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Abstract

We describe algorithms for canonically partitioning semi-regular quadrilateral meshes into structured submeshes,

using an adaptation of the geometric motorcycle graph of Eppstein and Erickson to quad meshes. Our partitions

may be used to efficiently find isomorphisms between quad meshes. In addition, they may be used as a highly

compressed representation of the original mesh. These partitions can be constructed in sublinear time from a list

of the extraordinary vertices in a mesh. We also study the problem of further reducing the number of submeshes in

our partitions—we prove that optimizing this number is NP-hard, but it can be efficiently approximated.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Boundary representations

1. Introduction

Quadrilateral meshes have many applications in computer

graphics, surface modeling, and finite element simulation.

The simplest quadrilateral meshes are structured meshes,

in which connections between quadrilaterals form a regular

grid, but in complicated domains it may be necessary to use

semi-regular meshes in which this structure is interrupted by

a small number of extraordinary vertices that do not have de-

gree four. We study how to partition a semi-regular mesh into

a small number of structured submeshes. This problem is

motivated by the following computer graphics applications:

Mesh compression. A partition into structured submeshes

forms a compressed representation of a mesh that may

provide substantial space savings. There is a large litera-

ture on geometry compression, but it has largely studied

unstructured triangle meshes [Dee95, TR98, TG98, GS98,

COLR99]. King et al. [KRS99] compress highly irregular

quadrilateral meshes by splitting each quadrilateral into

two triangles and then compressing the resulting triangle

mesh; they do not take advantage of any regular structure

that may be present. We show that semi-regular meshes

may be compressed to a size proportional to the small

number of extraordinary vertices.

† This work was done while Profs. Eppstein and Goodrich were

consultants to Walt Disney Animation Studios.

Our work directly concerns only the mesh topology, but

may also be of use in compressing mesh geometry. The

geometry images technique [GGH02], which represents

the x, y, and z coordinates of vertices as the R, G, and

B channels of a color image and applies standard image

compression methods to this image, requires a partition

of the model into structured submeshes. Gu et al. han-

dle this step by remeshing, while we find such a partition

without changing the mesh. Alternatively in [TR98], posi-

tions of already-encoded nearby vertices are combined to

predict the position of each new vertex, and only a small

correction term need be encoded using an entropy-based

encoder. We expect the regular vertex neighborhoods pro-

vided by our partition into structured submeshes to help

simplify the predictors for this process.

Mesh isomorphism. In feature film production many char-

acters may all be created from the same base topology;

Figure 1 shows just a few different characters out of about

70 that all use the same mesh topology. This shared struc-

ture allows for significant savings on modeling, rigging,

and texture painting if the work done on one character

(including blendshape targets, corrective shapes for pose

space deformation, weighting assignments for rigs, and

UV coordinates for texture mapping) may be transferred

to all the others using the one-to-one correspondence be-

tween the models. Given that all the characters use the
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Figure 1: Several animated characters from a set of about 70 in which the characters’ bodies have isomorphic meshes.

same topology such a correspondence clearly exists, but

unfortunately it is not always readily available.

For efficiency reasons, applications typically assign con-

tiguous ranges of ids to vertices, faces, and edges and

store the related information in contiguous blocks of

memory, renumbering objects when necessary to keep

them contiguous. Even a simple operation of breaking

a model into multiple pieces and then reassembling the

parts can cause all vertices, edges, and faces to be renum-

bered unpredictably. To recover from this problem we

must reestablish the isomorphism between two meshes.

For models of bounded genus, isomorphisms may be

found in polynomial time [FM80, Gro00, HW74, Mil80],

but these algorithms are complex and (except for planar

models) superlinear in their runtime. By applying graph

isomorphism algorithms to a compressed partition of the

model rather than to the uncompressed input mesh, we

may speed them up without sacrificing accuracy or robust-

ness. To ensure that isomorphisms will always be found

when they exist, our partition must be canonical: the same

mesh must always generate the same partition. The parti-

tioning algorithm we describe has this property.

Texture mapping. A partition into submeshes provides

a convenient framework for describing the correspon-

dence between a two-dimensional texture and the three-

dimensional model onto which it is mapped: one can store

a rectangular texture image for each submesh, and map

each structured submesh regularly onto its bitmap. A par-

tition with few submeshes minimizes the overhead asso-

ciated with the bitmap objects and reduces visual artifacts

at the seams between submeshes.

Along with the isomorphism problem treated here, it is

often important to find partial matches between meshes that

are not completely isomorphic. For example, if one scene is

formed from another by removing a model’s head and reat-

taching it in a combinatorially different twisted position, the

models will not be isomorphic as a whole, but we would

still like to find separate isomorphisms between the heads

and the bodies. The method we describe here is not directly

suitable for this task, because small changes to a model may

propagate and cause large changes to our partition, but in

[EGKT08] we describe applications of similar mesh decom-

position techniques to the problem of finding large shared

submeshes between two similar but non-isomorphic models.

Additionally, these techniques may apply to areas beyond

graphics such as scientific computation. Code for the finite

element method can be greatly streamlined when applied

to structured quadrilateral meshes. By partitioning unstruc-

tured meshes into structured submeshes, it should be possi-

ble to achieve similar speedups for semi-regular meshes.

With these motivations, we provide the following results:

• We show how to generate a partition that is “canonical”,

in the sense that it depends only on the connectivity of

the initial mesh. Such a canonical partition is of particular

interest in mesh isomorphism, as it allows us to find iso-

morphisms in time depending on the compressed size of

the mesh rather than on its overall number of elements.

• We present data showing that on meshes from animation

applications the canonical partition substantially reduces

storage size compared to the initial unpartitioned mesh.

• We show that, if we are given an initial list of extraordi-

nary vertices in a mesh, we can construct our canonical

partition in time proportional to the number of edges in

the partition, which may be substantially smaller than the

number of edges in the entire input mesh.

• We consider problems of minimizing the size of the com-

pressed mesh representations. Many problems of this type

are NP-complete but, as we show, our canonical partition

approximates them to within a constant factor.

• We find heuristics for reducing the size of compressed

representations beyond the size of our canonical partition.

2. Definitions

We define an abstract quadrilateral mesh to be a structure

(V,E,Q) where V is a set of vertices, E is a set of edges, and

Q is a set of quadrilaterals, with the following properties,
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Figure 2: An example of an abstract quadrilateral mesh. On left is a graphical view of the overall mesh, at center the graph

(V,E), and at right the cycles in Q.

Figure 3: Cutting a mesh along a set of edges produces a

submesh.

which encapsulate the requirement that the mesh must form

an orientable manifold:

• (V,E) forms a simple connected undirected graph.

• Each quadrilateral in Q consists of an oriented cycle of

four edges in E.

• Each edge in E belongs to one or two quadrilaterals in Q.

• Any two quadrilaterals in Q share a single edge, share a

single vertex, or do not share any features.

• If two quadrilaterals share an edge, it has opposite orien-

tations in the two quadrilaterals.

• If two quadrilaterals q and q′ share a single vertex v, there

is a sequence of quadrilaterals q = q0,q1, . . .qk = q′ such

that each two consecutive quadrilaterals qi,qi+1 share an

edge that has v as its endpoint.

The boundary of a quadrilateral mesh consists of all edges

that belong to exactly one quadrilateral, and all vertices in-

cident to an edge of this type. A submesh M′ = (V ′,E′,Q′)
of mesh M = (V,E,Q) is formed by a one-to-one mapping

from Q′ to Q such that any two quadrilaterals of Q′ that share

an edge correspond to quadrilaterals that share an edge in Q,

and any two quadrilaterals of Q′ that share a vertex corre-

spond to quadrilaterals that share an edge or a vertex in Q. A

submesh can be formed by cutting apart Q along boundary

edges of Q′ and keeping a connected component of the result

(Figure 3). An ordinary vertex of a mesh is a non-boundary

vertex incident with four edges or a boundary vertex incident

with at most three edges; any other vertex is extraordinary.

A mesh is structured if it has no extraordinary vertices, and

unstructured otherwise. The main subjects of this paper are

structured partitions in which the quadrilaterals of a mesh

are partitioned into a small number of structured submeshes.

Figure 4: The three possible topologies of a structured

mesh: disk, annulus, or torus.

3. Classification of structured meshes

As we now show, meshes without extraordinary vertices

must have a very specific structure.

Define an (a,b)-grid to be the structured mesh of unit

squares in the rectangle {(x,y) | 0 ≤ x ≤ a and 0 ≤ y ≤ b}.

Two meshes are isomorphic if their vertices, edges, and

quadrilaterals may be placed in a one-to-one incidence-

preserving correspondence; the mesh in the far left of Fig-

ure 4 is isomorphic to a (4,5)-grid. The Euler characteristic

of mesh M = (V,E,Q) is χ(M) = |V |− |E|+ |Q|. The defi-

ciency D(v) of vertex v that is incident to d edges is 4−d if

v is a non-boundary vertex, or 3−d if v is a boundary vertex.

Lemma 1 χ(M) = 1
4 ∑v∈V D(v).

Proof There are four quadrilateral-edge incidences per

quadrilateral, two per non-boundary edge, and one per

boundary edge, so 2|E| − B = 4|Q| where B is the num-

ber of boundary edges. Similarly, counting vertex-edge inci-

dences per edge and per vertex, 2|E| = ∑v∈V d(v) = 4|V |−
B−∑v∈V D(v). Adding these two equalities and dividing by

four produces the result.

Lemma 2 Any structured mesh M is homeomorphic to a

disk, an annulus, or a torus.

Proof An ordinary vertex has non-negative deficiency, so

a structured mesh has χ(M) ≥ 0. Any 2-manifold may be

formed from a sphere by adding k holes and h handles for

some (k,h); its Euler characteristic is 2− 2k− h. The only

combinations that result in a nonnegative Euler characteris-

tic are the sphere (k = h = 0), disk (k = 1 and h = 0), annulus

(k = 2 and h = 0), and torus (k = 0 and h = 1). However, the

sphere has no structured mesh: by Lemma 1, it has at least

one vertex with positive deficiency, but a structured mesh

with no boundary has zero deficiency.
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Figure 5: Left: A schematic partition. The red squares indicate vertex-face incidences that are marked as corners. Right: A

quadrilateral mesh and structured partition corresponding to this schematic partition.

Lemma 3 Any structured mesh homeomorphic to a disk is

isomorphic to an (a,b)-grid for some a and b.

Proof We use induction on the number of quadrilaterals

in the mesh M. By Lemma 1 M has exactly four degree-

two vertices. Let ℓ denote the shortest distance along the

boundary between any two degree-two vertices, and let S be

the submesh of M consisting of the quadrilaterals along the

boundary between the two closest vertices (breaking ties ar-

bitrarily). From the regularity of the vertices, S consists of a

strip of quadrilaterals in the form of a (1, ℓ)-grid. If S is the

entire mesh, the result holds directly. Otherwise, removing

S from M leaves a smaller submesh, which must be isomor-

phic to a (k, ℓ)-grid for some k by the induction hypothesis;

adding S back produces a (k + 1, ℓ)-grid. Thus, we may set

a = k +1 and b = ℓ.

4. Representing a structured partition

We define in this section the schematic partition, a com-

pressed combinatorial description of a partition into struc-

tured submeshes that allows us to reconstruct without loss

the original mesh. Intuitively, this partition is a graph that has

as its vertices the corners of the structured submeshes and as

its edges the paths along the submesh boundaries, labeled

with the number of edges on each path. The corner of one

submesh may lie along the side of another submesh, so we

also need information within each face of the graph (which

we represent as marks on certain vertex-face incidences) de-

scribing where to place the submesh’s corners. More for-

mally, we define a schematic partition to be a multigraph

embedded on a 2-manifold without boundary, such that:

• Each edge is marked with a length.

• Some vertex-face incidences are marked as corners.

• Each vertex has at least two incident edges. A vertex with

exactly two incident edges has one of its vertex-face inci-

dences marked as a corner.

• Each face of the embedding is topologically a disk, and

has either zero or four corners.

• At least one face incident to each edge has four corners.

• If a face has four corners, then these corners partition the

boundary of the face into four paths, such that the two

paths in each opposite pair of paths have the same length.

It is convenient to represent schematic partitions using the

winged edge data structure [Bau72], augmented with lengths

and marks; our actual implementation uses the Boost graph

library [SLL02] with an additional layer representing the

embedding. If mesh M is partitioned into grids, we may rep-

resent it by a schematic partition: Let X be the vertices with

nonzero deficiency in M or in at least one submesh, and let

Y be the edges on the boundary of some submesh. Then Y

forms a family of paths with vertices in X as endpoints; we

form a schematic partition with one edge per path, labeled by

the length of the path. Conversely, from a schematic partition

G formed in this way from a mesh M, we can form a mesh

isomorphic to M by replacing each marked face of G by an

(a,b)-grid, where a and b are the edge lengths of the face.

Thus a schematic partition forms a compressed representa-

tion requiring space proportional to the number of edges in

G rather than to the number of vertices, edges, and quadrilat-

erals in M. For instance, the schematic partition in Figure 5

can be represented by a winged edge structure with 44 edge

objects, compared to the full quadrilateral mesh which has

323 vertices, 622 edges, and 300 quadrilaterals.

5. The motorcycle graph

We now describe a technique for finding a partition of

an abstract quadrilateral mesh. Our approach is based on

the motorcycle graph, a construction inspired by a video

game in the 1982 Disney movie Tron (Figure 6) and pre-

viously used in algorithms for constructing straight skele-

tons [EE99, CV07]. In the Disney movie, players ride “light

cycles” which move horizontally and vertically within a

playing field, leaving paths behind them that are visible as

glowing walls that form obstacles for later play. The motor-

cycle graph for a system of particles in the plane is formed

c© 2008 The Author(s)
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Figure 6: “Light cycles” from the 1982 movie Tron.

Figure 8: An initial system of particles and velocities in the

plane (left) and the resulting motorcycle graph (right).

by moving each particle in a straight line at its initial veloc-

ity, stopping particles that meet other particles’ tracks. The

paths traced out by the particles in this system form a pseud-

oforest (a graph in which each connected component has at

most one cycle) called the motorcycle graph (Figure 8).

We may similarly define a motorcycle graph for a quadri-

lateral mesh, as follows. Begin by placing a particle on each

edge that is incident to an extraordinary vertex, moving

outwards from that vertex. Then, in a sequence of time steps,

move each particle along the edge on which it is placed.

When a particle reaches an ordinary interior vertex it moves

in the next time step to the opposite edge at that vertex. How-

ever, when two oppositely-traveling particles meet, when a

particle meets a vertex that has previously been traversed by

itself or another particle, or when a particle meets a bound-

ary vertex of the mesh, it stops. When three or four particles

meet simultaneously at a vertex, they all stop. However,

when exactly two particles meet perpendicularly at a vertex,

we use the “right hand rule”: the particle clockwise from the

right angle formed by the two particles’ tracks stops, while

the other particle keeps going. The motorcycle graph of the

mesh is the set of edges traversed by particles as part of this

process, together with all boundary edges of the mesh. Fig-

ure 7 shows an example of motorcycle graph construction.

The motorcycle graph partitions the mesh into regions

with no extraordinary vertices, so it forms a structured par-

tition of M. If M is not itself already structured, each mesh

in this partition is topologically a disk: no torus can be part

of a partition of a larger unstructured mesh, and no annulus

may be split off from a larger mesh by the track of one of

the particles unless the annulus has an extraordinary vertex v

on its boundary, in which case the annulus would have been

further partitioned by another particle from v.

Theorem 1 For bounded genus meshes, the numbers of ver-

tices, edges, and faces of the schematic partition for the mo-

torcycle graph are within a constant factor of the minimum

possible for any schematic partition of M.

Proof Let M have n extraordinary vertices. Each vertex of

the schematic partition of the motorcycle graph is an extraor-

dinary vertex or a point where a particle stops, and the num-

ber of particles is four times the number of extraordinary

vertices plus the sum of the deficiencies, so by Lemma 1

the partition has at most 5n−4χ(M) vertices. However, any

schematic partition for M must include every extraordinary

vertex, so the number of vertices in the schematic partition of

the motorcycle graph is at most five times optimal plus a con-

stant. Similarly, the number of edges in the schematic parti-

tion of the motorcycle graph is at most 8n− 8χ(M) (each

particle creates one edge when it starts and another when it

stops) while any schematic partition must have at least n, so

the number of edges is at most eight times optimal plus a

constant. Finally, the number of faces of the schematic par-

tition of the motorcycle graph is at most 3n− 3χ(M) (each

particle has one corner of a face clockwise of it where it

starts, and creates two corners of faces when it stops, and

each face has four corners) while, in an optimal partition,

there must be at least (n − χ(M))/8 faces (there must be

(n − χ)/2 vertices with negative deficiency to balance out

the other vertices with positive deficiency, and each must be

one of the four corners for some face), so the number of faces

is at most 24 times optimal plus a constant.

If the mesh M is given together with a list of its extraordi-

nary vertices, in such a way that we can quickly look up the

adjacency structure of M at any of its vertices, then we may

construct the motorcycle graph in time proportional to the

total number of edges traced out by the particles in the mo-

torcycle graph; this time may be substantially smaller than

the size of the input mesh. To do so, create a hash table H of

vertices that have already been reached by a particle in the

motorcycle graph, and simulate the motion of the particles

that form the motorcycle graph one step at a time. Within

each step, use H to determine whether any particle should

stop because of reaching a vertex that another particle has

already passed through, or whether any two or more parti-

cles meet at a common vertex.

6. Mesh isomorphism

One of our main motivating applications was finding iso-

morphisms of meshes. Because the process described above

treats all vertices equivalently, and contains no nondeter-

ministic steps, the motorcycle graph is determined uniquely

by the connectivity of the mesh, and isomorphic meshes

will get isomorphic motorcycle graphs. Therefore, we may

test isomorphism between quadrilateral meshes on bounded-

genus surfaces by representing their motorcycle graphs as

c© 2008 The Author(s)
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Figure 7: Left: The construction of the motorcycle graph, after one time step. Particles emanating from each extraordinary

vertex have moved one edge away from their initial positions. Center: The construction after two time steps; some particles

have collided with each other. Right: The completed motorcycle graph.

schematic partitions and applying a graph isomorphism al-

gorithm that respects the surface embedding and edge and

corner labels of the schematic partition. Graph isomorphism

is most difficult when vertices have local neighborhoods that

are similar to each other, causing the graph isomorphism al-

gorithm to have to search farther to find the distinct features

that identify the correct correspondence between the vertices

of isomorphic meshes. In a semi-regular mesh, the ordinary

vertices all have similar neighborhoods to each other, and

even the extraordinary vertices may be surrounded by sim-

ilar patches of ordinary vertices, making it more difficult to

find the isomorphism between meshes. In our schematic par-

tition, only the irregular features of the partition remain. By

reducing a mesh to its salient features, this representation

simplifies the task of the isomorphism algorithm.

Our task is simplified, relative to much work on bounded-

genus graph isomorphism (e.g. [FM80, Gro00, Mil80]), by

the fact that we already have a surface embedding for our

meshes and for the schematic partitions of their motorcycle

graphs. A simple and effective algorithm for isomorphism

of embedded graphs is to choose arbitrarily a flag within one

of the schematic partitions (an incident triple of a vertex,

edge, and face), and test all equally-labeled flags of the other

schematic partition for an isomorphism that maps the two

flags into each other. Each test may be performed in linear

time by performing parallel depth first searches starting from

the two flags and verifying that the two searches remain syn-

chronized and encounter the same sequences of adjacencies

and labels [Mil80]. In the worst case, this algorithm takes

time quadratic in the size of the schematic partitions; how-

ever, in practice it is likely faster because for most starting

pairs of flags a mismatch will be detected quickly. [HW74]

showed that, for planar graphs, a faster but more complicated

linear-time isomorphism algorithm is possible, based on per-

forming a sequence of reductions on the graphs that simplify

them while preserving isomorphisms.

Thus, for planar quadrilateral meshes, we can compute

isomorphism in time linear in the size of the schematic parti-

tion, while for bounded-genus meshes we can compute iso-

morphism in time quadratic in the size of the schematic par-

tition. Although our result does not always provide an im-

provement in asymptotic complexity over direct application

of graph isomorphism algorithms to the original meshes, it

is a practical improvement, in several ways: First, the only

part of the algorithm in which the uncompressed represen-

tation of the input mesh is handled, the construction of the

motorcycle graph, is much simpler than the Hopcroft-Wong

algorithm, and so likely has much smaller constant factors in

its linear runtime. Second, for nonplanar surfaces, any com-

pression in the schematic partition translates directly to an

improvement in the size from which the quadratic runtime is

determined. Third, if the extraordinary vertices are known,

we may perform the whole algorithm in time sublinear in

the input size. And fourth, the motorcycle graph construc-

tion need be performed only once for each mesh, allowing

subsequent isomorphism tests to be performed efficiently.

7. Smaller partitions

In some applications of structured partitions, we may be

prepared to spend a greater amount of preprocessing time,

and sacrifice canonicalness of the resulting partition, in ex-

change for greater compression. We may make several ob-

servations related to minimizing the number of vertices in

any schematic partition for a mesh M. First, each extraor-

dinary vertex of the input mesh must be a vertex of the

schematic partition. Second, at each extraordinary vertex,

edges of the schematic partition must follow paths that use

at least every other outgoing edge; for, if two consecutive

edges at the vertex remained unused, the result would be an

extraordinary boundary vertex of degree four or greater in

some submesh of the partition. Third, the motorcycle graph

construction may be modified to produce a valid structured

partition by allowing particles to travel at different veloci-

ties or with different starting times; the simultaneous move-

ment of the particles is important in making the motorcy-

cle graph canonical but not in generating a correct partition.

And fourth, the schematic partition formed from a motor-

cycle graph includes as a vertex an ordinary vertex v of M

c© 2008 The Author(s)
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only if some particle reaches v after some other particle has

already reached it, or if two particles reach v simultaneously.

Thus, we may often find a smaller partition than the mo-

torcycle graph itself by a process in which we build up the

partition by adding a single path at a time, at each step start-

ing from an extraordinary vertex and extending a path from it

until it hits either another extraordinary vertex or an ordinary

vertex that has previously been included in one of the paths.

In this process, we should give priority first to paths that ex-

tend from one extraordinary vertex to another, because these

paths cannot cause us to add any additional vertices to our

partition. Secondly, we should prefer paths the initial edge of

which is an even number of positions from some other edge

around the same extraordinary vertex, in order to use as few

paths emanating from that vertex as possible. Once no two

consecutive edges at an extraordinary vertex remain unused,

the partition process may terminate with a valid partition.

The partition in Figure 5, for instance, may be constructed

by a process of this type, and is significantly simpler than

the motorcycle graph partition of the same mesh in Figure 7.

An alternative approach to reducing the complexity of

partitions into structured submeshes would be, instead, to

form the motorcycle graph, and then to repeatedly merge

pairs of structured submeshes the union of which is still

structured. For instance, the motorcycle graph in Figure 7

contains many mergeable pairs of submeshes. This approach

would not be able to find certain partitions, for instance those

in which some instances of the right hand rule have been

replaced by a symmetric left hand rule, so it may be less

effective at finding small partitions, but it would have the

advantage of working within the compressed mesh after an

initial motorcycle graph construction phase, and therefore

could likely be implemented to run more efficiently than the

careful selection of paths described above.

Some special cases of finding optimal partitions may be

solvable in polynomial time. Ohtsuki [Oht82] shows that a

polygon in the plane with horizontal and vertical sides (pos-

sibly with holes) may be partitioned into a minimum number

of rectangles, in polynomial time; the same algorithm may

be adapted to partition of a mesh of axis-aligned rectangles

into a minimum number of structured submeshes. However

this method does not minimize the number of vertices and

edges of a schematic partition, and applies only to a very

restricted subset of quadrilateral meshes.

8. Computational complexity

To show that the problem of finding optimal structured parti-

tions is hard, we model it as a decision problem: for a given

semi-regular mesh, and a given numerical parameter k, we

may ask whether there is a partition into k structured sub-

meshes, a partition corresponding to a schematic partition

with k vertices, or a partition corresponding to a schematic

partition with k edges. We show that all three variants of

Figure 9: Reduction from cubic planar independent set to

crossing-free segments.

Figure 10: Reduction from line segment arrangement to

quadrilateral mesh.

the problem are NP-complete by a reduction from maxi-

mum independent sets in cubic planar graphs [GJ79, GJ77]

via an intermediate problem, finding k non-crossing line seg-

ments from a given set of n line segments with the restric-

tion that, if any two input line segments intersect, they cross

rather than overlapping. This intermediate problem is related

to maximum independent sets in line segment intersection

graphs [IA83] but due to the restriction on how segments in-

tersect we need a new NP-completeness proof for it as well.

Lemma 4 It is NP-complete, given a number k and a set

of n line segments in the plane, intersecting only in proper

crossings, to determine whether there exists a non-crossing

subset of k line segments.

Proof The problem is clearly in NP. To prove NP-hardness,

we reduce it from maximum independent sets in cubic planar

graphs. Given a cubic planar graph G, with n vertices, find a

straight-line embedding of G on a grid with small integer co-

ordinates [FPP90, Sch90], and form a line segment arrange-

ment A by placing two short parallel line segments side by

side at the location of each vertex, and replacing each edge

by a pair of crossing line segments, one passing through the

parallel segments at each endpoint of the edge, as shown in

Figure 9. Then G has an independent set of size k if and only

if A has a crossing-free subset of size 2n+ k. This reduction

completes the NP-completeness proof.

Figure 10 depicts our transformation from an arrangement

A to a quadrilateral mesh. Choose a sufficiently small ε > 0,

and replace each line segment s of A with seven line seg-

ments: three parallel to s at distance ε from each other and

two more near each end of s, perpendicular to s and again

at distance ε from each other. The perpendicular segment

closer to the center of s connects all three of the line seg-

ments parallel to s, while the perpendicular line segment far-
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Figure 11: Schematic view of the highway mesh from Fig-

ure 10, and an optimal partition of the mesh into structured

submeshes.

ther from the center of s connects only two of them. As the

figure shows, these new line segments form a submesh of

quadrilaterals two quadrilaterals wide and 3x + 4 quadrilat-

erals long where x is the number of other segments that cross

s. There are two extraordinary vertices, one near each end-

point of s. One can imagine these submeshes as depicting

highways, with two lanes of traffic (one for each quadrilat-

eral of width); the four quadrilaterals where two highways

meet form junctions of the highway system. With this anal-

ogy in mind, we call a mesh formed from this transformation

a highway mesh, and we call the set of four quadrilaterals

surrounding the intersection of two segments of the arrange-

ment a junction. Figure 11 depicts the same abstract quadri-

lateral mesh as the highway mesh of Figure 10, with the po-

sitions of the vertices moved to make the quadrilateral mesh

structure more apparent. In red is shown an optimal partition

of this mesh into structured submeshes: optimal in number

of submeshes, number of schematic partition vertices, and

number of schematic partition edges.

In each junction of Figure 11, two paths connect the four

extraordinary junction vertices in pairs; this pattern is not a

coincidence. A case analysis (shown in Figure 12) proves

that any highway mesh M has an optimal partition (in terms

of its number of vertices, edges, or submeshes) such that

within every junction J of M two pairs of extraordinary ver-

tices of J are connected by paths, regardless of whether the

schematic partition of M includes a non-boundary path en-

tering J on zero, one, two, three, or all four of its sides.

We may construct an optimal partition for any highway

mesh by first deciding which two pairs of extraordinary ver-

tices at each junction to connect via paths and then opti-

mally subdividing the remaining submeshes (each of which,

having at most two extraordinary vertices, is easy to sub-

divide). The choice of which paths to use at each junction

corresponds to a casing of the original line segment arrange-

ment: a choice, for each crossing point, of which line seg-

ment is thought of as passing over the crossing point and

Figure 12: Optimal partitions for each possible set of non-

boundary paths entering a junction.

which is thought of as passing under. The line segment that

passes over the crossing is the one parallel to the two paths

chosen at the corresponding junction. Define a segment of

the arrangement to be visible for some casing if it passes

above each of its crossings. The visible line segments for

any casing cannot cross each other, and any non-crossing

set of segments may be made visible in an appropriate cas-

ing. Thus, finding a casing that maximizes the number of

visible segments is equivalent to the NP-complete problem

of finding the largest non-crossing subset of the arrange-

ment; for an investigation of other optimal casing problems

see [EvKMS07]. If a highway mesh has n line segments with

j junctions, and is cased with k visible line segments, then

the optimal schematic partition consistent with this casing

connects the two extraordinary vertices at the endpoints of

each visible line segment and has 4 j + 10n − 2k vertices,

6 j +12n−3k edges, and j +3n− k submeshes.

Theorem 2 It is NP-complete, given a quadrilateral mesh

and a parameter k, to find a structured partition of the mesh

with k submeshes, k vertices in the schematic partition, or k

edges in the schematic partition.

Proof Each of these problems is clearly in NP. We reduce the

problem of finding a crossing-free subset of line segments to

each of these problems using the highway mesh construction

described above. The given arrangement A has k crossing-

free segments, if and only if there exists a schematic partition

with at most 4 j + 10n− 2k vertices, at most 6 j + 12n− 3k

edges, and at most j + 3n− k structured submeshes. Thus,

since each of these problems in NP and has a reduction from

a known NP-complete problem, it is itself NP-complete.

9. Empirical results

We implemented the motorcycle graph partition, and applied

it to six meshes from a feature film animation application. As

can be seen in Table 1, the number of edges in the schematic

partition (the controlling factor for the size of its winged-

edge representation) ranged from 6.33% to 11.71% of the

number of edges in the original mesh, with some trend to-

wards better compression on larger meshes. The reduction

in the number of vertices was similar although not quite so

great. Thus, even without the heuristic improvements dis-

cussed earlier, the space savings of the motorcycle graph is
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Original mesh Schematic partition Relative size

model vertices edges vertices edges vertices edges

A 820 1603 98 123 11.95% 7.67%

B 1070 2110 164 247 15.33% 11.71%

C 3099 6034 286 408 9.23% 6.76%

D 6982 13933 711 1251 10.18% 8.98%

E 9958 19889 749 1299 7.52% 6.53%

F 10281 20530 761 1300 7.40% 6.33%

Table 1: Results of applying the motorcycle graph construction to six quadrilateral meshes.

Figure 13: Three characters from the 2007 movie Meet the Robinsons, with isomorphic but geometrically different meshes, and

the motorcycle graphs for their meshes. The motorcycle graph compresses the meshes, with 2163 vertices and 4289 edges, into

a schematic partition with 121 vertices and 222 edges.

substantial. We would expect to see a similar reduction in

the time for performing isomorphism tests on compressed

meshes with respect to the times for testing their uncom-

pressed counterparts; in this case, the speedup might be even

larger due to the presence of labels in the schematic partition

which can only help in isomorphism testing.

Figures 13 and 14 show examples of partitions computed

by our implementation.

10. Conclusions

We have investigated and solved a number of problems in-

volving canonical and optimal partitioning of unstructured

quadrilateral meshes into structured meshes. However, many

questions remain for future research:

• The motorcycle graph approximates the optimal struc-

tured partition to within a constant factor in the number

of vertices, edges, and submeshes, but the constant fac-

tor that we have been able to prove is large. On the other

hand, our experiments showed that it yields good com-

pression in practice. Can we prove tighter bounds on its

quality, or on the quality of improvements to it that more

carefully choose which extraordinary vertices to connect

and which order to connect them?

• How hard is it to approximate the optimal structured parti-

tion? Do there exist polynomial time approximations with

any desired degree of approximation, or is there a limit to

how closely we may approximate it?

• Our proof that optimal partitioning problems are hard

relies on meshes with high genus. Are these problems

hard for the low-genus meshes more commonly found in

graphics applications?

• If we measure a structured partition’s quality not by its

compressed size but by the total number of edges of the

original mesh that must be cut to produce the partition

(an estimate of the visual artifacts at seams between sub-

meshes), the motorcycle graph may be very far from op-

timal. Is it possible to compute or approximate the struc-

tured partition that uses as few cut edges as possible?

• Some highly symmetrical meshes may have more than

one isomorphism. An example that came up in our appli-

cation involved shirt buttons represented as separate ob-

jects that could be rotated in many ways while preserv-

ing combinatorial isomorphism. Generally, in such cases,

there is a preferred isomorphism that we should find (for

instance, one that preserves the geometric orientation of

the objects) but the techniques we describe here do not

address this issue, and it warrants further work.
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Figure 14: The motorcycle graph computed by our imple-

mentation on an example mesh. The original mesh is shown

as a set of grayscale quadrilaterals, and the motorcycle

graph edges as black lines. The two figures shown have

meshes that are nearly but not precisely isomorphic.

In addition, it would be of interest to gather more data

on the application of structured partitions to the problems

described in the introduction. We have implemented an exact

mesh isomorphism strategy based on the motorcycle graph,

and the results are promising.
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