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Abstract 
This paper presents an Aspect-Oriented Software Development (AOSD) language and 
methodology for Model-Driven Engineering (MDE) of large distributed applications, and 
a tool that implements these concepts, the Motorola WEAVR. 
MDE technologies and development practices have been used for a long time in the 
industry, for the development of large critical infrastructure systems, especially in the 
telecommunication and avionics domains. While the benefits of MDE are established, 
these technologies still suffer from important technical limitations that hinder their 
adoption and reduce their potential benefits in terms of software development 
productivity. 
MDE and AOSD exhibit some complementary properties. Modeling enables systems to 
be specified at higher level of abstraction but suffers from difficulties with respect to the 
refinement and integration of system perspectives. On the other hand, aspect 
technologies focus on the modularization and composition of concerns, but lack 
appropriate abstraction mechanisms.  
The paper presents the WEAVR aspect-oriented modeling language and identifies three 
directions along which aspect models can help bridge the gap between system 
specification and implementation, while overcoming some of the weaknesses of Aspect-
Oriented Programming languages.  

1 INTRODUCTION 

Modeling languages focus on partial abstractions of the product under development that 
highlight properties that are relevant from the perspectives of the different stakeholders, 
architects or developers. Model-Driven Engineering (MDE) [Bast03, Frankel03] 
technologies aim at automatically or semi-automatically translate those partial 
specifications into executable artifacts. Models defined at different levels of abstraction 
are iteratively expanded into executable artifacts through a series of manual refinements, 
mappings, and automated transformations. 



 
MOTOROLA WEAVR: ASPECT ORIENTATION AND MODEL-DRIVEN ENGINEERING 

 
 
 
 

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 7 

Model-Driven Engineering for Communication Systems 

The particular MDE environment discussed in this paper focuses on large, complex 
distributed software systems deployed as part of the global telecommunication 
infrastructure. These software systems typically have a very long life time, and their 
development may involve hundreds of software engineers. There is therefore a strong 
emphasis on architecture modeling and interface modeling to support independent 
development across different development teams. 

Architecture modeling emphasizes specification, simulation and testing of the 
observable behavior of system components and their interactions. The architecture is an 
executable, skinny version of the system under development [Jacobson04]. It includes 
models that simulate the observable behavior of the system components for different use 
cases. These models act as behavioral contracts or interfaces between components 
developed by different development teams.  

The implementation of the system is obtained by refining these behavioral models 
down to models that contain sufficient information for automated code generation. In the 
development environment deployed at Motorola, these models can then be compiled into 
executable code, usually C or C++ using an optimizing code generator [Weigert03]. The 
code generator injects platform-specific dependencies and adapts the model to particular 
deployment topologies. Code optimization destroys the structural and syntactical 
correspondence between the generated code and the model. Generated code is therefore 
not supposed to be manually inspected or refined. Applications developed in this fashion 
are therefore completely specified at the level of the models. 

This type of MDE development environment is characterized in the literature as 
translation-oriented [Mellor02], where models are automatically translated into code, as 
opposed to round-trip environments. Round-trip modeling environments make a clear 
distinction between model and code and require manual refinement of generated code 
skeletons. 

Translation-oriented MDE environments require a heavy investment in code 
generators that are specifically tuned for a particular domain. These environments are 
adapted to domains where large product families need to be maintained over long periods 
of time, as in the telecom infrastructure domain. 

In this paper, we focus on the refinement from abstract architectural models of the 
system to more detailed, complete models of the system. Refinement from behavioral 
models includes functional refinement but also the composition of features, the 
integration of alternative uses cases, the handling of exceptions and faults and various 
optimizations. 

This refinement process, including behavior testing, is typically the most problematic 
phase of the development lifecycle. In this paper, we identify three major issues that 
impede the automation of these development tasks: mismatch between problem structure 
and modeling language abstractions, difficulties in isolating the implementation of 
different use cases and features from each other, and difficulties in abstracting from 
application-specific low-level implementation details. 
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1. Model abstractions and decompositions: Modeling languages such as the UML 
provide complementary specification languages. Yet, these specification 
languages only support hierarchical and orthogonal decomposition mechanisms. 
Many system features and use cases do not map either of these decompositions 
completely, especially when they need to be integrated with low-level behavior of 
other use cases/features. This causes discrepancies between architectural models 
and detailed models. 

2. Use case and feature interdependencies: The difficulty in cleanly modularizing 
different use cases and features from each other makes it hard to explicitly declare 
their interactions and dependencies. They become hard to define independently of 
their low-level behavior. The interactions between use cases/features become 
buried inside of the implementation instead of being declared explicitly. 

3. Application-specific implementation concerns: Code generators can be tuned to 
systematically handle domain-specific implementation details and platform 
specificities. Yet, most systems also exhibit application-specific implementation 
details. Many of these concerns do not map cleanly to the main decomposition of 
the system and need to be integrated manually at multiple locations in the system. 

Section 3 illustrates these problems through a classic example from the telecom domain. 
The formulation of those limitations suggests that they can be addressed by Aspect-
Oriented Software Development (AOSD) technologies. Features that exhibit such 
characteristics have been categorized in the literature as crosscutting concerns 
[Kiczales97]. A concern is an area of interest or focus in a system, such as a requirement, 
a feature or a use case. Crosscutting concerns are concerns that are hard to modularize 
using the dominant decomposition mechanisms of the language used because they follow 
different decomposition rules. 

Aspect-Oriented Software Development 

Aspect-Oriented Software Development (AOSD) [Elrad04] is a development paradigm 
that focuses on the modular implementation of crosscutting concerns. Aspect-Oriented 
Programming (AOP) languages provide explicit language-level support for localizing 
crosscutting concerns into separated modules, called aspects. AOP languages use 
predicates over the system implementation, called pointcuts, to capture joinpoints, points 
in the system, such as method calls, where aspects inject behavior through advice bodies. 
Aspects encapsulate pointcuts, advice bodies, attributes and methods that pertain to the 
implementation of a crosscutting concern. 

Yet, it is generally agreed on in the literature that aspects are hard to reason about in 
isolation [Kiczales05]. Even as crosscutting concerns are modularized, their integration 
with the system requires coordination among different developers. This problem has been 
characterized as the Fragile Pointcut problem [Gybels03][Ostermann05]. 

Pointcut descriptors introduce strong coupling between aspects and the modules they 
apply to. Aspects depend on specific points in the execution of the system to be exposed, 
according to particular signatures, such as method call signatures. Small refactorings are 
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therefore susceptible to modify the way an aspect interacts with a module, breaking the 
semantics of the aspect. Modules that are advised by aspects become hard to evolve 
independently. Developers need to be aware of the aspects defined in the system when 
modifying the implementation of a component. In large development environments, this 
situation might be worse than problems introduced by code tangling and scattering 
because it involves coordination between developers, as the behavior introduced by the 
aspect is not directly visible in the components. 

The fragile pointcut problem is partially caused by the lack of stable semantic 
abstractions for representing pointcuts. One of the goals of Aspect-Oriented Modeling 
(AOM) techniques is to provide ways to express pointcuts in terms of system behavioral 
specifications, rather than the system implementation. Such pointcuts are likely to be 
more robust with respect to refactorings. 

In MDE, architectural behavioral models can be used as interfaces with respect to 
aspects. As long as the behavioral model of the component is maintained, changes in its 
implementation will not affect the correctness of the aspects applied to the component. 
This technique requires the ability to infer joinpoint locations in the implementation of a 
component from pointcuts that are expressed in terms of its behavior specification.  

The Motorola WEAVR [Cottenier07] [Cottenier05] is an AOM engine developed at 
Motorola, as an add-in to the Telelogic TAU [TAU] modeling tool. It provides language 
constructs to capture aspects in UML 2.0 and performs weaving of state machines 
through model transformation before code generation. The WEAVR tool performs a 
particular type of joinpoint inference that targets the detection of decisions in the system. 
Decisions are conditional statements that have an important impact on the future behavior 
of the system. Decisions also tend to be locations where crosscutting occurs; they are 
locations where alternative use cases interact. 

MDE and AOSD exhibit some complementary properties. Modeling enables systems 
to be specified at higher level of abstraction but suffers from difficulties with respect to 
the refinement and integration of system perspectives. On the other hand, aspect 
technologies focus on the modularization and composition of concerns, but lack 
appropriate abstraction mechanisms.  

The limitations of MDE with respect to decomposition and separation of concerns 
will be illustrated by an example from the telecom domain. The next section presents this 
example and introduces the modeling concepts use in the paper, as well as the behavioral 
specification language used by WEAVR. Development issues that arise when extending 
the behavior of the system will be presented in Section 3. This section also introduces the 
WEAVR aspect language and proposes aspect solutions to the identified problems. 
Section 4 details the joinpoint model of WEAVR and discusses some of the more 
advanced features of the language, including realization mappings, decision inference and 
state introductions. Section 5 presents a discussion on the proposed approach and 
discusses further work. Section 6 discusses related work and Section 7 concludes this 
paper. 
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2 MODEL-DRIVEN ENGINEERING 

Architecture and Behavioral Specification 

It is desirable to validate the system design and architecture as early as possible in the 
development lifecycle. For large systems, validation is essentially performed through 
model simulation and testing. System requirements are mostly expressed using use cases, 
sequence diagrams and textual descriptions. Architectural models specify the logical 
components of the system, their observable behavior and their interactions. In the telecom 
domain, system architecture is usually modeled using composite-structure diagrams, class 
diagrams, and state machine diagrams. Typically, system simulation produces traces in 
the form of sequence diagrams that can be validated automatically with respect to the 
system requirements using automated testing. 

Composite-structure diagrams are used to identify and model the different 
subcomponents of the system. These subcomponents become the basic units of 
independent development of the system, with respect to a use case. Composite-structure 
diagrams define a hierarchical run-time decomposition of the system. They define the 
internal run-time structure of an active class (a process definition), in terms of other 
active classes instances, referred to as parts. A connector specifies a medium that enables 
communication between parts of an active class or between the environment of an active 
class and one of its parts.  

CompositeStructureDiagram1 active class CellularMobility {1/1}
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Figure 1. Composite-structure diagram for a classic cellular communication application 
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Figure 1 illustrates a simple composite-structure diagram for a classic mobile 
communication problem, the relocation of signaling communication channels between 
two cellular radio network controllers (RNC) managed by one gateway support node 
(GSN) and initiated by a mobile station (MS). The specific example presented in this 
paper is inspired from the UMTS handoff protocol [Pang04] [Lin01]. The handoff 
procedure is responsible for maintaining a session connection with the MS, while 
ensuring that no data is lost during handoff. 

The diagram contains four parts: an MS, a GSN, a serving RNC which holds a 
connection from the GSN to the MS and a target RNC which is the RNC that takes over 
the connection after handoff. Figure 1 also shows the connectors between ports of the 
parts of the system. The RNCs and the GSN are connected through a private network, 
whereas the MS has wireless connections with the RNCs. 

CONNECTED
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output rncID.ACK();
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Figure 2. Behavioral specification of the connection handoff procedure from the perspective of the GSN 
 
In this paper, a particular type of state machine-based behavioral specifications is used. 
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WEAVR system behavioral specifications define the observable behavior of each part. 
They specify what the state transitions of the system are, their triggers and what output or 
actions they may produce. The specification does not detail how these actions are 
produced or how the decisions regarding the execution of a specific path are made. These 
state machines are therefore not imperative and are not fully executable. They define 
possible execution paths of the system, usually paths that correspond to the main use 
cases.  

Figure 2 illustrates a behavioral specification of a cellular handoff procedure, from 
the perspective of the GSN. It defines the different states of a connection, the events that 
trigger transitions between those states, and actions that may be executed along those 
transitions.  

The states defined in Figure 2 correspond to the states of the connection between the 
network and the MS. When no link is established in the system, the connection is 
DETACHED. When a connection is established with an RNC, the connection becomes 
CONNECTED. During relocation, a new connection is established while the old 
connection is being revoked. The connection is then in the RELOCATION state. 

The transition from the DETACHED state to the CONNECTED state corresponds to 
an MS network entry. The transition from CONNECTED to CONNECTED corresponds 
to a connection renewal. The transition from CONNECTED to RELOCATE corresponds 
to handoff initiation. Finally, the transition from RELOCATE to CONNECTED 
corresponds to handoff completion. 

Figure 4 presents the corresponding behavioral specification of an RNC:  
• Figure 4.a specifies the transitions that occur during a network entry. The MS 

issues a registration request by sending the REGISTRATION signal. When an 
RNC receives a registration request, it sends an ATTACH request to the GSN and 
waits for a response. Once the connection is established, the RNC actively 
transmits downlink packets from the GSN to the MS.  

• Figure 4.b describes the behavior of a serving RNC during relocation. After 
handoff initiation, the serving RNC forwards packets from the GSN to the target 
RNC. Upon relocation completion, the serving RNC becomes Idle. 

• Figure 4.c describes the behavior of the target RNC during relocation. During 
handoff initialization, the target RNC buffers packets received from the serving 
RNC. Upon relocation completion, the target RNC actively delivers packets to the 
MS. 

The handoff procedure needs to guarantee that no packets get lost during relocation. The 
GSN therefore implements a handshaking protocol (RELOCATION_REQUEST, 
RELOCATION_COMMAND, RELOCATION_COMMIT) between the RNCs to ensure 
that the target RNC is ready to buffer signals before the serving RNC start forwarding 
packets. The detail of the handshaking protocol is not essential to this discussion but is 
presented for illustrative purposes. 
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sd Trace (7) interaction DebugTrace1 {1/1}

ms[1]
 

target[1]
 

source[1]
 

gsn[1]
 

env[1]
<<actor>>

//
Sequence diagram trace
generated for
CellularMobility
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WAIT

ACK()ACK()

CONNECTED

ACTIVE

Move()Move()

RELOCATE(Handover_Req_t (.rnc = [[CellularMobility.target[1] ]].))RELOCATE(Handover_Req_t (.rnc = [[CellularMobility.target[1] ]].))

ACTIVE
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RELOCATION_COMMIT()RELOCATION_COMMIT()
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BUFFER

REALLOCATION_ACK()REALLOCATION_ACK()
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CONNECTED

IDLE

Figure 3. Trace generated by the model verifier during a simulation of the relocation behavioral 
specifications of Figure 2 and Figure 4 
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A transition defined in a WEAVR behavioral specification expresses the following 
behavior. From the transition start state, there exists a path to the transition target state 
along which the actions defined along the transition are executed. It is not guaranteed that 
these actions will be executed or that the transition will complete after it has been fired, 
as the system might follow a different path that is not defined in the specification. These 
specifications therefore exhibit non-determinism. A transition defined in the specification 
may follow an alternative path, which is not explicitly declared, bringing the system in a 
FAILURE state. These semantics allow specifications to simulate alternative uses cases 
early in the lifecycle. A complete formal treatment of WEAVR behavioral specifications 
is beyond the scope of this paper and will be subject for further publications. 

While WEAVR behavioral specifications are not fully executable, they can be 
simulated. In its initial phases, the simulation is performed by stepping through the 
execution of the model, while manually taking decisions about the execution of the 
system (such as whether to execute connection renewal or relocation initiation or whether 
a particular action should be executed). During this phase the initial architecture is 
refined as to satisfy the requirement use-cases. Once the architecture converges, different 
execution paths can be encoded into tests to drive the simulation automatically and 
perform analysis.  

The simulator generates a trace of the system as a sequence diagram. Figure 3 
illustrates a trace generated by the simulator for a network entry followed by a successful 
connection handoff between a serving RNC and a target RNC. 
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Figure 4. Behavioral specification of the connection handoff procedure from the perspective of the source 
RNC (Figure 4.b) and the target RNC (Figure 4.c) 
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System implementation is defined using imperative transition-oriented state machines, 
which are characteristic of the Specification and Description Language (SDL) and are 
now part of the UML 2.0 standard. Transition-oriented state machines provide a better 
view of the control flow and the communication aspects of a transition than a state-
oriented view. They are used for defining the detailed internal behavior of a reactive 
component. Transition-oriented state machines use explicit symbols for different actions 
that can be performed during the transition. They also make the control flow explicit 
using decision actions, represented as diamonds. 

Figure 5 illustrates an implementation of a GSN Connection manager. The 
Connection manager implementation is a refinement of the behavioral specification of 
Figure 2. As opposed to Figure 2, this state machine is fully executable. It can non-
ambiguously be compiled by a code generator, as it explicitly details the individual 
actions executed along transition, and how they are produced. 

The Connection manager implementation also contains actions that are not 
represented at the level of the behavioral specification, such as the setRecord action. As 
this action might fail and throw an exception, a complete implementation would need to 
handle this exception and recover the system to a consistent state. Both the 
implementation presented in Figure 5 and an implementation that handles setRecord 
exceptions would conform to the WEAVR specification of Figure 2. 
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StatechartDiagram1 statemachine GprsSupportNode :: initialize {1/1}

request.rnc.ACK()

part REQ_t request;
Pid rncID;  

ATTACH(request)

DETACHED CONNECTED, RELOCATE

DETACH(request)

RELOCATE

RELOCATION_COMPLETE()

request.rnc.ACK()

RELOCATION_ACK()

rncID.RELOCATION_COMMAND()

rncID.RELEASE_COMMAND()

rncID = request.rnc;
setRecord(rncID, CONNECTED);

CONNECTED
DETACHED

RELOCATION_REQUIRED(request)

RELOCATE

CONNECTED

request.rnc.RELOCATION_REQUEST()

Figure 5. An example implementation of a GSN connection manager. The connection manager implements 
the specification of Figure 2 

The refinement relationship between implementation models and the behavioral 
specifications used by WEAVR can be declared explicitly through WEAVR realization 
mappings, which are defined in Section 4. 

3 ASPECT ORIENTATION AND MODEL-DRIVEN ENGINEERING 

This section illustrates some of the shortcomings of the modeling language and the 
model-driven engineering process, especially regarding development tasks that involve 
the refinement from specification and architecture to detailed, complete, executable 
models. Aspect-oriented solutions to these problems are proposed, expressed using the 
WEAVR aspect-oriented modeling language. 

Figure 5 gives a high level view of the composite-structure diagrams of two sub-
components of a large communication system. Each of those sub-components is itself 
composed of multiple parts. This system is subject to a requirement that states that 
“When the system starts up, all parts must initialize successfully, otherwise the system 
must shutdown”.  
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Figure 6. Two system sub-component composite structure diagrams and illustration of the impact of an 

initialization failure requirement upon the implementation state machines of its parts 
 

This requirement captures a transactional all-or-nothing behavior. With respect to the 
system implementation, it implies that each part of the system must be able to detect a 
failure condition upon initialization, and notify a coordinator. It also requires each part to 
wait for the coordinator confirmation before entering its active state. 

The execution state machines of Figure 6.b illustrate the impact of the initialization 
failure detection and notification requirement upon the implementation of some parts. As 
the system contains hundreds of parts, the impact of this requirement on the 
implementation is massive. The integration of the initialization coordination concern 
poses the following problems: 

The implementation of the failure detection and notification concern cannot be 
modularized in a separate state machine because it interacts with the control flow of the 
state machine implementation of each part. The abstraction and composition mechanisms 
of the UML do not allow the concern to be specified and implemented in a separate 
module. 

The interaction between the failure detection concern and the main behavior of the 
parts needs to be defined in terms of the low-level behavior of the main use case. The 
implementation of the main use case is tangled with the implementation of the 

Figure 6.a. 

Figure 6.b. 
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initialization failure concern. The interaction between main use case and exceptional use 
case becomes buried inside of the implementation state machines instead of being 
declared explicitly.  

The implementation of the failure detection includes a logging statement that is 
executed upon detection of the failure condition (right after the detection decision action, 
represented as a diamond). The code generator can automatically introduce customized 
domain specific logging statements. Yet, in this case, logging is highly dependent on a 
particular use case. Application-specific implementation details can not be handled 
systematically by the code generator and need to be added manually in the models. 

The following sections illustrate each of those issues through the introduction of an 
additional feature to the cellular system example presented in Section 2, and propose 
aspect-oriented solutions expressed in the WEAVR aspect-oriented modeling language. 
The basic WEAVR language features are introduced through those examples. The 
WEAVR joinpoint model and more advanced language features are detailed in Section 4. 

Model Decomposition and Superimposition 

The connection handoff process presented in Section 2 constitutes the basic relocation 
scenario. This procedure is very expensive in terms of communication overhead. 
Whenever a mobile station (MS) changes cell location, it scans for nearby base 
transceiver systems (RNC) and initiates a handoff. This procedure consumes bandwidth 
between base stations and base station controllers (GSN) and consumes MS battery 
power. In practice, full handoff is only required when the MS is actively communicating 
with the network.  

In order to save bandwidth and MS battery power, a lightweight handoff mechanism 
can be implemented whenever the MS is operating in standby signaling mode. In standby 
mode, the MS become periodically available for downlink broadcast traffic without 
having to register at a specific RNC. Transmission is performed through a connection 
held by the GSN, which periodically pages the MS. 

Figure 7 illustrates the behavioral specification of the signaling mode activation logic, 
within the GSN component. Whenever the MS releases the signaling connection, through 
the CONNECTION_RELEASE signal, the GSN prepares for handling lightweight handoff 
operations, by entering the STANDBY state. In STANDBY, the GSN takes full control 
over handoff operation when it receives an ATTACH or a RELOCATION_COMPLETE 
signal. Instead of entering the CONNECTED state, the GSN transitions to a new state, 
called the IDLE state in the Connection state machine. Full handoff operations are only 
resumed when the GSN receives an ATTACH signal, while the Signaling Mode state 
machine is in the READY state. The connection also can be released, when receiving a 
DETACH signal in the STANDBY state. 

The standby mode handoff behavior can be expressed as illustrated in Figure 8. When 
the Signaling Mode state machine is in the STANDBY state, the ATTACH and 
RELOCATION_COMPLETE signals trigger transitions to a new state, called IDLE in the 
Connection state machine. In this state, all downlink packets are redirected to a 
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component that performs paging instead of being forwarded to the serving RNC. The 
Signaling Mode state machine therefore not only modifies the connection relocation 
behavior, but also the signal routing behavior.  

Both the state machine of Figure 2 and the state machine of Figure 7 refer to behavior 
that needs to be implemented by the same instance of the GSN connection management 
component. The instance needs to respond to connection related signals in the 
DETACHED, CONNECTED, RELOCATE and IDLE states, but also need to respond to 
standby mode activation/deactivation requests in the READY and STANDBY states.  
 

 

READY STANDBY

CONNECTION_RELEASE(release)
 

CONNECTION_ESTABLISH(establish)  
Figure 7. Behavioral specification of the Signaling Mode activation logic, at the GSN 

 

'Connection::IDLE''Connection::CONNECTED'
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[state == "SignalingMode::STANDBY"]
 
 
 
 

ATTACH(request) 
[state == "SignalingMode::READY"]

*

'Connection::DETACHED'

DETACH(request)

 
Figure 8. Behavioral specification of the relocation procedure at the GSN, when operating in Standby Mode 
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The state machines of Figure 2 and Figure 7 are neither completely hierarchical nor 
completely independent. In standby mode, handoff operations are performed differently 
than in ready mode. Yet, the system might enter the standby mode while handoff 
operations are still under way at the level of the RNC. Standby mode handoff operations 
therefore only start when the GSN receives a signal that causes a transition to the 
CONNECTED state, such as ATTACH or RELOCATION_COMPLETE. The state 
machine of Figure 2 is therefore not a sub state machine of the READY state, in the 
Signaling Mode state machine.  

The state machines of Figure 2 and Figure 7 are clearly not independent either. They 
could be represented using Harel statechart orthogonal regions [Harel87] by directly 
introducing the standby handoff behavior of Figure 8 directly into the state machine of 
Figure 2. Yet, this has the drawback that the models that implement the base handoff 
behavior can not be maintained independently of the standby mode behavior. Also, it 
obscures the interaction between the base and standby mode handoff behavior. Use case 
interdependencies are further discussed in the next section. 

In practice, few problems are independent enough to be concisely captured by the 
orthogonal region concept. This is one of the reasons why many UML modeling tools, 
such as Telelogic TAU, do not support this concept at all. Consequently, semi-
independent state transitions can only be implemented by manually projecting one state 
machine onto the decomposition of the other one, which dramatically increases system 
complexity. 

One solution is to complement the Harel orthogonal region mechanism by a 
superimposition [Bougé88] [Katz93] [Kurki-Suonio03] relationship between state 
machines. Figure 9 illustrates this concept.  
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Figure 9. Superimposition of the standby Signaling Mode operations on the base handoff operations. The 

standby handoff operations and the signaling mode activation logic are declared in orthogonal regions  
 

The Signaling Mode activation state machine of Figure 7 is maintained in a different 
orthogonal region than the standby mode handoff state machine of Figure 8.  

The standby mode handoff state machine is superimposed on the base handoff state 
machine. In standby mode, the ATTACH and RELOCATION_COMPLETE signals are 
handled by the state machine of Figure 8. The result of the superimposition of state 
machines of Figure 8 and the state machine of Figure 2 becomes a co-region of the 
Signaling Mode activation state machine. 

This solution avoids the pitfalls mentioned before, as the base handoff behavior is 
maintained separately from the standby mode handoff behavior. Furthermore, the 
<<superimposed>> dependency makes it clear that the signaling mode directly impacts 
the relocation behavior. 

<<superimposed>>
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RELOCATION_COMPLETE()
[state == "SignalingMode::STANDBY"]
 
 
 
 

ATTACH(request) 
[state == "SignalingMode::READY"]

*

'Connection::DETACHED'

DETACH(request)

 

READY STANDBY

CONNECTION_RELEASE(release)
 

CONNECTION_ESTABLISH(establish)



 
 
 
 
 
 

VOL. 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 67 

ClassDiagram1 <<Aspect>>class SignalingModeConnection {1/1}

<<operation,TransitionPointcut>>

StandbyConnect
<<operation,Advice>>

SetIdleConnection
<<binds>>

StatechartDiagram1 <<TransitionPointcut>> void StandbyConnect() {1/1}

* 'Connection::CONNECTED'
*

 
StatechartDiagram1 <<Advice>> void SetIdleConnection() {1/1}

 

state == "SignalingMode::STANDBY"

setRecord(rncID, IDLE);

'thisStateMachine<IDLE>' 

'thisStateMachine<IDLE>'

'Connection::CONNECTED'

ATTACH(attach) [state == "SignalingMode::READY"]

rncID = attach.rnc;
setRecord(rncID, CONNECTED);

==trueelse

proceed();

attach.rnc.ACK()

 
Figure 10. Aspect-oriented implementation of the standby mode handoff operations. The superimposition 

dependency is implemented by a transition pointcut 
 

This solution can be implemented using the WEAVR aspect-oriented modeling language 
as illustrated by the aspect of Figure 10. The SignalingModeConnection aspect 
implements the specification of Figure 8. An aspect is represented as a class annotated by 
the <<Aspect>> stereotype. The aspect of Figure 10 contains one pointcut, the 
StandbyConnect transition pointcut, as indicated by the <<TransitionPointcut>> 
stereotype, and one advice, the SetIdleConnection advice, as indicated by the 
<<Advice>> stereotype. The SetIdleConnection advice is bound to the StandbyConnect 
pointcut by a <<binds>> dependency. 

Figure 10.a 

Figure 10.b 

Figure 10.c
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WEAVR supports two types of pointcuts: action pointcuts and transition pointcuts. 
While action pointcuts match actions executed along a transition, according to action 
signature, the current state and the transition it the context of which it executes, transition 
pointcuts match transitions or sections of transitions depending on their trigger signature, 
the current state, the next reachable state and the actions that are executed along the paths 
to next reachable states. The semantics of action and transition joinpoint selection will be 
detailed in Section 4. 

The transition pointcut illustrated in 10.b matches all transition from any state, to the 
CONNECTED state, triggered by any signal in the Connection state machine. The 
SetIdleConnection advice introduces one new state, the IDLE state in the Connection 
state machine, as indicated by ‘thisStateMachine<IDLE>’. State and label introductions 
will be clarified in Section 4. The advice also introduces two transitions. The first one 
brings the connection state machine in the IDLE state, whenever an ATTACH or a 
RELOCATION_COMPLETE signal is received, while the Signaling Mode state machine 
is in the STANDBY state. This transition initiates the standby mode handoff behavior. If 
the Signaling Mode state machine is not in state STANDBY, the transition proceeds to the 
CONNECTED state, as indicated by the proceed keyword.  

The second transition introduced by the advice brings the Connection state machine 
back to the CONNECTED state when an ATTACH signal is received in the IDLE state, 
while the Signaling state machine is in the READY state.  

Model Interactions and Dependencies 

The previous section shows that aspect-oriented modeling techniques can be used to 
alleviate problems caused by the lack of appropriate modeling language mechanisms for 
decomposing and isolating the implementation of different uses cases and features. The 
ability to isolate those use cases/features has two main advantages. 

First, it allows the base behavior of different use cases or features to be reused in 
different contexts. Most alternatives to the decomposition presented in the previous 
section require combining the handoff state machines of the standby and ready signaling 
modes into a single state machine. These solutions over-specialize the base relocation 
state machine, impeding its reuse in contexts where other modes of operations are 
deployed. Another alternative would be to use state machine inheritance and transition 
redefinition. Yet, this solution tightly binds the standby mode behavior to the base 
handoff behavior as the transition that is refined needs to be completely re-implemented 
in the sub state machine. Furthermore, it requires intimate knowledge of the 
implementation of the base state machine. 

The second advantage of the solution presented is that it makes the dependencies and 
interactions between different use cases, features or modes of operation explicit. These 
interactions and dependencies are declared in the pointcut expressions of the aspects. 
Pointcuts enable the behavioral specifications to act as interfaces between different use-
cases/features. System decompositions that combine the implementations of the different 
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state machines into a single state machine obscure the dependencies and interactions 
between different concerns at the level of the implementation.  

Figure 11 shows the structure of the GSN active class, in terms of three independent 
base parts, the Connection, SignalingRelay and SignalingMode state machines. The 
Connection state machine handles the base handoff behavior, and is specified by the 
behavioral specification of Figure 2. The SignalingRelay state machine is responsible for 
forwarding signaling packets to the serving RNC. The SignalingMode state machine 
defines the signaling mode activation behavior specified in Figure 7. 

The Mode state machine is contained in an orthogonal region, as a co-region of two 
distinct aspects, the SignalingModeConnection aspect illustrated in Figure 10, and the 
SignalingModeRelay aspect. The SignalingModeConnection aspect extends the behavior 
of the Connection state machine for standby mode handoff operations. This interaction is 
defined explicitly by the <<crosscuts>> dependency from the SignalingModeConnection 
aspect to the Connection state machine. Similarly, the SignalingModeRelay aspect 
extends the base SignalingRelay state machine for standby mode signal buffering and 
paging. The impact of the standby mode operations on the Connection and 
SignalingRelay state machines is explicitly defined in the model, and characterized by the 
aspect pointcuts. 

As mentioned before, the orthogonal region concept is not directly supported by 
Telelogic TAU. Typically, completely independent state machines are defined in 
different active classes. Orthogonal regions as illustrated in Figure 11 need to be 
simulated. In practice, parts that correspond to orthogonal regions of a same state 
machine are annotated with a co-region stereotype. These state machines can then be 
merged into an equivalent single state machine before code generation. 

CompositeStructureDiagram1 active class GprsSupportNode {2/2}

 

sm : SignalingMode

 

connection : Connection
 

proxy : SignalingRelay
SignalingPort

INBOUND_PACKETS OUTBOUND_PACKETS

<<Aspect>>

smc : SignalingModeConnection
<<Aspect>>

smr : SignalingModeRelay

<<crosscuts>> <<crosscuts>>

ConnectionPort

ATTACH, DETACH,
RELOCATION_REQUIRED, 
RELOCATION_COMPLETE

RELEASE_COMMAND, 
REALLOCATION_COMMAND,
ACK

ModePort

CONNECTION_RELEASE, 
CONNECTION_ESTABLISH
 
 
 

 
Figure 11. Decomposition of the GSN handoff and standby mode operations into three base state machines 
and two aspects. The standby mode operations crosscut both the connection operations and the signaling 

operations. 
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It is important to note that aspect pointcuts are fully expressed in terms of the state 
machine specifications rather than their implementation [Cottenier07]. The aspect state 
machine of Figure 8 only depends on entities that are explicitly declared in the 
architectural behavior specification of Figure 2, rather than the implementation described 
in Figure 5. WEAVR explicitly forbids aspects to be defined in terms of actions or 
transitions that are not declared in behavioral specifications. This restriction is 
fundamental to avoid strong coupling between aspects and particular implementations. 
Coupling between aspect and base state machines is further discussed in Section 4. 

Application-Specific, Implementation-level Crosscutting Concerns 

The previous sections discussed the use of aspect-oriented modeling technique to 
overcome some of the limitations of the decompositions provided by the modeling 
language. These techniques allow the implementation of different features or use-cases to 
be isolated from each other, while explicitly declaring their dependencies and interactions 
in terms of specification entities. This section discusses the use of aspects to modularize 
implementation-level concerns such as logging, exception handling or timing constraints. 

Code generation can automatically integrate crosscutting concerns such as tracing or 
recurring platform specificities with the base system. These concerns are activated and 
deployed through the configuration of the code generator. Yet, there are concerns, such as 
exception handling or timing constraints that are highly dependent on the application 
logic and cannot be handled in a systematic way through code generation. The 
implementation of these concerns depends on the application. These concerns could be 
handled through code generation by defining application-specific transformation rules 
that inject the required behavior automatically, directly into the intermediary code 
representation. 

Yet, the process of extending the code generator requires expertise in automated 
code generation. The efforts spent in deploying application-specific transformation rules 
often overweighs the effort required to manually introduce the implementation of 
crosscutting behavior in the models. 

Aspect-oriented languages provide developers with a simpler interface that can be 
used to define the implementation of crosscutting concerns directly in the model, rather 
than in code generator configuration files. 

Figure 12 illustrates a connection timeout aspect. The ConnectionTimeOut aspect 
imposes a timing constraint on the duration of connection held by the GSN. This aspect is 
deployed directly in the Connection state machine of Figure 5. The SetConnectionTimer 
advice is responsible for setting a timer whenever a connection is initialized or renewed 
in the GSN. It also introduces a transition that terminates the connection instance upon 
expiration of the timer. The ResetConnectionTimer advice resets the connection timer 
whenever a connection is terminated.  

The pointcut of Figure 12.b explicitly declares the DETACHED state. This 
declaration is required because the advice of Figure 12.c refers to this state. States that are 
not defined at the level of the pointcut can not be referred to directly by the advice.  
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The pointcut of Figure 12.d also illustrates the use of joinpoint inference. The 
ResetConnectionTimer advice introduces a timer reset statement at the first locations in 
the state machine for which the DETACHED state is the only reachable state. This is 
performed by placing the advice body before the proceed keyword, for an advice bound 
to a transition pointcut. These locations are either transition starting points, or points that 
immediately follow a decision action. Joinpoint inference is discussed in Section 4. 

 

ClassDiagram1 active <<Aspect>>class ConnectionTimeOut {1/1}

<<operation,Advice>>

SetConnectionTimer
<<operation,TransitionPointcut>>

Connect
<<binds>><<binds>>

<<operation,TransitionPointcut>>

Disconnect
<<operation,Advice>>

ResetConnectionTimer<<binds>><<binds>>

 
StatechartDiagram1 <<TransitionPointcut>> void Connect() {1/1}

* CONNECTED
**

DETACHED

 
StatechartDiagram1 <<Advice>> void SetConnectionTimer() {1/1}

  

set (CONNECTION_TIMER(), now + CONNECTION_DURATION);

proceed();

  

CONNECTION_TIMER()

DETACHED

CONNECTED

rncID.DISCONNECT()

StatechartDiagram1 <<TransitionPointcut>> void 
Disconnect()

{1/1}

* DETACHED
**

 <<Advice>> void 
ResetConnectionTimer()

{1/1}  

reset(CONNECTION_TIMER());

proceed();

 
Figure 12. A connection timeout aspect. The aspect ensures that a connection expires after a period of time, 

if it is not explicitly renewed. 

Figure 12.a 

Figure 12.b 

Figure 12.c 

Figure 12.d Figure 12.e 
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The transition joinpoint selection semantics allow the ResetConnectionTimer pointcut to 
insert the timer reset advice as early as possible in sections of the transitions for which it 
is certain that only the DETACHED state is reachable. The semantics of transition 
joinpoint matching are further detailed in Section 4. 

The ConnectionTimeOut aspect is representative of some of the most commonly used 
aspects in the modeling environment. These aspects allow repetitive implementation tasks 
to be systematically handled, while crosscutting behavior is cleanly encapsulated in a 
separate module. The aspect pointcuts precisely capture the conditions upon which timers 
should be set or reset, in terms of the behavior specification of the Connection state 
machine. 

The behavior captured by the ConnectionTimeOut aspect is generic enough to be 
deployed as a canned aspect. Developers do not need to be familiar with the 
implementation of the advice bodies. They can directly reuse the aspect in multiple state 
machines, by redefining its pointcuts or by declaring state machine realization mappings, 
as detailed in Section 4. Examples of reusable aspects are aspects that implement a 
blocking pair of asynchronous messages, logging and tracing aspects, as well as part 
instantiation and management aspects. 

4 MOTOROLA WEAVR: WEAVING ASPECTS INTO MODELS 

The previous section introduced some of the WEAVR basic aspect-oriented modeling 
language constructs, and briefly mentioned some of the more advanced features: 

• State machine realization mappings. 
• Abstract aspects. 
• Transition joinpoint selection and decision action inference. 
• State, transition and label introductions. 

These concepts are important to maintain low coupling between aspects and the 
implementation of state machines they advise, without compromising on the 
expressiveness of aspects. WEAVR explicitly restricts pointcuts entities to be defined in 
terms of the architectural behavior specifications rather than their implementation. Yet, 
the weaving is performed at the level of the system implementation. The WEAVR 
therefore needs to infer implementation-level joinpoints from specification level 
pointcuts. This section details the WEAVR joinpoint model and its pointcut descriptors. 

WEAVR Joinpoint Model and Pointcut Descriptors 

As mentioned before, WEAVR supports two distinct types of pointcut descriptors: action 
pointcuts and transition pointcuts. The two types of pointcuts are distinguished by a 
different stereotype.  

A pointcut is always represented as a transition from a set of source states to a set of 
target states, triggered by a trigger expression. The transition can contain one action 
expression. Wildcards can be used to quantify over both the source and target states of 
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the transition. As opposed to standard UML transitions, pointcut descriptors may contain 
a multistate (a set of states) as the target of a next state action. The trigger expressions are 
used to match the signatures of transition triggers and action expressions are used to 
match the signatures of actions executed in the control flow of a transition. 

source states ---------trigger expression/action expression----------> target states 
The use of static analysis during joinpoint selection is central in WEAVR. As for other 
aspect-oriented languages, WEAVR supports the notion of cflow between pointcut 
descriptors. WEAVR also supports a generalization of cflow, applied to transitions. An 
action pointcut always declares an action expression in the cflow of a source state and a 
transition trigger (which might be wildcards). The actions matched by WEAVR will only 
include actions that are executed while the source state is on the stack (the state machine, 
or one of its parent state machines is in a state that matches the pointcut source state), 
while a transition triggered by a trigger that matches the pointcut trigger expression is 
currently executing, either directly in the state machine or in one of its parent. 

With respect to transition pointcuts, WEAVR performs action and state reachability 
analysis. Transition joinpoints are sections of transitions that are in the cflow of states 
that match the pointcut source states and that are in the cflow of transitions that match the 
pointcut trigger expression. The matched transition joinpoint starts at the first location for 
which it is statically certain that an action that matches the pointcut action expression will 
be executed, and for which the only reachable states match the target states of the 
pointcut. As illustrated in the previous section, state expressions can include scope 
qualifiers to distinguish between the states of different state machines.  

A formal definition of the pointcut selection mechanism would be best defined in 
terms of temporal logic, but is beyond the scope of this paper. Yet, the selection 
mechanism is illustrated in the next sections. 
Actions joinpoints in WEAVR include: 

• call expression actions (a call to a method) 
• output actions (sending a signal) 
• create expression actions (a call to a constructor)  
• timer set/reset actions 

Transitions joinpoints in WEAVR include: 
• start transitions (the initialization of a state machine implementation) 
• operation bodies (the execution of a method) 
• triggered transitions (transitions triggered by a signal, a timer or a guard) 
• decision answer transitions (a section of a triggered transition guarded by a 

decision action) 
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 ActionsInTransitionCflow <<ActionPointcut>> void {1/1}

st1, st2 t()/'\*'('...');
' * '

 
Figure 13. An action pointcut that matches all actions in the cflow of a transition triggered by t, from either 

st1 or st2 

 TransitionsWithActionInCflow <<TransitionPointcut>> void {1/1}

st1
*/output t();

'st2, st3'

 

Figure 14. A transition pointcut that matches all sections of a transition from a state st1 to either st2 or st3, 
and, for which the signal t is send. 

Figure 13 represents an action pointcut that matches all actions executed in the control 
flow of a state st1 or st2, while a transition triggered by t is executing. Figure 14 defines a 
transition pointcut that matches all transition sections that execute in the control flow of a 
state st1, and that start from the first location for which only either state st2 or state st3 
are reachable through paths that output the signal t. 

The next section introduces state machine realization mappings and illustrates state 
reachability analysis performed by WEAVR through an example.  

Abstract Aspects 

As mentioned before, many aspects contain advice bodies that can be reused in different 
contexts. The deployment of reusable aspects requires redefining its pointcuts, or 
mapping the behavioral specification of the target state machine to a specification that 
matches the aspect pointcuts. 

Figure 15 illustrates an aspect that throws a security exception, aborts the execution 
of the current transition and brings the state machine in a FAILURE state, whenever a 
transition triggered by an access trigger leads to an unauthorized state. It replaces 
transitions to unauthorized states by transitions to a new failure state. 
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ClassDiagram1 <<Aspect>>class ProtocolSecurityChecker {2/2}

<<operation,TransitionPointcut>>

securityViolation
<<operation,Advice>>

throwSecurityException <<binds>>

<<interface>>

ThrowsSecurityException

 

 <<TransitionPointcut>> void securityViolation() {1/1}

unauthorized*
access()

 
 <<Connector>> void throwSecurityException() {1/1} 

'thisStateMachine<FAILURE>'

throw new SecurityException("This protocol on"    
              +"component"+ thisJoinPoint::getThisClassName()    
              +" is not allowed!");

 
Figure 15. A WEAVR aspect that implements an access control concern 

The aspect of Figure 15 is defined independently from base modules, and is meant to be 
reused for different applications. Its pointcut is therefore abstract as it not written with 
respect to a concrete behavioral specification. 

The advice of Figure 15.c is instantiated before the transition from some state to an 
unauthorized state, at the first point for which only the unauthorized state is reachable. 
These transitions are aborted by the advice, as it does not invoke the proceed keyword.  

The advice invokes the reflective API of the WEAVR through the thisJoinPoint, 
thisTransition and thisStateMachine keywords. These keywords are used to retrieve 
information about the context of a particular joinpoint. The advice of Figure 15.c. also 
introduces a new state, whose scope is the state machine of the joinpoint, as indicated by 
the thisStateMachine keyword. 

WEAVR Realization Mappings 

In order to deploy the abstract aspect of Figure 15, we need to map the specification of 
the system to a perspective that defines resource accesses and unauthorized states. This 
mapping is performed using realization relationships between state machines. WEAVR 
realization mappings map transitions from a concrete state machine to transitions of a 
more abstract state machine. 

Figure 15.a 

Figure 15.b 

Figure 15.c 
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Init

Previous Next

Done

 

actionPerformed(evt)
actionPerformed(evt)

actionPerformed(evt)
actionPerformed(evt)

 
 
 
 
actionPerformed(evt)

         

Init

authorized unauthorized

 

access()
access()

 
 

map (ResourceAccess): Authorization { 
  {Init} actionPerformed {Previous}  

realizes {Init} access {unauthorized} 
  {Init} actionPerformed {Next, Done}  

realizes {Init} access {authorized} 
} 

Figure 16. A realization mapping that maps the state machine of Figure 16.a onto the more abstract state 
machine of Figure 16.b 

Realization mappings can be used during general development to declare the intent to 
conform to a behavioral specification. A realization mapping defines a refinement 
relationship: a concrete implementation state machine is declared to be the refinement of 
a more abstract state machine.  

The problem of verifying that this relationship is indeed a refinement involves bi-
simulation between state machines, and is beyond the scope of this paper. As the 
correspondence between transitions is explicitly declared in the mapping, an engine can 
easily detect simple conflicts and enforce that a realization mapping is maintained during 
development. 

For example, the Connection state machine of Figure 5 is an implementation of the 
relocation specification of Figure 2. The state machine of Figure 5 is more specialized. 
Whereas the relocation specification exhibits non determinism, the state machine of 
Figure 5 imperatively details the control flow of the state machine and the exact actions 
that are executed along its transitions.  

Figure 16 illustrates state machine realization by mapping the ResourceAccess state 
machine of Figure 16.a to the more abstract Authorization state machine of Figure 16.b. 
The mapping declares realization relationships from transitions of the ResourceAccess 
state machine to transitions of the Authorization state machine. The mapping of Figure 16 
defines the ResourceAccess transition from Init to Previous as being an unauthorized 
transition, whereas the transitions from Init to Done and Init to Next are defined as 
authorized.  

A realization mapping defines a particular view of the system that is of interest from 
the perspective of a particular concern, in this case authorization. 

Figure 16.a.
Figure 16.b

Authorization ResourceAccess 
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actionPerformed(evt)
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access()
access()

          

 <<TransitionPointcut>> void securityViolation() {1/1}

unauthorized*
access()

 
 
                                                      

 

 

 

 

 

 

Figure 17. Representation of the deployment of the abstract SecurityChecker aspect on the implementation 
of the specification of Figure 16.a, through the perspective of the realization mapping of Figure 16 

Once the authorization perspective is defined by the mapping of Figure 16, the abstract 
aspect of Figure 15 can be deployed on a concrete system as illustrated in Figure 17. The 
pointcut of Figure 15.b matches transitions of the specification of Figure 16.a through the 
authorization perspective defined by the realization mapping. Whereas the pointcuts are 
expressed in terms of the behavioral specifications, the joinpoints that are selected by the 
pointcuts are located at the level of the implementation, in the state machine represented 
at the left bottom of Figure 17. 

Transition Joinpoint Selection 

Figure 18 represents an implementation-level state machine that realizes the behavioral 
specification of Figure 16.a. The pointcut of Figure 15.b matches a section of one of its 
transitions. The transition joinpoint is delimited in the figure by two small shadowed 
boxes. The pointcut descriptor selects the portions of the transition for which the only 
reachable state is an unauthorized state (the Previous state). This location corresponds to 
the starting point of a Decision Answer Transition, right after a decision is performed. 
This matching method is powerful because it can localize the important decision points in 
the execution of a state machine. 

The before location on a transition section always corresponds to a branch of a 
decision action. In the case of Figure 18, the decision selected is the getActionCommand() 

See Figure 16.a <<aspect>> 
SecurityChecker 

authorization  
perspective 

<<binds>> 

<<crosscuts>> 

See Figure 15.b 

See Figure 15.c 

See Figure 16.b <<realizes>> 

<<realizes>> 

Init

actionPerformed(evt)

serviceA.methodA();

evt.getSource()

serviceB.methodB();

[==Enter]

evt.getActionCommand()

serviceC.methodC();

[=="Previous"]

Previous

actionPerformed(evt)

serviceA.methodE();

Previous

serviceD.methodB();

Next

Next

if(evt.getActionCommand() 
      == "Proceed"){
    serviceA.methodC();
}

serviceB.methodB();

actionPerformed(evt)

Done

 
 
[=="Next"]

[==Cancel]

 

 <<Connector>> void throwSecurityException() {1/1} 

'thisStateMachine<FAILURE>'

throw new SecurityException("This protocol on"    
              +"component"+ thisJoinPoint::getThisClassName()    
              +" is not allowed!");
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== “Previous” expression. The decision itself is a point in the implementation, but it can 
be characterized in terms of the module specification.  

Init

actionPerformed(evt)

serviceA.methodA();

evt.getSource()

serviceB.methodB();

[==Enter]

evt.getActionCommand()

serviceC.methodC();

[=="Previous"] / {}

Previous

actionPerformed(evt)

serviceA.methodE();

Previous

serviceD.methodB();

Next

Next

if(evt.getActionCommand() 
      == "Proceed"){
    serviceA.methodC();
}

serviceB.methodB();

actionPerformed(evt)

Done

 
 
[=="Next"]

[==Cancel]

 

 

 

 
 

Figure 18. Section of a transition selected by the pointcut descriptor of Figure 15.b,  
through the mapping of Figure 16 

The transition selection mechanism enables the WEAVR to capture decisions in the 
implementation of modules, in terms of their behavioral specifications. 

Realization mappings also enable pointcuts to be flexible with respect to 
modification of the views of a system. Suppose that the application requires both the 
Previous and Next states to become inaccessible in a certain mode of operation. This 
modification can be implemented by modifying the state machine specification 
realization mapping as follows. 
  {Init} actionPerformed {Previous, Next}  

realizes {Init} access {unauthorized} 
  {Init} actionPerformed {Done}  

realizes {Init} access {authorized} 
 

Figure 19 shows the corresponding transition sections in the state machine 
implementation. The decision action matched is now the getSource() == “Enter” 
expression instead of the getActionCommand() == “Previous” expression. This is the 
first location in the state machine for which only unauthorized states are reachable. 

The technique presented illustrates the concept of joinpoint inference. The exact 
locations of the joinpoints (the decision actions) are not specified explicitly in the 
pointcut expressions. The decision actions could have been located directly, by defining 
action pointcuts that match the getActionCommand() or the getSource() method calls. 
Yet, such pointcuts require intimate knowledge about the implementation of a module. 
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Joinpoint inference allows the same locations to be derived automatically in terms of 
the states of the system, and its state transitions.  

Init

actionPerformed(evt)

serviceA.methodA();

evt.getSource()

serviceB.methodB();

[==Enter]

evt.getActionCommand()

serviceC.methodC();

[=="Previous"]

Previous

actionPerformed(evt)

serviceA.methodE();

Previous

serviceD.methodB();

Next

Next

if(evt.getActionCommand() 
      == "Proceed"){
    serviceA.methodC();
}

serviceB.methodB();

actionPerformed(evt)

Done

 
 
[=="Next"]

[==Cancel]

 

  

 

 
Figure 19. Section of the transition selected by the pointcut descriptor of Figure 15.b 

after modification of the mapping 

Joinpoint inference allows pointcut to match points in the implementation of a module in 
terms of the module specification, without requiring potential joinpoints to be explicitly 
declared. This concept is key in addressing the fragile pointcut problem. Pointcuts are 
expressed in terms of a module specification, but still hold the power to match locations 
that are not explicitly exposed in the interface of a module. 

State and Label Introductions 

As mentioned before, aspects can introduce new states and new transitions in a state 
machine. State introduction requires the scope of the introduction to be defined. 
Introduction defined in an advice can be introduced per joinpoint state machine, per 
joinpoint transition or per joinpoint action.  

These different levels of introduction granularity make it possible to introduce 
complex control flow structures in the system. Advices can not only introduce states, but 
also labels and join actions. A state or label introduction occurs when an advice refers to 
a state or a label that is not declared in its pointcut descriptors. When introducing states 
and labels, the scope of the introduction is specified through the thisJoinPoint, 
thisTransition and thisStateMachine keywords.  

A state that is introduced per Joinpoint, thisJoinPoint<state_name>, is unique to the 
advice instance bound to a specific joinpoint. A state that is introduced per transition, 
thisTransition<state_name> is shared by all instances of the advice bound to joinpoints 



 
MOTOROLA WEAVR: ASPECT ORIENTATION AND MODEL-DRIVEN ENGINEERING 

 
 
 
 

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 7 

of the same transition. A thisStateMachine<state_name> state is shared by all instances 
of the advice bound to joinpoints of the same state machine. 

 <<Aspect>>class AtomicityAspect {2/2}

<<operation,ActionPointcut>>

accessResource
return ERR_t

<<operation,Advice>>

repair
return ERR_t

<<binds>>

<<interface>>

Atomic
 

 <<ActionPointcut>> ERR_t accessResource() {1/1}

* ' * '
*/Recoverable::access();

Idle

 

 <<Advice>> ERR_t repair() {1/3}
 

err = proceed();

 

err

[==OK]

'thisJoinpoint<L>'

[==FAILURE]

'thisTransition<L>'

'thisTransition<FAILURE>'

'thisJoinpoint<L>'

 'previousJoinpoint<L, thisTransition<L>>'

(thisJoinPoint::getTarget()).restore()

 
Figure 20. An aspect that makes all accesses to recoverable resources atomic along a transition 

State and label introductions make it possible to define behavior that spans across 
different instantiations of an advice. The action joinpoints within a transition are partially 

Figure 20.a 

Figure 20.b 

Figure 20.c 
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ordered. An advice can therefore reference states and labels introduced by other advice 
instances using the previousJoinPoint <state_name, default_state> notation.  

The previousJoinPoint state resolves to a default state in the case the previous 
joinpoint is not defined.  

Figure 20 illustrates a transaction atomicity aspect that makes use of label and state 
introductions. The pointcut descriptor of Figure 20.b. matches invocations of methods 
that implement the Recoverable interface and return an error code of type ERR_t. 
Resource access failure is detected through the return value of the invocation.  

Whenever a resource access fails, the aspect advice of Figure 20.c. ensures that all 
the recoverable resources accessed along this transition are restored to their previous 
state. Resource recovery is performed by invoking the restore method on the resource. 
The advice builds a control structure that rolls back resources previously accessed along 
the transition, by referring to the label introduced by the advice at the previous joinpoint 
along the transition. The advice also introduces a state that characterizes the failure of the 
transition, thisTransition<FAILURE>. The default failure state becomes the target of the 
transition whenever a resource access failure is detected. 

Figure 21 illustrates a state machine that is equivalent to the state machine obtained 
by weaving the aspect of Figure 20 into the Init transition of the state machine of Figure 
18. The first joinpoint encountered along the transition is a call to the methodA method. 
This joinpoint does not have a previous joinpoint along the transition. The 
previousJoinpoint label therefore resolves to the default label for this transition, 
thisTransition<L>. The thisJoinpoint<L> label introduced by the advice resolves to a 
generated label, named L_Init_1. Whenever methodA fails, the transition joins the 
L_Init_1 label and restores the resources accessed by methodA to its previous state.  

The next joinpoints of the transition are calls to the methodB method that execute in 
two distinct decision answer transitions. For both these joinpoints previousJoinpoint 
resolves to the methodA joinpoint. The previousJoinpoint label therefore resolves to the 
label introduced at the first joinpoint, L_Init_1. Whenever methodB fails, the state 
machine restores the resource accessed by methodB to its original state and joins the 
L_Init_1 label. The state machine then proceeds by restoring the previous resource 
accessed along the transition, the methodA resource, and completes by entering the 
FAILURE_Init state introduced by the aspect in the scope of the transition. 

In the case of Figure 21, the ordering relationships between joinpoints can be 
resolved statically. In the more general case, the runtime environment needs to maintain a 
jump table to resolve the precedence relationships between joinpoints at runtime. 

The aspect has the effect of making successive accesses to methods that implement 
the Recoverable interface atomic along a state transition. At the code level, the 
implementation of the corresponding aspect would be problematic [Kienzle02]. State 
machines provide aspects with additional abstractions that can be used at the pointcut 
level to abstract from implementation details, but also at the level of the advices, to 
augment the compositional expressiveness of aspects. 
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Init

actionPerformed(evt)

err = serviceA.methodA();

evt.getSource()

serviceB.methodB();

[==Enter]

evt.getActionCommand()

serviceC.methodC();

[=="Previous"]

Previous

serviceD.methodB();

Next

err = serviceB.methodB();

Done

 
 
[=="Next"]

[==Cancel]

 

err

[==OK]

FAILURE_Init

err

[==OK]

err

[==OK]

err

[==OK]

err

[==OK]

L_Init_1

L_Init_2

serviceA.restore();

L_Init_1
L_Init_2

[==FAILURE]

L_Init_3b

serviceB.restore();

L_Init_2

L_Init_3b
[==FAILURE]

L_Init_3a

serviceB.restore();

L_Init_2

L_Init_4a[==FAILURE]

L_Init_4a

serviceC.restore();

L_Init_3a

L_Init_4b
[==FAILURE]

L_Init_4b

serviceD.restore();

L_Init_3a

L_Init_3a
[==FAILURE]

 
Figure 21. Partial representation of the result of weaving the atomicity aspect of Figure 20 in the state 

machine of Figure 18 

Pointcut Composition and Aspect Dependencies 

Pointcut composition and the resolution of dependencies between aspects in WEAVR are 
discussed in [Zhang07]. 

5 DISCUSSION AND FURTHER WORK 

The current version of the WEAVR tool fully supports the action and transition joinpoint 
model that was presented in the first part of the previous section. The tool implements 
transition joinpoint selection through state and action reachability analysis and action 
joinpoint selection through control flow analysis over states and transitions. 

Other features, such as scoped state introductions, abstract aspects and the 
composition of state machines according to orthogonal regions semantics are at the stage 
of prototypes. The aspects that are currently used in production are aspects that fall in the 
category of application-specific, implementation-level aspects such as tracing aspects or 
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the connection timer aspect presented in Section 3. The use of the WEAVR tool is 
therefore still limited to aspects that handle simple, implementation-level concerns. 

We believe that most of the benefits from aspect orientation are to be obtained from 
the deployment of aspects that maintain different use cases or features isolated at the 
implementation level. This allows base use cases or features to be reused across 
applications, and encourages the definition of explicit specifications of the use-
cases/features interdependencies. 

The deployment of such aspects requires fundamental changes in the development 
process. It requires development teams to be assigned responsibilities in terms of use 
cases rather than in terms of the physical components of the system such as the RNC or 
the GSN. Such a change requires the definition of precise behavioral interfaces between 
features and components, such as WEAVR behavioral specifications. 

Further development includes the full implementation of some of the prototype 
features discussed earlier in the paper. Other important features concern the 
implementation of more robust pointcut composition and joinpoint interference resolution 
mechanisms. This topic covered in [Zhang07]. 

A large development effort is also dedicated to the development of joinpoint 
visualization and joinpoint selection validation mechanisms, as well as the development 
of a simulation engine for aspect-oriented models. These topics where not covered in the 
paper but are important with respect to further adoption of the WEAVR tool, and to 
establish trust in aspect-oriented technologies.  

Further development also includes the prototyping of aspect-oriented versions of 
some of the uses cases of the communication systems currently in production, such as the 
relocation component discussed in Section 2. This process will produce metrics that will 
help in the evaluation of the approach.  

Finally, further research includes the formalization of the WEAVR behavioral 
specification language and WEAVR realization mappings using temporal logic. This will 
also be directly applicable to the transition selection mechanism, which was informally 
presented in Section 5.  

6 RELATED WORK 

The WEAVR aspect-oriented modeling language and tool integrates results from 
different research areas of Model-Driven Engineering and Aspect-Oriented Software 
Development. Research areas related to this work include: 

• work on the conceptual representation of aspects and crosscutting concerns 
• work on aspect-oriented and general purpose model transformation 
• work on system specification and model refinement 
• work on expressive pointcut descriptors, such as stateful aspects 
• work on semantically-based pointcut descriptors 
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The Aspect-Oriented Modeling (AOM) [AOM] community aims at identifying common, 
language independent aspect-oriented concepts that can be represented at different levels 
of abstraction, to support aspect orientation at different stages of software development, 
including requirements engineering, software architecture, design and implementation. 

Approaches that focus on the conceptual representation of aspect-oriented techniques 
include the work on Join Point Designator Diagrams (JPDDs) [Stein06], the work on 
Theme/UML [Clarke05], and the work on aspect-oriented software development with use 
cases [Jacobson04]. Join Point Designation Diagrams are an abstract visual means to 
render aspect-oriented join point selections. Theme/UML provides an UML notation for 
the design of aspect-oriented programs and an approach to map aspect-oriented designs to 
code. The AOSD use case approach focuses on the modularization of UML use cases 
using aspects, and is particularly relevant to this work. Yet, these approaches are oriented 
towards the manual implementation of systems from designs expressed as informal 
models, rather than model-driven engineering. 

AOM approaches that focus on Harel statecharts include the Aspect-Oriented 
Statechart Framework (AOSF) [Elrad02]. The AOSF supports the weaving of 
independent state charts into a composite state chart, where each of the original state 
charts resides in its own orthogonal region. 

Approaches that emphasize code generation from models generally use model 
transformation techniques to weave aspect-oriented models directly at the model level, 
before code generation. Aspect weaving is considered as a particular form of model 
transformation. Examples of model weavers are C-SAW [Gray01] and the ATL 
ModelWeaver [Bezevin04].  

Approaches that target the refinement of action systems through superposition 
[Kurki-Suonio03] allow independent refinements of common base systems to be 
composed in an aspect-oriented fashion. This work is very relevant to the behavioral 
specification method described in this paper and supports very similar concepts. The 
approach adopts Temporal Logic of Actions (TLA) as the programming logic to verify 
fairness properties. The WEAVR approach has different aims, and rather focuses on the 
modular specification of use cases and features. WEAVR specification would better be 
described using computational tree logic rather than TLA.  

The work on Stateful aspects [Douence04] and more advanced control flow pointcut 
composition operators is also relevant to this work. Stateful aspects can capture a 
sequence of events in a system. WEAVR pointcuts include state based conditions, which 
implicitly capture the history of the system execution. We consider the need for stateful 
pointcut designators as a symptom that the system implements reactive behavior. As 
such, the system is better decomposed using the natural decomposition for reactive 
systems, state machines.  

Finally, this work is relevant to research that aims at providing solutions to the fragile 
pointcut problem [Gybels03]. There are two main research directions in addressing this 
problem. The first direction of research advocates restricting the expressiveness of 
aspects by preparing modules for specific, anticipated aspects. Approaches such as Open 
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Modules [Aldrich05] propose to move aspect pointcut descriptors from the aspect 
definition to the interfaces of modules. Aspects are therefore only allowed to advice 
joinpoints that are explicitly declared in the module interface. A second direction of 
research focuses on methods that allow pointcut descriptors to be defined at a higher level 
of abstraction, in terms of the program semantics [Ostermann05].  

WEAVR restricts pointcut expressions to entities that are explicitly defined in the 
behavioral specification of a module. It therefore combines both approaches. Yet, 
WEAVR is able to maintain some of the expressiveness of unrestricted aspect-oriented 
programming language by allowing joinpoints that are not directly exposed in the 
specification of the module to be inferred from behavioral specifications.  

7 CONCLUSIONS 

We presented three major issues that impede the automation of development tasks during 
the refinement of system architectural models and specifications to system 
implementation.  

First, there is a mismatch between problem structure and modeling language 
abstractions which causes discrepancies between system specification and system 
implementation. 

Second, interdependent use cases and features are hard to implement in isolation 
from each other, which forces these dependencies to be declared implicitly in the system 
implementation rather than being declared explicitly at the level of their interfaces. Base 
use cases thereby become overspecialized for a specific context and are hard to reuse. 

Third, many application-specific implementation details can not be handled 
systematically through code generation, which forces their manual integration in the 
system, at multiple locations. 

We illustrated these problems through an example from the telecom domain and 
proposed aspect-oriented solutions to these problems, expressed in the WEAVR aspect-
oriented modeling language.  

Finally, we discussed some of the more advanced WEAVR features and showed how 
the use of specification-level pointcuts have the potential to address some of the 
weaknesses of aspect-oriented programming languages through inference of 
implementation-level joinpoints from pointcuts expressed in terms of their behavioral 
specification.  

This technique might be essential for maintaining different use cases or features 
isolated at the implementation level. The modularization of use case implementations 
allows base use cases or features to be reused across applications while encouraging the 
definition of explicit specifications of the use-cases/features interdependencies. 
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