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augment motor-imagery training efficacy
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Abstract

Background: The use of Brain–Computer Interface (BCI) technology in neurorehabilitation provides new strategies
to overcome stroke-related motor limitations. Recent studies demonstrated the brain's capacity for functional and
structural plasticity through BCI. However, it is not fully clear how we can take full advantage of the neurobiological
mechanisms underlying recovery and how to maximize restoration through BCI. In this study we investigate the
role of multimodal virtual reality (VR) simulations and motor priming (MP) in an upper limb motor-imagery BCI task
in order to maximize the engagement of sensory-motor networks in a broad range of patients who can benefit
from virtual rehabilitation training.

Methods: In order to investigate how different BCI paradigms impact brain activation, we designed 3 experimental
conditions in a within-subject design, including an immersive Multimodal Virtual Reality with Motor Priming (VRMP)
condition where users had to perform motor-execution before BCI training, an immersive Multimodal VR condition,
and a control condition with standard 2D feedback. Further, these were also compared to overt motor-execution.
Finally, a set of questionnaires were used to gather subjective data on Workload, Kinesthetic Imagery and Presence.

Results: Our findings show increased capacity to modulate and enhance brain activity patterns in all extracted EEG
rhythms matching more closely those present during motor-execution and also a strong relationship between
electrophysiological data and subjective experience.

Conclusions: Our data suggest that both VR and particularly MP can enhance the activation of brain patterns
present during overt motor-execution. Further, we show changes in the interhemispheric EEG balance, which
might play an important role in the promotion of neural activation and neuroplastic changes in stroke patients
in a motor-imagery neurofeedback paradigm. In addition, electrophysiological correlates of psychophysiological
responses provide us with valuable information about the motor and affective state of the user that has the
potential to be used to predict MI-BCI training outcome based on user’s profile. Finally, we propose a BCI paradigm
in VR, which gives the possibility of motor priming for patients with low level of motor control.
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Neurofeedback, EEG
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Background

Brain-Computer Interfaces (BCIs) are communication

systems capable of establishing an alternative pathway

between user’s brain activity and a computer system.

The most common signal acquisition technology in BCI

is the non-invasive electroencephalography (EEG) [1].

The EEG activity is distinguished by different wave

patterns in the frequency domain called EEG bands or

rhythms. These EEG rhythms are divided into different

ranges including Alpha (8 Hz - 12 Hz), Beta (12 Hz -

30 Hz), Theta (4 Hz - 7 Hz), and Gamma (25 Hz -

90 Hz) and each rhythm had been found to be related

with sensorimotor and/or cognitive states [2, 3].

Rhythms in the Alpha and Beta frequency bands are

functionally related to major sensorimotor systems [4]

which are activated primarily through motor preparation

or execution [5]. Alpha and Theta oscillations are known

to reflect cognitive and memory performance [6, 7], and

Theta was shown by early EEG studies to be closely re-

lated with problem solving, perceptual processing and

learning [8]. Finally, Gamma rhythm has been shown to

be modulated during volitionally meditation, conscious-

ness, and sense of self [9]. In addition, decreased levels

of Gamma is observed in children with ADHD [10], in

Alzheimer's Disease (AD), and also in epileptic patients

[11]. Overall, EEG signals offer low spatial resolution

measures of neural activity that occurs in the cortical

area of the brain. Translating cognitive states or motor

intentions from different rhythms is a complex process

and is impossible to associate a single frequency range

or cortical location to a brain function.

For BCIs, this oscillatory brain activity -recorded

through EEG- is currently used for the interfacing be-

tween humans and computers. This communication can

be triggered by an exogenous stimulus through visual,

auditory or sensory feedback, like Steady State Visual

Evoked Potentials (SSVEP) and P300. SSVEP is caused

by visual stimulation of flashing lights and occur at the

primary visual cortex of the brain [12]. Instead, P300 re-

sponses are generated by measuring the brain evoked re-

sponses 300 ms after stimulus onset (hence the name)

[13]. In contrast to exogenous sources, motor-imagery

(MI) BCI is of endogenous origin and makes use of the

visuo-motor imagination (imagination of upper and/or

lower limb movement). MI has been shown to share

common control mechanisms and neural substrates of

actual movement both in action execution and action

observation [14], providing a unique opportunity to

study neural control of movement in either healthy

people or patients [15, 16]. Therefore, MI has been

widely used as the main BCI paradigm in research [17]

for individuals with high degree of motor disability or

locked-in syndrome [18, 19]. To date, MI is proven

useful in a wide area of applications ranging from

accessibility tools for disabled users with paralysis or se-

vere neuromuscular disorders [1], for restoration of ac-

tive movement [20], to human-computer interaction

research [21], virtual reality and video games [22].

In stroke rehabilitation, BCIs have been mostly used

with two different strategies. The first one is the

“assistive”, which aims at bypassing non-functional corti-

cospinal pathways for controlling robotic prosthetics

[23]. The second is the “restorative”, which aims at mo-

bilizing neuroplastic changes in order to achieve the

reorganization of motor networks to attain functional

motor recovery [24]. For the latter case, MI-BCI training

has been the most widely used BCI paradigm [17]. Re-

sults from previous studies have proven mental practice

of action to be useful in MI-BCI training [25]. MI train-

ing is leading to the activation of overlapping brain areas

with actual movement, and because sensory and motor

cortices can dynamically reorganize through neuroplasti-

city [26, 27], MI constitutes an important component for

motor learning and recovery. Moreover, research about

the mirror neuron system (MNS) have shown that action

observation, motor imagery, and imitation share the

same basic motor circuit as action execution and thus

provide an additional or alternative source of motor

training that may be useful to promote recovery from

stroke [28]. In addition, it has been found that the

spatial distribution of local neuronal population activity

during MI mimics the spatial distribution of activity dur-

ing actual motor movements [29]. Beneficial effects of

MI in motor control have been shown [19], and new

paradigms have been proposed to maximize the recruit-

ment of motor networks [30]. In stroke rehabilitation,

the combination of BCIs with virtual environments has

gained popularity, and it has been shown very useful to

train functional upper limb pointing movements [31,

32]. Unfortunately, MI-BCI studies for stroke rehabilita-

tion are very different in terms of (a) experimental de-

sign and (b) research protocols. So far in MI training,

the use of abstract feedback in the form of unidirectional

arrows as the main visual feedback mechanism is the

most widely used [33]. Although there is no direct evi-

dence that different feedback designs, i.e. realistic grasp-

ing with a hand vs. extending arrows, imply differences

in performance in MI [15], previous studies have shown

that the type of feedback can have different effects based

on the learner [34]. For instance, emotional feedback (in

the form of smiley faces) has shown positive results in

MI performance [35]. Other researchers have studied

the effect of alternative feedback modalities on a BCI

task, such as haptic and auditory feedback, with incon-

clusive results [36, 37]. Interestingly, it has been shown

that the combination of audio and visual feedback de-

creases BCI performance, whereas the combination of

haptic and visual feedback increases the performance
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[38, 39]. In another experiment, displaying real-time cor-

tical activity as neurofeedback was shown to significantly

increase MI performance [40]. Furthermore, videogames

and Virtual Reality (VR) feedback has also produced

positive results, offering a more compelling experience

to the user through 3D environments [22, 41]. The fu-

sion of BCI and VR (BCI-VR) allows a wide range of ex-

periences where participants can control various aspects

of their environment -either in an explicit or implicit

manner-, by using mental effort alone. This direct brain-

to-VR communication can be used to induce illusions

mostly relying on the sensorimotor contingencies be-

tween perception and action [42]. Friedman et al., in a

study from 2007, included three different BCI setups: (i)

abstract feedback, (ii) head-mounted display (HMD),

and (iii) the CAVE-like system. They did not find any

consistent performance trend related to the type of

interface, but the event-related synchronization (ERS)

was stronger in the CAVE setup [43].

Despite the increased attention that BCI technology

has had with the launch of low-cost commercial EEG

devices in the last few years, BCI technology is hardly

used outside laboratory environments [41]. Unfortu-

nately, BCIs are not yet as accurate as other types of

interfaces [44], and users require a training period up to

several months to achieve accuracies of 65 %–80 % using

cortical potentials [1]. Although accuracy varies among

the different BCI paradigms, most are not 100 % accur-

ate, they require extensive training, and have low infor-

mation transfer rates and long response delays [45]. For

instance, MI-BCI requires long training trials and set-

tings are subject specific. As consequence, long and re-

petitive training sessions can result in user fatigue and

declining performance over time. In addition, prolonged

training is problematic in generating the EEG oscillatory

rhythms modulated during MI, such as Mu and Beta

rhythms [3]. New findings in MI experimentation have

shown that increased vividness of imagery is strongly

associated with the neural activity in motor related areas

[46] and that the kinesthetic imagination of movement

is preferable over just visual imagination, resulting in

increased MI-BCI performance [47]. Unfortunately,

there is a limited understanding on how these factors

affect the activity patterns of motor related areas. Recent

studies have shown that physical activity prior to a MI task

(motor priming) facilitates the engagement of motor net-

works on the subsequent MI task [48]. It has been shown

that during feedback presentation EEG synchronization

patterns increase hemispheric asymmetry compared to

control sessions without feedback [49]. In addition, hemi-

spheric asymmetry is related with increased performance of

fine motor tasks, and specifically left hemisphere changes

are related to motor learning [50]. However, different stud-

ies had different experimental setups and it is not clear how

we can improve the design of a MI-BCI paradigm. More-

over, there is a lack of systematic studies dedicated to the

actual aspects of the experimental (training) task, focusing

mostly on the technical aspects of the system. Therefore, in

the area of neurorehabilitation there is an urgent need to

identify the key elements for a successful MI-BCI training

using specific criteria for motor rehabilitation for including

patients with severe hemiparesis. This leads to questions

such as, (1) How can we include patients with low level of

motor control, (2) how can we maximize both performance

and sensorimotor activation, and (3) how can we promote

adherence to MI-BCI training?

In order to overcome some of the limitations of

current BCI systems, we performed a study based on a

novel prototype that makes use of multimodal feedback,

in an immersive VR environment delivered through a

state-of-the-art Head Mounted Display (HMD), inte-

grated in a MI-BCI motor training task (left | right hand

imagery) [51]. To achieve maximum engagement of

sensory-motor networks in a MI-BCI motor rehabilita-

tion task, we assessed the role of motor priming and

multimodal VR feedback compared to a control condi-

tion. In this study we included naïve subjects, with no

previous exposure in BCI, in order to have a first-time

user experience (FTUE).

Based on the above analysis of the literature we ex-

pect that:

1. Through an immersive multimodal VR environment

and motor priming, we can maximize the

engagement of sensory-motor networks important in

neurorehabilitation, due to the enhanced modulation

of the same cortical areas that are activated during

actual motor preparation and execution.

2. We can quantify the relationship between users’

electrophysiological data and psychophysiological

responses, important for identifying which patient

profile can benefit the most from an immersive

BCI-VR setup for MI training.

Methods

Experimental design

In this experiment we used a within-subject design. The

protocol consisted of 3 BCI conditions to which users

were exposed in a randomized order, and their EEG acti-

vation patterns were then also compared to the activity

during overt motor-execution. Each participant per-

formed one condition per day, completing all conditions

in 3 days. Each condition included 5 main blocks (Fig. 1):

(1) 10–15 min of equipment setup and instructions; (2)

subjects were then exposed to an 8 min MI-BCI calibra-

tion block followed by (3) a 15 min pause; (4) a MI-BCI

task of 8 min; and (5) subjects answered a set of self-

report questionnaires. In total, each condition lasted
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approximately 60–70 min with 16 min of BCI exposure.

During all blocks in all conditions, EEG data were

logged synchronously and time-stamped including

the different stimulation codes [Start of trial, End of

trial, Left, Right, Feedback, Cross on screen] for off-

line analysis.

Experimental conditions

In our design of the BCI setup, we incorporated proper-

ties that are recommended as a good instructional de-

sign in BCI training [41]. In all conditions we presented

the user only with the correct classified action for en-

hancing the feeling of competence, we provided a clear

and meaningful task through the virtual task paradigm,

the task was self-explanatory, simplified and intuitive,

with progress of achievement, challenging but achiev-

able, and finally in an engaging 3D virtual environment.

All 3 BCI conditions were designed based on the Graz-

training paradigm [52]. The control condition incorpo-

rated the Graz-training with abstract bars-and-arrows

feedback, and for the VR version we used ambient and

event sounds and a virtual representation of two hands

performing the motor action.

Three experimental conditions were designed with dif-

ferent feedback and priming mechanisms: multimodal

VR with motor priming, multimodal VR, and standard

MI. For all conditions, a total of 10 repetitions (of ap-

proximately 4 s duration, followed by a 2 s pause) of

motor-execution/mental simulation for each hand were

performed and presented always through a HMD.

Multimodal Virtual Reality with Motor Priming (VRMP)

In this condition, users were asked to carry out a motor-

execution task for 8 min using an immersive virtual

reality environment before performing the MI-BCI cali-

bration block. For this, we combined the HMD with a

natural user interface that tracked hand and finger

movements to enable a natural interaction of the partici-

pants with the virtual environment, by mapping the

movement of their own hands to VR with an update fre-

quency of the visual feedback at 30Hz (Fig. 2a). The

motor-execution task, a “virtual garage”, involved the ro-

tation of a virtual lever through circular movements for

opening a large garage door. The virtual environment in-

cluded spatial sounds related with the movement of the

door and the lever. The sounds generated by the chain

mechanism and other mechanical sounds, were activated

through the rotation of a handle that controls the open-

ing of a virtual garage door. Before each repetition, the

user was informed of which hand should be used to

open the garage door. This stage will be further referred

as motor priming (MP) block. Subsequently, a MI-BCI

calibration block took place to determine the best MI

classifier parameters based on the same VR task and

feedback as used during MP. In this block, the user had

to imagine the same movement performed previously in

Fig. 1 Experimental Setup overview. (a) Experiment timeline, starting with a 15 min briefing and setup, followed by 8 min of BCI calibration,
15 min of rest, 8 min of online task performance, and questionnaires. (b) BCI calibration and MI task blocks. Starting with baseline measurement,

the user waits for a cue followed by a pause (repeated 40 times, 20 per class). (c) Stages for the Control condition with the standard
arrows-and-bars feedback. (d) Stages for the VR training feedback, replacing the directional arrows with virtual hands performing a task in
a 3D immersive environment
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the MP block. Finally, the same virtual environment was

used for a MI-BCI online block, in which the user could

directly control the virtual arms through the BCI inter-

face using MI.

Multimodal Virtual Reality (VR)

In this condition, users were asked to only carry out the

MI-BCI calibration block and the online MI-BCI task

block as in the previous condition, but without the prior

MP (Fig. 2b).

Control - standard motor imagery

In this condition, a standard MI-BCI paradigm was used,

providing a control condition for the other conditions to

be compared with. Hence, this condition followed the

same protocol as the VR condition, but instead of the

VR component only simple bar-and arrow-elements

without sounds (the so-called Graz visualization) were

used as feedback mechanisms (Fig. 2c). Yet, the MI task

consisted in the motor imagery of the same upper-limb

movements as described in conditions VRMP and VR

and was presented through the same HMD.

Experimental setup

The experimental setup was composed by a desktop

computer (OS: Windows 8.1, CPU: Intel® Core™ i5-4440

at 3.3 GHz, RAM: 8GB DDR3 1600MHZ, Graphics:

Nvidia GT 630 1GB GDDR3), running the 3 different

MI-BCI training conditions described above. All visual

and auditory feedback was developed with the Unity 3D

game engine (Unity Technologies, San Francisco, USA).

For hand and finger tracking during the MP block, the

Leap Motion controller (Leap Motion, Inc., San

Francisco, California, United States) was used to map

hand and finger movements to the virtual counterparts.

A stereo headset for spatial sound was used in VR and

VRMP conditions. The Oculus Rift DK1 HMD (Oculus

VR, Irvine, California, United States) was used for all

conditions, regardless of the feedback modality.

The BCI set up consisted of 8 active electrodes

equipped with a low-noise biosignal amplifier and a 16-

bit A/D converter at 256 Hz (g.MOBIlab biosignal amp-

lifier, gtec, Graz, Austria). The spatial distribution of the

electrodes followed the 10–20 system configuration with

the following electrodes over the sensory-motor areas:

FC3, FC4, C3, C4, C5, C6, CP3, and CP4. The signal

amplifier was connected via bluetooth to a laptop com-

puter (CPU: Intel® Core™ i3-3217U at 1.80 GHz, RAM:

8GB DDR3 1600MHZ, Graphics: Intel® HD Graphics

4000) for the EEG signal acquisition and processing

through the OpenVibe platform [53]. For all conditions,

a Common Spatial Patterns (CSP) filter was used for fea-

ture extraction, based on the mutual diagonalization of

each covariance matrix for each class to be discriminated

[54]. CSP has been shown to deliver better performance

in MI experiments [55]. In addition, Linear Discriminant

Analysis (LDA) was used for the classification of the two

classes (left | right hand imagery) from the feature

vector. LDA reduces the dimensionality of the data and

establishes a surface decision in the feature space which

separates data into two groups, each one related to one

class [56]. Finally, the classified data were transmitted to

the RehabNet Control Panel (RehabNetCP) [57] through

the VRPN protocol [58] to control the virtual environ-

ment. The RehabNet Control Panel is a free tool that

acts as a device router to bridge a multiple interfaces

with virtual environments.

Participants

A total of 9 right handed healthy participants (8 male, 1

female) with a mean age of 27 ± 2 years old participated

in the study. Participants were recruited based on their

motivation to participate, with no previous known

neurological disorder. We included only naïve subjects,

with no previous exposure in BCI, to have a first-time

user experience (FTUE). This was done in order to

minimize any bias by previous experienced in MI in

neurofeedback and because our target population has no

Fig. 2 MI-BCI training conditions. (a) VRMP: the user has to perform motor priming by mapping his/her hand movements into the virtual

environment. (b) VR: the user has to perform training through simultaneous motor action observation and MI, before moving to the MI task
were he/she has to control the virtual hands through MI. (c) Control: MI training with standard feedback through arrows-and-bars
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prior BCI exposure. All participants were students and

staff from the University of Madeira and were recruited

at the Madeira Interactive Technologies Institute. The

experiments were approved by the Ethics Committee of

the Public Health System of the Autonomous Region of

Madeira, Portugal (SESARAM), with decision number:

15/2015. All subjects were informed and signed an in-

formed consent to participate and to publish their data

according to the Declaration of Helsinki.

Questionnaires

Subjective experience data was gathered through

three questionnaires: the Presence Questionnaire, the

Vividness of Movement Imagery Questionnaire-2, and

the NASA TLX.

� The Presence Questionnaire (PQ) is a tool that

measures the degree to which individuals experience

presence in a virtual environment and the influence

of possible contributing factors to the intensity of

the experience [59]. PQ has 24 questions in a seven-

point Likert scale to assess items such as realism,

possibility to act and sounds. Items related to haptic

assessment were excluded because this aspect was

not addressed in our experiment.

� Vividness of Movement Imagery Questionnaire-2

(VMIQ2) [60] was used to assess the Kinesthetic

Imagery ability of the participant. VMIQ comprises

12 questions to rate vividness of different items in a

5-point scale. Participants had to report how clear

was the image obtained by imagining themselves do

the following movements (Kinaesthetic imagery):

walking, running, kicking a stone, bending to pick

up a coin, running up-stairs, jumping sideways,

throwing a stone into water, kicking a ball in the air,

running downhill, riding a bike, swinging on a rope,

and jumping off a high wall. The VMIQ has been

previously used to determine differences in neural

activation patterns between vivid and non-vivid

imagery [61].

� Finally, the NASA TLX questionnaire was used to

measure task load through a number of subscales

[62]. These subscales include Mental Demands,

Physical Demands, Temporal Demands,

Performance, Effort and Frustration.

Data analysis

Power Spectral Density (PSD) Estimation

In order to remove major artifacts related with eye

blinking and muscular activity, a manual cleaning of the

signal in the time domain was performed, followed by a

component rejection process. The component rejection

was performed by using Independent Component Ana-

lysis (ICA) with the help of the EEGLAB toolbox [63].

With the use of ICA we rejected components respon-

sible for major artifacts of either endogenous (muscle,

jaw clenching, eye movement) or exogenous source (AC

power). EEG rhythms were processed by extracting the

Power Spectral Density (PSD) of the signals in Matlab

(MathWorks Inc., Massachusetts, US). The power was

extracted every 500 ms using Welch’s method with

windows of 128 samples for the following frequency

bands: Alpha (8 Hz - 12 Hz), Beta (12 Hz - 30 Hz),

Theta (4 Hz - 7 Hz), Low Gamma (25 Hz - 45 Hz), and

High Gamma (55 Hz - 90 Hz). For the current analysis

and because we were only measuring from sensory-

motor areas, data were averaged for all the channels for

each experimental condition. Moreover, left and right

hemisphere electrodes were aggregated to assess hemi-

spheric differences between conditions.

Statistical analysis

The following metrics are used as dependent variables

in our experimental design: EEG rhythm amplitude,

MI classifier performance, Workload, and Kinesthetic

Imagery.

� EEG Rhythms: We used the mean PSD from each

EEG frequency band for each condition.

� MI classifier performance: From the LDA

classification accuracy on both the calibration and

the online task blocks, we calculated the mean

classification accuracy per condition as a percentage.

� Workload: We used the sum of all sub-elements of

the TLX questionnaire to extract the Workload for

each participant on each condition.

� Kinesthetic Imagery: We used the sum of all sub-

elements per user to extract the overall Kinesthetic

Imagery.

Normality of the distribution of all data was assessed

using the Shapiro-Wilk (S-W) normality test, recom-

mended for tests with a sample size of less than 50 [64].

For classifier performance, and because the data deviated

from normality, non-parametric statistical tests were

used for the analysis. For the assessment of overall dif-

ferences between the three experimental conditions, a

Friedman test was used on each dependent variable. For

further pairwise comparisons, the Wilcoxon signed-rank

test on each of our combinations was used. On EEG

rhythm data, the S-W test revealed normality of the data

(p > 0.05). We therefore analyzed the data using a re-

peated measures ANOVA with a Greenhouse-Geisser

correction due to Mauchly's Test of Sphericity violation.

For all pairwise comparisons a Bonferroni correction

was used to account for the number of comparisons.

Effect sizes were computed on pairwise comparisons.

For all statistical comparisons the significance level was
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set to 5 % (p < 0.05). All statistical analysis was done

using IBM SPSS 20 (SPSS Inc., Chicago, IL, USA).

Spearman correlations were performed between the

mean PSD from all EEG rhythms (Alpha, Beta, Theta,

Gamma) and questionnaire (Workload, Kinesthetic

Imagery, and their sub-domains) data, with a signifi-

cance level set to 5 % (p < 0.05).

Multivariate linear regression

A Stepwise regression modelling approach was used to

identify electrophysiological predictors that provide a

good fit based on their statistical significance (p < 0.05)

between subjective (questionnaires) and objective (EEG)

data. The set of variables that were used for the

multivariate linear regression includes (a) the subjective

experience as reported through the questionnaires

against (b) the EEG rhythms. The Stepwise coefficient

estimation of the models was done using Matlab

(MathWorks Inc., Massachusetts, US).

Results

In the following section, results concerning EEG activity,

classification performance and questionnaire answers are

illustrated for all conditions. In addition, electrophysio-

logical correlates between subjective and objective data

are assessed in order to understand how we can max-

imally engage motor areas in an MI-BCI task.

Effect and impact of different MI-BCI experimental

paradigms

To assess the difference between all conditions, we com-

pared the different EEG rhythms, the classification score

(the ability of the classifier to identify correctly one of

the two classes of our motor-imagery task), and the

hemispheric asymmetry for (1) motor-execution during

MP, (2) VRMP condition, (3) VR condition, and (4) Con-

trol condition. In this analysis, (1) and (4) are used both

as controls for comparison to standard MI-BCI feedback

and to assess resemblance with actual motor-execution.

The latter is particularly interesting since we aim for a

MI-BCI paradigm that is able to retrain the same motor

networks that are responsible for actual movement.

Calibration Block

i. EEG rhythms

A repeated measures ANOVA determined that

mean EEG rhythms differed significantly across

conditions for: Alpha (F(2.524, 20.191) = 4.800,

p < 0.05), Beta (F(1.599, 12.796) = 7.541, p < 0.05),

Theta (F(1.874, 14.990) = 7.615, p < 0.05), low

Gamma (F(1.713, 13.701) = 11.639, p < 0.05), and

high Gamma (F(1.617, 12.938) = 6.869, p < 0.05)

(Fig. 4a). EEG rhythms during calibration show a

convergence of brain activation for VR and VRMP

conditions towards overt motor-execution. Overall,

EEG data show a clear trend with overt motor-

execution and Control condition at opposite ends

and VR and VRMP in between, being the latter the

closest to motor-execution. Post hoc tests revealed

that the mean EEG rhythm on the Alpha band

differed significantly between VRMP and Control

conditions. For the Beta band, a significant differ-

ence was found between both motor-execution and

VRMP conditions with Control. For the Theta band,

motor-execution was significantly different from

both VR and Control conditions, and VRMP from

Control. In Lower Gamma, motor-execution was

significant different from VRMP and VR, as VRMP

was significantly different from Control. Interest-

ingly, in Lower Gamma, the above trend was al-

tered, with the mean power of overt motor-

execution displaying the lowest values. Finally, for

Higher Gamma, there was a significant difference

for both motor-execution and VRMP conditions

with Control.

ii. Classification Score

The MI-BCI calibration data revealed that the

multimodal setup with motor priming condition

(VRMP) provided the highest performance (Mdn =

65.8, IQR = 3.32) when compared with the VR only

condition (Mdn = 64.5, IQR = 5.41) and control

condition with the traditional feedback (Mdn = 62.3,

IQR = 7.63) (Fig. 3a). However, these differences are

small and a Friedman test revealed no statistical dif-

ference (χ2(2) = 1.429, p = 0.490).

iii. Hemispheric Asymmetry

In the Calibration block, we observe the same

convergence pattern towards motor-execution

present in the previous EEG analysis for all fre-

quency bands (Fig. 5a). A repeated measures

ANOVA determined that mean difference of hemi-

spheric asymmetry, was not statistically significantly

different between conditions for calibration, in Alpha

(F(2.219, 17.754) = 0.865, p = 0.448), Beta

(F(1.905, 15.242) = 0.998, p = 0.388), Theta

(F(1.941, 15.528) = 0.960, p = 0.402), low Gamma

(F(2.083, 16.667) = 0.719, p = 0.507), and high

Gamma (F(2.430, 19.443) = 0.625, p = 0.625);

MI Task Block

i. EEG Rhythms

The mean EEG rhythms during the MI task block

followed a very similar trend as in the calibration

block (Fig. 4b), being both blocks significantly

correlated for Alpha (r = 0.564, p < 0.01), Beta

(r = 0.501, p < 0.01), Theta (r = 0.599, p < 0.01), low
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Gamma (r = 0.555, p < 0.01), high Gamma (r = 0.635,

p < 0.01). The repeated measures ANOVA revealed a

significant difference for Theta (F(2.660, 21.277) =

3.520, p < 0.05). Nevertheless, no statistical differences

across conditions were found for Alpha (F(2.804,

22.429) = 0.813, p = 0.493), Beta (F(2.628, 21.020) =

2.780, p = 0.72), low Gamma (F(2.434, 19.475) = 3.199,

p = 0.055), and high Gamma (F(2.232, 17.860) = 3.071,

p = 0.067). Post hoc tests using the Bonferroni

correction revealed that there is a trend for VRMP

against the control condition (p = 0.073) but not for

the rest of the pairwise comparisons. Interestingly, the

mean power of the Lower Gamma frequency band

was reduced for all MI conditions, showing that EEG

activation during the MI task block was more similar

to motor-execution than in the calibration block, and

hence in accordance with the trend identified in the

rest of frequency bands (Fig. 4).

Fig. 3 LDA classifier score. (a) Calibration score of the LDA classifier illustrating the ability of the classifier to distinguish the left | right imaginative
hand movement. (b) Online task score, illustrating the ability of the classifier to distinguish the two classes with untrained data

Fig. 4 Power Spectral Density (PSD) of all EEG bands. (a) EEG band modulation during the calibration session. (b) EEG band modulation during

the MI task. *p < 0.05
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ii. Classification Score

In contrast to the calibration block, performance

score drops considerably (>10 %) for all conditions

during the subsequent MI task block, showing lower

performances and higher variability (Fig. 3b).

Notably, for VRMP, performance dropped to Mdn =

51.29 (IQR = 6.42), for VR to Mdn = 53.61 (IQR =

12.99) and in Control condition to Mdn = 50.1

(IQR = 7.23).

iii. Hemispheric Asymmetry

A repeated measures ANOVA determined that

mean difference of hemispheric asymmetry was not

statistically different between conditions for the MI

task, Alpha (F(2.094, 16.754) = 1.210, p = 0.325), Beta

(F(2.236, 17.891) = 1.519, p = 0.245), Theta (F(1.878,

15.023) = 1.263, p = 0.309), low Gamma (F(2.299,

18.393) = 1.047, p = 0.380), and high Gamma

(F(2.287, 18.296) = 1.086, p = 0.366) (Fig. 5b).

Quality of the experience

In order to understand how different MI training para-

digms may affect the quality of the experience and the

overall acceptance of the system, we analyzed a set of

subjective data as reported by the participants, including

the sense of Presence, Kinesthetic Imagery ability, and

perceived Workload for each condition.

a) Realism of the VR Training Simulation

Both VRMP and VR conditions share the same

virtual environment for which users were asked to

report their sense of presence. The normalized score

of the Presence Questionnaire (PQ) indicates an

overall acceptance of the VR task (M= 94.3 %, SD =

8.3) (Fig. 6). Overall, four out of the five domains

considered scored above 70 %: realism (M= 73 %,

SD = 8), the possibility to act through initiated

actions and events (M= 77 %, SD = 14), sounds of

the VR task (M= 79 %, SD = 12), and the self-

evaluation of performance, which had the highest

score (M= 83 %, SD = 9). The quality of the inter-

face showed the lowest score (M = 58 %, SD = 13).

Nevertheless, the quality of the interface did not

seem to affect the high perceived performance and

realism of the VR task.

b) Correlates of Workload, Kinesthetic Imagery and

Task Engagement

After the MI task block on each condition, the

perceived Workload was assessed through the NASA

TLX questionnaire and the Kinesthetic Imagery ability

through the VMIQ-2 questionnaire. A repeated mea-

sures ANOVA determined that mean Workload dif-

fered significantly across conditions (F(1.505, 12.036) =

5.290, P < 0.05) (Fig. 7). Post hoc tests revealed that

Workload in the VRMP condition to be significantly

higher than for Control. A correlation analysis revealed

no correlation between Workload and the performance

during the MI task block.

Kinesthetic Imagery was assessed through the

VMIQ-2 questionnaire. The cut-off-point established

by Whetstone estimates good imagery ability with a

total score of 70 % [65]. Our experiment considered

only first-time user experiences, and the average

ability score was 61.36 % (SD = 12) and only 3 out of

9 subjects scored above 70 %. A comparison among

Fig. 5 Hemispheric Differences between Left and Right EEG activation. (a) Hemispheric differences of the EEG rhythms during calibration. (b)

Hemispheric differences of the EEG bands during MI task performance
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conditions showed that conditions did not affect the

participant’s ability to create clear and vivid motor

imagery (F(1.567, 12.532) = 1.292, p = 0.300) (Fig. 8).

A correlation analysis showed no significant correl-

ation between Kinesthetic Imagery and the perform-

ance during the MI task block.

Relationship between EEG rhythms and subjective

experience

In order to identify which patient profile can benefit the

most from an immersive BCI-VR setup, we investigated

the relationship between subjective experience (as

reported through the TLX and Kinesthetic Imagery

questionnaires) and the elicited brain activity patterns

(Alpha, Beta, Theta, and Gamma EEG rhythms; and the

EI). The following section illustrates the findings that

have been extracted through correlation and multilinear

regression modelling analyses.

a) Correlation Analysis

Considering only the EEG data during the MI task

block, we identified correlations of Alpha and Theta

bands with the subjective reports (Table 1). For the

TLX subcomponent of Mental Demand we found a

significant correlations with Alpha (r = 0.500, p <

0.05) and Theta (r = 0.555, p < 0.05). Negative

correlations were found for Alpha with the reported

Kinesthetic Imagery ability in Jumping Sideways

(r = −0.381, p < 0.05) and Running Downhill

(r = −0.420, p < 0.05), and for Theta only for Running

Downhill Kinesthetic Imagery (r = −0.545, p < 0.05).

b) Multilinear Regression Modelling

A stepwise regression modelling was used to identify

electrophysiological predictors of subjective

experience based on EEG PSD and questionnaire

data (Table 2). Mental Demand was found to

relate to a combination of Theta and Beta bands

(F(2, 24) = 8.894, p < 0.05, R2 = 0.426). Interestingly,

Fig. 6 Presence Questionnaire normalized total score (gray) and the
sub-domains. Four out of the five domains scored above 70 %, with
quality of the interface to score the lowest

Fig. 7 NASA TLX questionnaire for perceived Workload. VRMP

condition is the most demanding in terms of task workload. *p < 0.05

Fig. 8 Kinesthetic Imagery (KI) score through the Vividness of
Movement Imagery Questionnaire-2 (VMIQ2). Through all conditions,

users had a consistent Kinesthetic Imagery ability and was not got
affected across conditions

Table 1 Correlation table from MI task EEG data including
Alpha and Theta bands with TLX and its subdomains

TLX - Mental Demand KI - Jump Sideways KI – Run Downhill

Alpha 0.500 −0.381 −0.420

Theta 0.555 – −0.545
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although both Alpha and Theta bands were shown

to positively correlate with Mental Demand, this is

better explained through Beta and Theta. This may

indicate collinearity between Alpha and Theta

bands. For Kinesthetic Imagery, Alpha band

modulation is related to the user’s capacity for

mental imagery that involves sideways jumps (F(1,

25) = 4.607, p < 0.05, R2 = 0.156), and Beta and Theta

for mental imagery that involves running downhill

(F(2, 24) = 10.606, p < 0.05, R2 = 0.469).

Discussion

The obtained results contribute with a set of important

findings in several dimensions: quantification of EEG

modulation and classification through VR feedback and

MP, and how those relate to perceived experience and

Kinesthetic Imagery ability. These findings may be im-

portant to enhance the impact of MI-BCI in neuroreh-

abilitation and push the state-of-the-art.

Firstly, through the analysis of EEG rhythms we com-

pared VR and VRMP conditions with (1) a standard

control condition using Graz visualization and (2) actual

EEG activity during overt motor-execution. Our EEG

data revealed statistically significant differences of

VRMP with standard feedback, suggesting the engage-

ment of different underlying processes, more consistent

with motor-execution data. The differences in Alpha and

Beta with control and their similarity with the activity

induced during motor-execution is of high importance

for MI training in rehabilitation due to better associ-

ation to cortical activation of sensorimotor areas

during voluntary movement [66, 67]. Furthermore,

increased activity in Alpha and Theta could indicate

an effect of increased cognitive and memory load in

VR [6], as also shown in our study through TLX data.

However, despite measurable differences in EEG activ-

ity among conditions, these did not significantly

change the classification performance of the LDA used

for BCI control.

We also observed in our hemispheric asymmetry ana-

lysis that interhemispheric communication changed dur-

ing the different MI-BCI paradigms. Previous studies

have shown that the hemispheric asymmetry increases

during feedback presentation compared to sessions with-

out feedback [49], enhances the performance of fine

motor tasks and triggers changes in motor learning [50].

A recent study highlights that the left hemisphere is

specialized for sequential motor organization in both

left- and right-handers, suggesting an endogenous hemi-

spheric asymmetry related to compound actions and

skill representation [68]. Therefore, if interhemispheric

communication can be modulated through VRMP as

our data suggests, this is an important feature to be uti-

lized in motor learning. In patient populations with af-

fected hemispheric differences we could promote

increased interhemispheric interaction by balancing the

activation of motor-areas and influence motor perform-

ance [69]. In addition, interhemispheric interactions may

also contribute to intermanual transfer, as it has been

found that motor learning using one hand improves the

performance of the other hand [70, 71]. Therefore, lon-

gitudinal neuroimaging and electrophysiological studies

are necessary in order to demonstrate the dynamic

change in interhemispheric interaction between both

hemispheres during the process of functional recovery in

stroke survivors.

Secondly, subjective data reported through question-

naires allowed us to report on their relationship with

EEG data, providing insights of the effect of different

MI conditions in both of cognitive and motor pro-

cesses. Interestingly, although in the VRMP condition

the user had to exert more physical activity, our data

revealed that Physical Demand and Effort subcompo-

nents of the TLX were not affected. We argue that

the inclusion of the MP component within an immer-

sive VR environment turned the MI-BCI task into a

more mentally demanding task, with the potential of

engaging more neural circuits than in the other 2

conditions. This hypothesis is also supported by the

differences found in the EEG activity patterns. Add-

itionally, we found a correlation between Kinesthetic

Imagery ability and their capacity to display enhanced

activity in the Alpha and Beta bands, which are mod-

ulated during cortical activation/deactivation in the

planning of voluntary movement [72, 73]. Finally, en-

hanced sensory-motor rhythms through MI-BCI train-

ing have been shown in patients displaying higher

motor improvements as assessed by the Fugl-Mayer

[74]. Thus, our findings give further support to the

importance of the vividness of motor-imagery capabil-

ity in MI-BCI training, −especially the walking com-

ponents of the questionnaire (jump, run)-, enabling

us to use them as inclusion criteria in a neurorehabil-

itation MI-BCI paradigm, considering that their

reliability has been assessed in both healthy and post-

stroke people [75].

Table 2 Stepwise model coefficients from online data

TLX – Mental
Demand

KI – Jump
sideways

KI – Run
downhill

x1 : Alpha – - 0.123 –

x2 : Beta 1.638 – 0.204

x3 : Theta −1.107 – −0.273

R2 0.426 0.156 0.469

Electrophysiological predictors of Alpha, Beta, and Theta, based on their statistical

significance. (p < 0.05) between the questionnaires and their sub-domains
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Conclusions

Our findings are aligned with previous research, verify-

ing that abstract feedback versus realistic, can have very

little effect in terms of BCI classification performance,

but showing that BCI feedback clearly modulates sen-

sorimotor EEG rhythms [15]. This could lead towards

better functional outcomes compared with standard MI

as reported by previous research [74].

Our current results are based on the premise that it is

possible to modify EEG rhythms through multimodal

feedback, affecting the activity of somatosensory and

motor areas for the better. This is a proposition for

which there is limited empirical evidence so far. We

found consistent performance trends related to the type

of interface but also enhanced EEG rhythms modulation

through immersive VR and motor priming. Overall, we

showed that, both VR conditions elicited an increase of

mean power in all EEG rhythms. Although it is known

that motor-imagery involves to a large extent the same

cortical areas that are activated during actual motor

preparation and execution [66], we have shown that

motor-imagery training in a multimodal setup and prim-

ing (VRMP) can provide the strongest and most similar

motor network activation to overt movement-execution

from all tested MI-BCI training paradigms. Furthermore,

the activation of ipsilateral (contralesional) primary sen-

sorimotor cortex (SMC) and the mirror neuron system

(MNS) appears to play a fundamental role in both action

execution and imitation [67, 76, 77] enhanced by VR.

With current findings in hemispheric asymmetry, we

can distinguish the important role of interhemispheric

communication in motor learning.

Moreover, by assessing the quality of the experience,

we observed a high overall acceptance of the novel

multimodal MI paradigms, despite a reported increase in

Workload. By modeling electrophysiological data and

perceived experience data, we are able to better describe

the relationship between user profile (Kinesthetic Im-

agery ability, perceived Workload, Presence in VR) and

EEG rhythms changes in response to MI-BCI training,

which may become very relevant to identify which pa-

tients can benefit the most from it.

In practice, satisfactory BCI control depends largely on

the degree to which neural activity can be voluntarily

controlled by users. Therefore, approaches to the train-

ing of users to control a BCI taking into consideration

the specific target population play an important role. In

the case of stroke survivors, our approach is based on

the priming of the sensorimotor system, through realis-

tic VR and training through gamified tasks. For patients

with severe hand paresis for who motor priming through

movements of the paretic limb is not possible, a VR

setup such as ours could offer the ability to mirror the

healthy arm during the priming session, with the

affected. Mirror therapy is the use of visual illusion cre-

ated by a mirror by superimposing the intact arm over

the paretic. Mirror therapy is well established in stroke

rehabilitation for promoting recovery [78, 79]. Therefore,

our system could also be used to provide MI driven mir-

ror therapy by mirroring the healthy arm to virtual

limbs. Overall, in this study we showed that MI training

with multimodal setup and priming (VRMP) is an effect-

ive paradigm to elicit sensorimotor activation consistent

with motor execution. We showed that thanks to our

quantification of the perceived experience in MI-VR

training could improve adherence to the treatment by

adjusting the VR task to improve the experience. Finally,

the proposed VRMP paradigm has a large potential even

in the case of patients with no motor control, by explor-

ing the possibilities of MI-BCI driven mirror therapy.

In the future, we plan to run a study with stroke par-

ticipants in order to evaluate the impact of the proposed

VRMP paradigm in motor function restoration. We plan

to clinically validate the VRMP paradigm in a longitudinal

1-month MI-BCI study including motor evaluations and

pre- and post- functional brain imaging to identify the

underlying neural activation and reorganization correlates

of motor recovery.

Study limitations

This study, although it results from the collection of 63

EEG datasets, is limited by its sample size (N = 9).

Findings have limited statistical power and should be

interpreted with caution. Moreover, results from healthy

participants cannot be directly generalized to a stroke

population, which requires further research. Finally,

current data was recorded through 8 EEG electrodes

and a limited spatial resolution. An increased amount of

electrodes could offer new insights by covering a larger

area of the sensorimotor and neighboring areas and with

higher resolution.
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