for
illustration). For all three EMG processing methods, individ-

ual surface EMG channels were normalized by the peak acti-
vation, so that all channels were ranging from 0 to 1 in

amplitude.

Motor module model

The EMG signals X(k) recorded from M muscles were

factorized as

X(k) ≈ Xr(k) = S · P(k) (1)

where Xr(k) is the muscle activity vector reconstructed by the

factorization, S is a scalar matrix (synergy matrix or motor

module matrix), and P(k) are the activation signals, of dimension

N < M. In Equation (1), the EMG X(k) are obtained by linear

transformation of the activation signals P(k) with gain factors smn

(the entries of the synergy matrix, Lee and Seung, 2001).

Dimensionality

After extracting the motor modules, the estimated muscular acti-

vation pattern was compared with the experimental pattern by
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means of the variability accounted for (VAF) value, defined as the

variation that can be explained by the model: VAF = 1− SSE/SST,

where SSE (sum of squared errors) is the unexplained variation

and SST (total sum of squares) is the pooled variation of the data.

The reconstruction quality was analyzed by plotting the VAF as a

function of the number of modules, and the minimum acceptable

number of modules was identified as the point in which this curve

pronouncedly changes its slope (d’Avella et al., 2003; Muceli et al.,

2010), and additionally, the number of modules must also suc-

cessfully reconstruct at least 90% of the original EMG content. In

addition, we reconstructed EMG signals from the three processing

methods and number of steps in two different ways: (a) the com-

bination of extracted muscle weightings with activation signals

obtained from randomly generated matrix (i.e., activation signals

free to vary) and (b) the combination of extracted activation sig-

nals with muscle weightings obtained from randomly generated

matrix (i.e., muscle weightings free to vary). The latter analysis

provided the quality of EMG reconstruction (i.e., VAF) that can

be achieved by using random variability, which was hypothesized

to be lower than the VAF obtained by reconstructing EMG signals

with the factorization obtained by NMF. The muscle weightings

and activation signals free to vary were obtained by iterating 1000

times the NMF update rules (Lee and Seung, 1999), only for

muscle weightings or activation signals, respectively.

Similarities

The muscle weightings and activation signals from two sets were

compared by computing the similarity between the best matched

pairs, as described in d’Avella et al. (2003). Similarities were then

calculated by computing the scalar product between pairs of vec-

tors (motor modules or activation signals), normalized by the

product of the norms of each column (d’Avella et al., 2003; Muceli

et al., 2010), which prioritizes the comparison between the shapes

of vectors rather than amplitude. Similarity can vary from 0 (no

curve shape matching) to 1 (perfect curve shape matching) and

previous investigations have used values above 0.8 to define if a

pair of vectors is similar (Gizzi et al., 2011; Oliveira et al., 2013b).

Intra-subject similarity analyses were conducted for individual

motor modules and individual activation signals between the dif-

ferent numbers of step cycles for each given EMG processing

method. In addition, intra-subject similarities between methods

were calculated for each sequence of step cycles.

EMG reconstructed from different muscle weightings

Additionally to similarity analysis, we fixed the muscle weight-

ings extracted from 2, 3, 5, 10, and 20 steps of the first half of the

recording, and used such weightings for reconstructing another

sequence of 2, 3, 5, 10, and 20 concatenated steps from the sec-

ond half, as well as the whole sequence of 40 cycles. This analysis

reflected the situation in which the motor modules are com-

puted from only an initial portion of the recording and then used

to explain the remaining part of the recording. This procedure

was conducted by using muscle weightings from EMGCNC and

from EMGAVR. For instance, we reconstructed the concatenated

EMG from 40 step cycles by using its original activation signals

combined to the muscle weightings from shorter concatenation

periods (2, 3, 5, 10, and 20 cycles). By doing so we aimed at

directly testing the reconstruction performance of motor modules

extracted from different concatenation lengths as a measure of

their representativeness for a longer signal interval.

Statistical analysis

The degrees of similarity between individual motor modules

and between individual activation signals were compared by a

One-Way ANOVA. The significance level was set to p < 0.05. A

Two-Way ANOVA was used in order to verify the effects of EMG

processing method (EMGAVR vs. EMGCNC) and number of step

cycles (two, three, five, 10, 20, and 40) on the reconstruction qual-

ity (VAF). In addition, Student t-tests were used to investigate

differences between intra-subject similarities among the EMG

processing methods. All statistical procedures were conducted

using SPSS 18.0 (SPSS, Inc., Chicago, IL, USA).

RESULTS

DIMENSIONALITY

The analysis of dimensionality from EMGSNG revealed that four

motor modules were required to reconstruct unilateral muscular

activations with an overall reconstruction quality of 88% (VAF =

88 ± 3%, average across all muscles, Figure 2A). For three out

of 12 subjects the VAF was higher than 90% for all muscles by

reconstructing the EMG from four motor modules. However, for

most of subjects, muscles such as TA, RF, and GX showed poorer

reconstruction quality than the average (∼80%). By using five

motor modules the overall reconstruction quality increased to

93 ± 2%, and all muscles could reach an average reconstruction

quality >90% (see Figures 1B,C for illustration).

The calculated VAF by combining randomly generated mus-

cle weightings and the extracted activation signals to reconstruct

the original EMG datasets was 38 ± 8, 36 ± 11, and 32 ± 9%

for EMGSNG, EMGAVR, and EMGCNC respectively. Similarly, the

results from calculating the VAF by combining randomly gen-

erated activation signals and the extracted muscle weightings to

reconstruct the original EMG datasets was 39 ± 10%, 33 ± 12%,

and 37 ± 10% for EMGSNG, EMGAVR, and EMGCNC respectively.

Both simulations showed a very poor reconstruction quality in

comparison to the extracted motor modules, which suggests that

the extracted motor modules provide meaningful information

that random variability cannot reproduce.

AVERAGING vs. CONCATENATING EMG SIGNALS

By fixing the number of modules to five we compared the results

from EMGAVR and EMGCNC. The Two-Way ANOVA revealed

no EMG processing vs. number of step cycles interaction, how-

ever there was a significant effect of the EMG processing method

(p < 0.001, F = 90.5). The reconstruction accuracy was approx-

imately 94% (VAF = 0.94 ± 0.02, Figure 2B) for motor modules

from EMGAVR, and slightly lower (∼90%) when using EMGCNC

(VAF = 0.90 ± 0.03). In both cases, the number of step cycles used

for the calculation did not significantly influence the estimates.

MOTOR MODULES FROM TREADMILL WALKING

Four out of the five motor modules could be assigned to biome-

chanical subtasks of walking (Figure 3). Module 1 (M1) consists

of the activation of knee extensors and GX (see muscle weightings
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FIGURE 2 | Mean ± SD of the variation accounted for (VAF) from the

factorization analysis of individual step cycles (A) by considering to

reconstruct the original EMG dataset using four motor modules (gray

bars) and five motor modules (black bars) from single step cycles

(EMGSNG). (B) The VAF from the reconstruction of original EMG datasets

by using five motor modules from averaged EMG (EMGAVR, gray bars) and

from concatenated (EMGCNC, black bars) in different amounts of step

cycles. ∗Denotes significant difference in relation to EMGAVR (p < 0.05).

in Figure 3A) at the beginning of the stance period (see activation

signals in Figure 3B). Module 2 (M2) relates to forward propul-

sion, in which the plantarflexors are predominantly recruited.

Module 3 (M3) relates to the leg swing, in which TA and RF

are recruited throughout the swing phase, and Module 4 (M4)

is related to the recruitment of the hamstring muscles (ST, BF)

prior to the subsequent initial contact. The fifth module (M5)

involves the recruitment of ankle joint muscles as well as RF and

GX, with no clear burst-like activity throughout the step cycle.

The recruitment of this motor module is predominant at ini-

tial contact, transition from stance to swing phase and prior to

subsequent initial contact.

INTRA-SUBJECT SIMILARITIES

High similarities considering all ranges of step cycles (>0.8) were

found for individual muscle weightings and individual activa-

tion signals of all motor modules except M5, regardless the used

EMG processing method for motor modules extraction (Table 1).

However, EMGSNG exhibited reduced intra-subject similarity for

individual muscle weightings in comparison to EMGAVR and

EMGCNC for most of the modules (ANOVA One-Way, p < 0.05).

In addition, EMGSNG also exhibited reduced intra-subject simi-

larity for individual activation signals in comparison to EMGAVR

for all motor modules (t-Student test, p < 0.05).

SIMILARITY AMONG EMG PROCESSING METHODS

Intra-subject similarity among methods (Figure 4) was high

between EMGSNG vs. EMGAVR (similarity = 0.95 ± 0.09 consid-

ering all ranges of cycles numbers and the five motor modules),

as well as between EMGSNG vs. EMGCNC (similarity = 0.94 ±

0.10). A 1-way ANOVA test for each motor module did not reveal

any statistical differences (p > 0.05). Similarity between EMGAVR

vs. EMGCNC was slightly reduced (0.92 ± 0.16), especially for

M5 (0.80 ± 0.15). For the motor module related to leg swing

(M3) similarity between EMGSNG vs. EMGAVR (0.96 ± 0.01) was

slightly higher than the similarity between EMGSNG vs. EMGCNC

(0.93 ± 0.01) and EMGAVR vs. EMGCNC (0.90 ± 0.01).

RECONSTRUCTED EMG FROM DIFFERENT CONCATENATIONS OF STEP

CYCLES

The reconstruction of original EMG using muscle weightings

from EMGCNC revealed that the lower the number of concate-

nated step cycles, the lower is the quality of reconstruction for

longer concatenation periods (Figure 5A). On the other hand,

the use of weightings from EMGAVR did not provide a similar

reconstruction quality (Figure 5B). In a more detailed analysis

concerning the reconstruction of 40 steps (Figure 5C), it was

observed that the use of muscle weightings from EMGCNC pro-

vided higher reconstruction quality in comparison to EMGAVR.

Moreover, the highest reconstruction quality was achieved by

using the concatenation of 20 steps (VAF = 0.8 ± 0.04,

Figure 5C). In addition, the overall quality of reconstruction by

using a given number of step cycles to reconstruct the EMG

datasets of the different number of steps is shown in Figure 5D. It

was also observed that EMGCNC provided higher reconstruction

quality in comparison to EMGAVR, and especially for EMGCNC

the shorter the concatenation period, the poorer is the quality of

reconstruction.

DISCUSSION

We studied the influence of the data structure (e.g., number of

step cycles) and their processing (averaging/concatenation) on

the EMG factorization analysis during locomotion. The results

indicated that the number of step cycles and their pre-processing

did not impact the estimated dimensionality and had a relatively

small effect on the extracted motor modules, as intra-subject

similarities demonstrated that these motor modules were pre-

dominantly similar regardless of the number of analyzed step

cycles. However, further analyses applying muscle weightings

from EMGAVR and shorter EMGCNC intervals to reconstruct

longer locomotion intervals (e.g., 40 step cycles) demonstrated

poor reconstruction quality, while optimal reconstructions were

found by using at least 20 steps.

As expected, the extraction of motor modules from individ-

ual step cycles revealed a certain degree of step-to-step variability
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FIGURE 3 | Motor modules extracted from EMGAVR of all subjects

concatenated. Muscle weightings were averaged for illustration (A) and

each activation signal for single subjects (each subject represented by a color)

is shown in (B). The first four activation signals exhibited well-defined bursts

of activity at specific timing, however M5 did not presented clear pattern of

activation throughout the step cycle, as well as between subjects.

Table 1 | Mean ± SD intra-subject similarities for each motor module (M1–M5) extracted by using surface EMG from single step cycles

(EMGSNG), averaged EMG (EMGAVR), and concatenated EMG (EMGCNC).

M1 M2 M3 M4 M5

MUSCLE WEIGHTINGS

EMGSNG 0.89 ± 0.10* 0.89 ± 0.11* 0.86 ± 0.13 0.85 ± 0.03* 0.58 ± 0.14*

EMGAVR 0.97 ± 0.02 0.97 ± 0.02 0.92 ± 0.12 0.98 ± 0.01 0.78 ± 0.18

EMGCNC 0.94 ± 0.06 0.96 ± 0.02 0.86 ± 0.20 0.97 ± 0.02 0.78 ± 0.19

ACTIVATION SIGNALS

EMGSNG 0.92 ± 0.08* 0.93 ± 0.03* 0.82 ± 0.10* 0.92 ± 0.06* 0.60 ± 0.10*

EMGAVR 0.99 ± 0.01 0.97 ± 0.02 0.91 ± 0.12 0.96 ± 0.05 0.79 ± 0.17

For each subject similarity was computed across all ranges of step cycles, therefore it was not possible to compute similarities for the concatenated activation

signals. *Denotes significant difference in relation to the other EMG processing methods.

in the results. Because of this variability, when muscle weightings

extracted from EMGAVR or from EMGCNC with small number

of step cycles were fixed for reconstructing the original EMG

data from different concatenation periods, the reconstruction

quality was generally poor. These results suggest that, although

different EMG processing methods can reveal predominantly

similar vectors for weightings and timing properties, the details

of muscle activities and their variability are better extracted by

concatenating at least 20 step cycles. This number of step cycles,

when concatenated, allowed to capture most of the step-by-step

variability generated during longer periods of locomotion.

The reconstruction of original EMG datasets by using four

motor modules was not high for TA, RF, and GX in most of the

tested subjects. However, the four extracted modules were still

consistent when five modules were extracted, and were compa-

rable to those reported in previous literature (Ivanenko et al.,
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FIGURE 4 | Illustrative comparison of averaged EMG and concatenated

EMG from a single subject (left). On the right, mean ± SD similarities

between muscle weightings extracted from single trials vs. averaged EMG

(top), from single trials vs. concatenated EMG (middle) and from averaged

EMG vs. single trials (bottom), for each analyzed number of step cycles (from

three to 40 step cycles).

2004; Clark et al., 2010; Oliveira et al., 2012). In our study, a fifth

motor module that was not directly associated to a biomechani-

cal subtask, was required to complement the activation of ankle

joint muscles, and of the RF and GX muscles at the transition

instances of the step cycle (swing-to-stance and stance-to-swing).

This type of motor modules with relatively small biomechanical

relevance has been previously reported by Monaco et al. (2010)

who defined it as systematic information with robust inter-subject

muscle groups, especially at high cadences. Ivanenko et al. (2004,

2005) also described less relevant motor patterns that could be

dropped from the analysis because of their lack of significance.

In the present study, the fifth motor module could only cap-

ture a marginal portion of the EMG variance and may not be

necessary to understand the main features of the global EMG

data. However, the consistently lower reconstruction quality for

the same muscles when using four modules may indicate that

additional temporal adjustments in muscle recruitment might

be needed in order to produce optimal limb kinematics. The

exact source of such activity can only be speculated, involv-

ing sensorial/afferent inputs to the muscles (Rossignol et al.,

2006) and/or direct modulation from cortical neurons (Petersen

et al., 2012). Gwin et al. (2011) have shown increased spectral

power in the alpha and beta bands of cortical activity during

step transitions, the predominant periods in which the described

fifth module was recruited. Therefore, these additional compo-

nents should not be disregarded while extracting motor modules

if the purpose of the experiment requires high-quality EMG

reconstruction.

The high similarity observed across EMG processing meth-

ods, including different numbers of step cycles, may initially

suggest that single steps can be representative of all variability

contained in longer locomotion periods. Therefore, we also ana-

lyzed the intra-subject variability that motor modules exhibited

with the different EMG processing methods. This analysis showed

a reduced similarity among the extracted motor modules from

EMGSNG in comparison to the other methods, suggesting that

individual motor modules from EMGSNG do not contain suf-

ficient EMG variability for representing the EMG step pattern.

When using the EMGAVR or EMGCNC datasets, the variabil-

ity of the entire recording was included, either by averaging

or by factorizing the whole signal interval, which explains the

higher intra-subject similarity for these EMG processing meth-

ods. Although these results from longer ambulation periods were

superior than those extracted from single trials, we also used a

cross-validation procedure for verifying if the weightings could

be shared between concatenation periods while generating suc-

cessful reconstruction (Oliveira et al., 2013b). The use of muscle

weightings from the concatenation of less than 10 step cycles

reconstructed the original EMG from 40 step cycles by less than

70% whereas, when using 20 cycles, the VAF raised to 80% on

average. This result suggests that a rather long locomotion period

is preferable to optimally represent the modular organization of

human locomotion and its variability over time. Interestingly, the

use of weightings from EMGAVR did not reach the same recon-

struction quality as those from EMGCNC, even though most of

the weightings from these two conditions presented similarities
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FIGURE 5 | (A) Colormap representing the variability accounted for (VAF) the

reconstruction of surface EMG weightings by combining fixed muscle

weightings from a given number of step cycles to the activation signals of a

given number of step cycles. (B) Mean (SD) VAF of reconstructing EMG from

40 concatenated step cycles by using muscle weightings from the

concatenation of 2–20 steps. (C) Mean (SD) VAF of reconstructing an entire

40 step cycles EMG dataset by using muscle weightings from the

concatenation (black bars) and from the average of 2–20 continuous step

cycles (gray bars). (D) Mean (SD) VAF displaying overall reconstruction quality

achieved by using muscle weightings from the concatenation (black bars) and

average (gray bars) of specific number of step cycles (from 2 to 40) to

reconstruct all other step ranges.

above 90%. This observation may indicate the limitation of this

similarity measure. Therefore, the comparison of results from fac-

torization analysis of different tasks may not be exclusively based

on similarity indexes, and the use of a cross-validation method

such as fixing the muscle weightings in combination with timing

properties of the signal to be reconstructed may be more valuable.

In the present investigation we recorded 10 lower limb muscles

directly involved in locomotor mechanics. Previous investiga-

tions have recorded the EMG activity from up to 32 muscles and

found five principal components that modulate muscle recruit-

ment (Ivanenko et al., 2005), while other studies containing

fewer muscles reported four motor modules (McGowan et al.,

2010; Monaco et al., 2010; Gizzi et al., 2011). Our results are

therefore in agreement with these previous reports and we spec-

ulate that the addition of other muscles such as hip extensors,

adductors, and abductors may lead to an increased dimension-

ality. However the outcome of the methodological comparisons

may be preserved if the results are extracted from locomotion

at constant speed. The use of treadmill walking in this investi-

gation provided an ideal model of locomotion in a controlled

environment and at a fixed speed. The lack of kinematic mea-

surements is a limitation of this investigation, however there is

an extensive body of literature describing walking kinematics and

its variability, and its relationship to EMG variability (Winter

and Yack, 1987; Ivanenko et al., 2002; Kang and Dingwell, 2006).

Indeed, despite the considerable EMG variability during locomo-

tion, lower limb kinematics appear less variable (Winter and Yack,

1987; Ivanenko et al., 2002; Kang and Dingwell, 2006) due to

inertial and damping properties of body segments that smoothen

individual muscle force fluctuations (Kang and Dingwell, 2006,

2009). This observation supports the conclusion that muscle

recruitment can be essentially modulated to control the overall

limb kinematics (Ivanenko et al., 2002). Another limitation of this

study is the subject sample of only healthy subjects. The results

obtained may not be entirely applicable for clinical cases in which

there is more variability in kinematics and muscle recruitment

(Clark et al., 2010; Gizzi et al., 2011).

In summary, the present investigation showed that the dimen-

sionality of motor modules was not influenced by the number of

step cycles used for EMG factorization. We also noted that the

dimensionality must be accurately defined such that the recon-

struction of all the involved muscles reaches acceptable levels. In

this experiment, four motor modules could account for most of

the EMG variability and could be assigned to biomechanical sub-

tasks, but for optimal muscle reconstruction a fifth motor module

was required. In addition, although muscle weightings from the
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factorization of different numbers of step cycles and processing

methods are predominantly similar, the use of muscle weightings

from the factorization of a sufficient number of concatenated step

cycles can better represent locomotion over longer periods.

AUTHOR CONTRIBUTIONS

Anderson S. Oliveira, Leonardo Gizzi, Uwe G. Kersting, and Dario

Farina designed the experiment. Anderson S. Oliveira and Uwe

G. Kersting performed the experiments. Anderson S. Oliveira,

Leonardo Gizzi, and Dario Farina analyzed and interpreted the

data. Anderson S. Oliveira, Leonardo Gizzi, Uwe G. Kersting, and

Dario Farina drafted the manuscript and all authors approved the

final version. Experiments were performed at Aalborg University.

ACKNOWLEDGMENT

This project was partly sponsored by the EU Project “Integrative

approach for the emergence of human like locomotion” (H2R;

contract #600698).

REFERENCES
Barbero, M., Merletti, R., and Rainoldi, A. (2011). Atlas of Muscle Innervation Zones.

New York, NY: Springer.

Cappellini, G., Ivanenko, Y. P., Poppele, R. E., and Lacquaniti, F. (2006). Motor

patterns in human walking and running. J. Neurophysiol. 95, 3426–3437. doi:

10.1152/jn.00081.2006

Choi, J. T., and Bastian, A. J. (2007). Adaptation reveals independent control net-

works for human walking. Nat. Neurosci. 10, 1055–1062. doi: 10.1038/nn1930

Clark, D. J., Ting, L. H., Zajac, F. E., Neptune, R. R., and Kautz, S. A. (2010).

Merging of healthy motor modules predicts reduced locomotor performance

and muscle coordination complexity post-stroke. J. Neurophysiol. 103, 844–857.

doi: 10.1152/jn.00825.2009

d’Avella, A., Saltiel, P., and Bizzi, E. (2003). Combinations of muscle synergies in

the construction of a natural motor behavior. Nat. Neurosci. 6, 300–308. doi:

10.1038/nn1010

de Rugy, A., Loeb, G. E., and Carroll, T. J. (2013). Are muscle synergies useful for

neural control? Front. Comput. Neurosci. 7:19. doi: 10.3389/fncom.2013.00019

Gizzi, L., Nielsen, J. F., Felici, F., Ivanenko, Y. P., and Farina, D. (2011). Impulses of

activation but not motor modules are preserved in the locomotion of subacute

stroke patients. J. Neurophysiol. 106, 202–210. doi: 10.1152/jn.00727.2010

Gizzi, L., Nielsen, J. F., Felici, F., Moreno, J. C., Pons, J. L., and Farina, D.

(2012). Motor modules in robot-aided walking. J. Neuroeng. Rehabil. 9, 76. doi:

10.1186/1743-0003-9-76

Gwin, J. T., Gramann, K., Makeig, S., and Ferris, D. P. (2011). Electrocortical activ-

ity is coupled to gait cycle phase during treadmill walking. Neuroimage 54,

1289–1296. doi: 10.1016/j.neuroimage.2010.08.066

Hug, F., Turpin, N. A., Dorel, S., and Guével, A. (2012). Smoothing of electromyo-

graphic signals can influence the number of extracted muscle synergies. Clin.

Neurophysiol. 123, 1895–1896. doi: 10.1016/j.clinph.2012.01.015

Ivanenko, Y., Grasso, R., Macellari, V., and Lacquaniti, F. (2002). Control of foot

trajectory in human locomotion: role of ground contact forces in simulated

reduced gravity. J. Neurophysiol. 87, 3070–3089. doi: 10.11512/jn.00815.2001

Ivanenko, Y. P., Cappellini, G., Dominici, N., Poppele, R. E., and Lacquaniti, F.

(2005). Coordination of locomotion with voluntary movements in humans.

J. Neurosci. 25, 7238–7253. doi: 10.1523/JNEUROSCI.1327-05.2005

Ivanenko, Y. P., Poppele, R. E., and Lacquaniti, F. (2004). Five basic muscle activa-

tion patterns account for muscle activity during human locomotion. J. Physiol.

556, 267–282. doi: 10.1113/jphysiol.2003.057174

Kang, H. G., and Dingwell, J. B. (2006). A direct comparison of local dynamic sta-

bility during unperturbed standing and walking. Exp. Brain Res. 172, 35–48. doi:

10.1007/s00221-005-0224-6

Kang, H. G., and Dingwell, J. B. (2009). Dynamics and stability of muscle acti-

vations during walking in healthy young and older adults. J. Biomech. 42,

2231–2237. doi: 10.1016/j.jbiomech.2009.06.038

Kersting, U. G. (2011). Regulation of impact forces during treadmill running.

Footwear Sci. 3, 59–68. doi: 10.1080/19424280.2011.552074

Lacquaniti, F., Ivanenko, Y. P., and Zago, M. (2012). Patterned control of human

locomotion. J. Physiol. 590, 2189–2199. doi: 10.1113/jphysiol.2011.215137

Lee, D. D., and Seung, H. S. (1999). Learning the parts of objects by non-negative

matrix factorization. Nature 401, 788–791. doi: 10.1038/44565

Lee, D. D., and Seung, H. S. (2001). Algorithms for non-negative matrix factoriza-

tion. Adv. Neural Inf. Process. Syst. 13, 556–562.

McGowan, C. P., Neptune, R. R., Clark, D. J., and Kautz, S. A. (2010). Modular con-

trol of human walking: adaptations to altered mechanical demands. J. Biomech.

43, 412–419. doi: 10.1016/j.jbiomech.2009.10.009

Merkle, L., Layne, C., Bloomberg, J., and Zhang, J. (1998). Using factor analysis to

identify neuromuscular synergies during treadmill walking. J. Neurosci. Methods

82, 207–214. doi: 10.1016/S0165-0270(98)00054-5

Monaco, V., Ghionzoli, A., and Micera, S. (2010). Age-related modifications of

muscle synergies and spinal cord activity during locomotion. J. Neurophysiol.

104, 2092–2102. doi: 10.1152/jn.00525.2009

Moreno, J. C., Barroso, F., Farina, D., Gizzi, L., Santos, C., Molinari, M.,

et al. (2013). Effects of robotic guidance on the coordination of locomotion.

J. Neuroeng. Rehabil. 10:79. doi: 10.1186/1743-0003-10-79

Muceli, S., Boye, A. T., d’Avella, A., and Farina, D. (2010). Identifying representative

synergy matrices for describing muscular activation patterns during multidi-

rectional reaching in the horizontal plane. J. Neurophysiol. 103, 1532–1542. doi:

10.1152/jn.00559.2009

Oliveira, A. S., Gizzi, L., Kersting, U. G., and Farina, D. (2012). Modular organiza-

tion of balance control following perturbations during walking. J. Neurophysiol.

108, 1895–1906. doi: 10.1152/jn.00217.2012

Oliveira, A. S., Silva, P. B., Lund, M. E., Gizzi, L., Farina, D., and Kersting, U. G.

(2013b). Effects of perturbations to balance on neuromechanics of fast changes

in direction during locomotion. PLoS ONE 8:e59029. doi: 10.1371/jour-

nal.pone.0059029

Oliveira, A. S., Silva, P. B., Lund, M. E., Kersting, U. G., and Farina, D.

(2013a). Fast changes in direction during human locomotion are executed

by impulsive activation of motor modules. Neuroscience 228, 283–293. doi:

10.1016/j.neuroscience.2012.10.027

Petersen, T. H., Willerslev-Olsen, M., Conway, B. A., and Nielsen, J. B. (2012). The

motor cortex drives the muscles during walking in human subjects. J. Physiol.

590, 2443–2452. doi: 10.1113/jphysiol.2012.227397

Rossignol, S., Dubuc, R., and Gossard, J. P. (2006). Dynamic sensorimotor interac-

tions in locomotion. Physiol. Rev. 86, 89–154. doi: 10.1152/physrev.00028.2005

Sartori, M., Gizzi, L., and Farina, D. (2013a). “Musculoskeletal modeling of human

locomotion based on low-dimensional impulsive activation signals: perspec-

tives for neurotechnologies,” in Converging Clinical and Engineering Research on

Neurorehabilitation, (New York, NY: Springer), 1239–1242. doi: 10.1007/978-3-

642-34546-3_206

Sartori, M., Gizzi, L., Lloyd, D. G., and Farina, D. (2013b). A musculoskeletal

model of human locomotion driven by a low dimensional set of impulsive

excitation primitives. Front. Comput. Neurosci. 7:79. doi: 10.3389/fncom.2013.

00079

Steele, K. M., Tresch, M. C., and Perreault, E. J. (2013). The number and choice of

muscles impact the results of muscle synergy analyses. Front. Comput. Neurosci.

7:105. doi: 10.3389/fncom.2013.00105

Winter, D., and Yack, H. (1987). EMG profiles during normal human walk-

ing: stride-to-stride and inter-subject variability. Electroencephalogr. Clin.

Neurophysiol. 67, 402–411. doi: 10.1016/0013-4694(87)90003-4

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Received: 13 December 2013; accepted: 03 May 2014; published online: 23 May 2014.

Citation: Oliveira AS, Gizzi L, Farina D and Kersting UG (2014) Motor modules of

human locomotion: influence of EMG averaging, concatenation, and number of step

cycles. Front. Hum. Neurosci. 8:335. doi: 10.3389/fnhum.2014.00335

This article was submitted to the journal Frontiers in Human Neuroscience.

Copyright © 2014 Oliveira, Gizzi, Farina and Kersting. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 335 | 9

http://dx.doi.org/10.3389/fnhum.2014.00335
http://dx.doi.org/10.3389/fnhum.2014.00335
http://dx.doi.org/10.3389/fnhum.2014.00335
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Motor modules of human locomotion: influence of EMG averaging, concatenation, and number of step cycles
	Introduction
	Methods
	Subjects
	Experimental Setup
	Data Collection
	Data Analysis
	Accelerometry
	Surface EMG
	Motor modules extraction
	Motor module model
	Dimensionality
	Similarities
	EMG reconstructed from different muscle weightings
	Statistical analysis


	Results
	Dimensionality
	Averaging vs. Concatenating EMG Signals
	Motor Modules from Treadmill Walking
	Intra-Subject Similarities
	Similarity Among EMG Processing Methods
	Reconstructed EMG from Different Concatenations of Step Cycles

	Discussion
	Author Contributions
	Acknowledgment
	References


