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Abstract

This paper extends the popular task of multi-object

tracking to multi-object tracking and segmentation (MOTS).

Towards this goal, we create dense pixel-level annotations

for two existing tracking datasets using a semi-automatic

annotation procedure. Our new annotations comprise

65,213 pixel masks for 977 distinct objects (cars and pedes-

trians) in 10,870 video frames. For evaluation, we ex-

tend existing multi-object tracking metrics to this new task.

Moreover, we propose a new baseline method which jointly

addresses detection, tracking, and segmentation with a sin-

gle convolutional network. We demonstrate the value of

our datasets by achieving improvements in performance

when training on MOTS annotations. We believe that

our datasets, metrics and baseline will become a valu-

able resource towards developing multi-object tracking ap-

proaches that go beyond 2D bounding boxes. We make

our annotations, code, and models available at https:

//www.vision.rwth-aachen.de/page/mots.

1. Introduction

In recent years, the computer vision community has

made significant advances in increasingly difficult tasks.

Deep learning techniques now demonstrate impressive per-

formance in object detection as well as image and instance

segmentation. Tracking, on the other hand, remains chal-

lenging, especially when multiple objects are involved. In

particular, results of recent tracking evaluations [37, 7, 25]

show that bounding box level tracking performance is sat-

urating. Further improvements will only be possible when

moving to the pixel level. We thus propose to think of all

three tasks – detection, segmentation and tracking – as in-

terconnected problems that need to be considered together.

Datasets that can be used to train and evaluate models

for instance segmentation usually do not provide annota-

tions on video data or even information on object identi-

ties across different images. Common datasets for multi-

object tracking, on the other hand, provide only bounding

Figure 1: Segmentations vs. Bounding Boxes. When ob-

jects pass each other, large parts of an object’s bounding box

may belong to another instance, while per-pixel segmenta-

tion masks locate objects precisely. The shown annotations

are crops from our KITTI MOTS dataset.

box annotations of objects. These can be too coarse, e.g.,

when objects are partially occluded such that their bound-

ing box contains more information from other objects than

from themselves, see Fig. 1. In these cases, pixel-wise seg-

mentation of the objects results in a more natural descrip-

tion of the scene and may provide additional information

for subsequent processing steps. For segmentation masks

there is a well-defined ground truth, whereas many differ-

ent (non-tight) boxes might roughly fit an object. Similarly,

tracks with overlapping bounding boxes create ambiguities

when compared to ground truth that usually need to be re-

solved at evaluation time by heuristic matching procedures.

Segmentation based tracking results, on the other hand, are

by definition non-overlapping and can thus be compared to

ground truth in a straightforward manner.

In this paper, we therefore propose to extend the well-

known multi-object tracking task to instance segmentation

tracking. We call this new task “Multi-Object Tracking
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and Segmentation (MOTS)”. To the best of our knowledge,

there exist no datasets for this task to date. While there

are many methods for bounding box tracking in the liter-

ature, MOTS requires combining temporal and mask cues

for success. We thus propose TrackR-CNN as a base-

line method which addresses all aspects of the MOTS task.

TrackR-CNN extends Mask R-CNN [14] with 3D convolu-

tions to incorporate temporal information and by an associ-

ation head which is used to link object identities over time.

In summary, this paper makes the following contribu-

tions: (1) We provide two new datasets with temporally

consistent object instance segmentations based on the pop-

ular KITTI [13] and MOTChallenge [37] datasets for train-

ing and evaluating methods that tackle the MOTS task. (2)

We propose the new soft Multi-Object Tracking and Seg-

mentation Accuracy (sMOTSA) measure that can be used

to simultaneously evaluate all aspects of the new task. (3)

We present TrackR-CNN as a baseline method which ad-

dresses detection, tracking, and segmentation jointly and

we compare it to existing work. (4) We demonstrate the

usefulness of the new datasets for end-to-end training of

pixel-level multi-object trackers. In particular, we show that

with our datasets, joint training of segmentation and track-

ing procedures becomes possible and yields improvements

over training only for instance segmentation or bounding

box tracking, which was possible previously.

2. Related Work

Multi-Object Tracking Datasets. In the multi-object

tracking (MOT) task, an initially unknown number of tar-

gets from a known set of classes must be tracked as bound-

ing boxes in a video. In particular, targets may enter and

leave the scene at any time and must be recovered after

long-time occlusion and under appearance changes. Many

MOT datasets focus on street scenarios, for example the

KITTI tracking dataset [13], which features video from a

vehicle-mounted camera; or the MOTChallenge datasets

[26, 37] that show pedestrians from a variety of differ-

ent viewpoints. UA-DETRAC [57, 35] also features street

scenes but contains annotations for vehicles only. Another

MOT dataset is PathTrack [36], which provides annotations

of human trajectories in diverse scenes. PoseTrack [2] con-

tains annotations of joint positions for multiple persons in

videos. None of these datasets provide segmentation masks

for the annotated objects and thus do not describe complex

interactions like in Fig. 1 in sufficient detail.

Video Object Segmentation Datasets. In the video object

segmentation (VOS) task, instance segmentations for one or

multiple generic objects are provided in the first frame of a

video and must be segmented with pixel accuracy in all sub-

sequent frames. Existing VOS datasets contain only few ob-

jects which are also present in most frames. In addition, the

common evaluation metrics for this task (region Jaccard in-

dex and boundary F-measure) do not take error cases like id

switches into account that can occur when tracking multiple

objects. In contrast, MOTS focuses on a set of pre-defined

classes and considers crowded scenes with many interacting

objects. MOTS also adds the difficulty of discovering and

tracking a varying number of new objects as they appear

and disappear in a scene.

Datasets for the VOS task include the DAVIS 2016

dataset [43], which focuses on single-object VOS, and the

DAVIS 2017 [45] dataset, which extends the task for multi-

object VOS. Furthermore, the YouTube-VOS dataset [59]

is available and orders of magnitude larger than DAVIS. In

addition, the Segtrackv2 [28] dataset, FBMS [40] and an

annotated subset of the YouTube-Objects dataset [46, 19]

can be used to evaluate this task.

Video Instance Segmentation Datasets. Cityscapes [12],

BDD [61], and ApolloScape [18] provide video data for

an automotive scenario. Instance annotations, however, are

only provided for a small subset of non-adjacent frames or,

in the case of ApolloScape, for each frame but without ob-

ject identities over time. Thus, they cannot be used for end-

to-end training of pixel-level tracking approaches.

Methods. While a comprehensive review of methods pro-

posed for the MOT or VOS tasks is outside the scope of this

paper (for the former, see e.g. [27]), we will review some

works that have tackled (subsets of) the MOTS task or are

in other ways related to TrackR-CNN.

Seguin et al. [51] derive instance segmentations from

given bounding box tracks using clustering on a super-

pixel level, but they do not address the detection or track-

ing problem. Milan et al. [38] consider tracking and seg-

mentation jointly in a CRF utilizing superpixel informa-

tion and given object detections. In contrast to both meth-

ods, our proposed baseline operates on pixel rather than su-

perpixel level. CAMOT [42] performs mask-based track-

ing of generic objects on the KITTI dataset using stereo

information, which limits its accuracy for distant objects.

CDTS [24] performs unsupervised VOS, i.e., without us-

ing first-frame information. It considers only short video

clips with few object appearances and disappearances. In

MOTS, however, many objects frequently enter or leave a

crowded scene. While the above mentioned methods are

able to produce tracking outputs with segmentation masks,

their performance could not be evaluated comprehensively,

since no dataset with MOTS annotations existed.

Lu et al. [33] tackle tracking by aggregating location and

appearance features per frame and combining these across

time using LSTMs. Sadeghian et al. [50] also combine ap-

pearance features obtained by cropped detections with ve-

locity and interaction information using a combination of

LSTMs. In both cases, the combined features are input into

a traditional Hungarian matching procedure. For our base-

line model, we directly enrich detections using temporal in-
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formation and learn association features jointly with the de-

tector rather than only “post-processing” given detections.

Semi-Automatic Annotation. There are many methods

for semi-automatic instance segmentation, e.g. generating

segmentation masks from scribbles [49], or clicks [58].

These methods require user input for every object to be seg-

mented, while our annotation procedure can segment many

objects fully-automatically, letting annotators focus on im-

proving results for difficult cases. While this is somewhat

similar to an active learning setting [11, 56], we leave the

decision which objects to annotate with our human annota-

tors to guarantee that all annotations reach the quality nec-

essary for a long-term benchmark dataset (c.f . [32]).

Other semi-automatic annotation techniques include

Polygon-RNN [9, 1], which automatically predicts a seg-

mentation in form of a polygon from which vertices can

be corrected by the annotator. Fluid Annotation [3] allows

the annotator to manipulate segments predicted by Mask R-

CNN [14] in order to annotate full images. While speeding

up the creation of segmentation masks of objects in isolated

frames, these methods do not operate on a track level, do

not make use of existing bounding box annotations, and do

not exploit segmentation masks which have been annotated

for the same object in other video frames.

3. Datasets

Annotating pixel masks for every frame of every object

in a video is an extremely time-consuming task. Hence, the

availability of such data is very limited. We are not aware

of any existing datasets for the MOTS task. However, there

are some datasets with MOT annotations, i.e., tracks anno-

tated at the bounding box level. For the MOTS task, these

datasets lack segmentation masks. Our annotation proce-

dure therefore adds segmentation masks for the bounding

boxes in two MOT datasets. In total, we annotated 65,213

segmentation masks. This size makes our datasets viable for

training and evaluating modern learning-based techniques.

Semi-automatic Annotation Procedure. In order to

keep the annotation effort manageable, we propose a semi-

automatic method to extend bounding box level annotations

by segmentation masks. We use a convolutional network to

automatically produce segmentation masks from bounding

boxes, followed by a correction step using manual polygon

annotations. Per track, we fine-tune the initial network us-

ing the manual annotations as additional training data, sim-

ilarly to [6]. We iterate the process of generating and cor-

recting masks until pixel-level accuracy for all annotation

masks has been reached.

For converting bounding boxes into segmentation masks,

we use a fully-convolutional refinement network [34] based

on DeepLabv3+ [10] which takes as input a crop of the in-

put image specified by the bounding box with a small con-

text region added, together with an additional input channel

Figure 2: Sample Images of our Annotations. KITTI

MOTS (top) and MOTSChallenge (bottom).

that encodes the bounding box as a mask. Based on these

cues, the refinement network predicts a segmentation mask

for the given box. The refinement network is pre-trained on

COCO [29] and Mapillary [39], and then trained on manu-

ally created segmentation masks for the target dataset.

In the beginning, we annotate (as polygons) two seg-

mentation masks per object in the considered dataset.1 The

refinement network is first trained on all manually created

masks and afterwards fine-tuned individually for each ob-

ject. These fine-tuned variants of the network are then used

to generate segmentation masks for all bounding boxes of

the respective object in the dataset. This way the network

adapts to the appearance and context of each individual ob-

ject. Using two manually annotated segmentation masks per

object for fine-tuning the refinement network already pro-

duces relatively good masks for the object’s appearances in

the other frames, but often small errors remain. Hence, we

manually correct some of the flawed generated masks and

re-run the training procedure in an iterative process. Our

annotators also corrected imprecise or wrong bounding box

annotations in the original MOT datasets.

KITTI MOTS. We performed the aforementioned annota-

tion procedure on the bounding box level annotations from

the KITTI tracking dataset [13]. A sample of the annota-

tions is shown in Fig. 2. To facilitate training and evalu-

ation, we divided the 21 training sequences of the KITTI

tracking dataset2 into a training and validation set, respec-

tively3. Our split balances the number of occurrences of

each class – cars and pedestrians – roughly equally across

training and validation set. Statistics are given in Table 1.

1The two frames annotated per object are chosen by the annotator based

on diversity.
2We are currently applying our annotation procedure to the KITTI test

set with the goal of creating a publicly accessible MOTS benchmark.
3Sequences 2, 6, 7, 8, 10, 13, 14, 16 and 18 were chosen for the valida-

tion set, the remaining sequences for the training set.
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KITTI MOTS MOTSChallenge

train val

# Sequences 12 9 4

# Frames 5,027 2,981 2,862

# Tracks Pedestrian 99 68 228

# Masks Pedestrian

Total 8,073 3,347 26,894

Manually annotated 1,312 647 3,930

# Tracks Car 431 151 -

# Masks Car

Total 18,831 8,068 -

Manually annotated 1,509 593 -

Table 1: Statistics of the Introduced KITTI MOTS and

MOTSChallenge Datasets. We consider pedestrians for

both datasets and also cars for KITTI MOTS.

The relatively high number of manual annotations required

demonstrates that existing single-image instance segmenta-

tion techniques still perform poorly on this task. This is

a major motivation for our proposed MOTS dataset which

allows for incorporating temporal reasoning into instance

segmentation models.

MOTSChallenge. We further annotated 4 of 7 sequences

of the MOTChallenge 2017 [37] training dataset4 and ob-

tained the MOTSChallenge dataset. MOTSChallenge fo-

cuses on pedestrians in crowded scenes and is very chal-

lenging due to many occlusion cases, for which a pixel-wise

description is especially beneficial. A sample of the anno-

tations is shown in Fig. 2, statistics are given in Table 1.

4. Evaluation Measures

As evaluation measures we adapt the well-established

CLEAR MOT metrics for multi-object tracking [4] to our

task. For the MOTS task, the segmentation masks per object

need to be accommodated in the evaluation metric. Inspired

by the Panoptic Segmentation task [23], we require that

both the ground truth masks of objects and the masks pro-

duced by a MOTS method are non-overlapping, i.e., each

pixel can be assigned to at most one object. We now intro-

duce our evaluation measures for MOTS.

Formally, the ground truth of a video with T time frames,

height h, and width w consists of a set of N non-empty

ground truth pixel masks M = {m1, . . . ,mN} with mi ∈
{0, 1}h×w, each of which belongs to a corresponding time

frame tm ∈ {1, . . . , T} and is assigned a ground truth track

id idm ∈ N. The output of a MOTS method is a set of

K non-empty hypothesis masks H = {h1, . . . , hK} with

hi ∈ {0, 1}h×w, each of which is assigned a hypothesized

track id idh ∈ N and a time frame th ∈ {1, . . . , T}.

Establishing Correspondences. An important step for

4Sequences 2, 5, 9 and 11 were annotated.

the CLEAR MOT metrics [4] is to establish correspon-

dences between ground truth objects and tracker hypothe-

ses. In the bounding box-based setup, establishing corre-

spondences is non-trivial and performed by bipartite match-

ing, since ground truth boxes may overlap and multiple hy-

pothesized boxes can fit well to a given ground truth box. In

the case of MOTS, establishing correspondences is greatly

simplified since we require that each pixel is uniquely as-

signed to at most one object in the ground truth and the

hypotheses respectively. Thus, at most one predicted mask

can have an Intersection-over-Union (IoU) of more than 0.5
with a given ground truth mask [23]. Hence, the mapping

c : H → M ∪ {∅} from hypothesis masks to ground truth

masks can simply be defined using mask-based IoU as

c(h) =

{
argmax

m∈M

IoU(h,m), if max
m∈M

IoU(h,m) > 0.5

∅, otherwise.
(1)

The set of true positives TP = {h ∈ H | c(h) 6= ∅}
is comprised of hypothesized masks which are mapped to

a ground truth mask. Similarly, false positives are hy-

pothesized masks that are not mapped to any ground truth

mask, i.e. FP = {h ∈ H | c(h) = ∅}. Finally, the set

FN = {m ∈ M | c−1(m) = ∅} of false negatives con-

tains the ground truth masks which are not covered by any

hypothesized mask.

In the following, let pred : M → M ∪ {∅} denote the

latest tracked predecessor of a ground truth mask, or ∅ if

no tracked predecessor exists. So q = pred(p) is the mask

q with the same id (idq = idp) and the largest tq < tp
such that c−1(q) 6= ∅ 5. The set IDS of id switches is then

defined as the set of ground truth masks whose predecessor

was tracked with a different id. Formally,

IDS = {m ∈ M | c−1(m) 6= ∅ ∧ pred(m) 6= ∅ ∧

idc−1(m) 6= idc−1(pred(m))}.
(2)

Mask-based Evaluation Measures. Additionally, we de-

fine a soft version T̃P of the number of true positives by

T̃P =
∑

h∈TP

IoU(h, c(h)). (3)

Given the previous definitions, we define mask-based vari-

ants of the original CLEAR MOT metrics [4]. We pro-

pose the multi-object tracking and segmentation accuracy

(MOTSA) as a mask IoU based version of the box-based

MOTA metric, i.e.

MOTSA = 1 −
|FN | + |FP | + |IDS|

|M |
=

|TP | − |FP | − |IDS|

|M |
, (4)

and the mask-based multi-object tracking and segmentation

precision (MOTSP) as

5This definition corresponds to the one used by MOTChallenge. Note

that the original KITTI tracking benchmark does not count id switches if

the target was lost by the tracker.
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Figure 3: TrackR-CNN Overview. We extend Mask R-CNN by 3D convolutions to incorporate temporal context and by an

association head that produces association vectors for each detection. The Euclidean distances between association vectors

are used to associate detections over time into tracks. Differences to Mask R-CNN are highlighted in yellow.

MOTSP =
T̃P

|TP |
. (5)

Finally, we introduce the soft multi-object tracking and seg-

mentation accuracy (sMOTSA)

sMOTSA =
T̃P − |FP | − |IDS|

|M |
, (6)

which accumulates the soft number T̃P of true positives in-

stead of counting how many masks reach an IoU of more

than 0.5. sMOTSA therefore measures segmentation as well

as detection and tracking quality.

5. Method

In order to tackle detection, tracking, and segmentation,

i.e. the MOTS task, jointly with a neural network, we build

upon the popular Mask R-CNN [14] architecture, which ex-

tends the Faster R-CNN [48] detector with a mask head. We

propose TrackR-CNN (see Fig. 3) which in turn extends

Mask R-CNN by an association head and two 3D convo-

lutional layers to be able to associate detections over time

and deal with temporal dynamics. TrackR-CNN provides

mask-based detections together with association features.

Both are input to a tracking algorithm that decides which

detections to select and how to link them over time.

Integrating temporal context. In order to exploit the tem-

poral context of the input video [8], we integrate 3D convo-

lutions (where the additional third dimension is time) into

Mask R-CNN on top of a ResNet-101 [15] backbone. The

3D convolutions are applied to the backbone features in or-

der to augment them with temporal context. These aug-

mented features are then used by the region proposal net-

work (RPN). As an alternative we also consider convolu-

tional LSTM [53, 30] layers. Convolutional LSTM retains

the spatial structure of the input by calculating its activa-

tions using convolutions instead of matrix products.

Association Head. In order to be able to associate de-

tections over time, we extend Mask R-CNN by an asso-

ciation head which is a fully connected layer that gets re-

gion proposals as inputs and predicts an association vec-

tor for each proposal. The association head is inspired

by the embedding vectors used in person re-identification

[17, 5, 31, 55, 62]. Each association vector represents the

identity of a car or a person. They are trained in a way that

vectors belonging to the same instance are close to each

other and vectors belonging to different instances are far

away from each other. We define the distance d(v, w) be-

tween two association vectors v and w as their Euclidean

distance, i.e.

d(v, w) := ‖v − w‖. (7)

We train the association head using the batch hard triplet

loss proposed by Hermans et al. [17] adapted for video se-

quences. This loss samples hard positives and hard nega-

tives for each detection. Formally, let D denote the set of

detections for a video. Each detection d ∈ D consists of

a mask maskd and an association vector ad, which come

from time frame td, and is assigned a ground truth track id

idd determined by its overlap with the ground truth objects.

For a video sequence of T time steps, the association loss in

the batch-hard formulation with margin α is then given by

1

|D|

∑

d∈D

max
(

max
e∈D:

ide=idd

‖ae−ad‖− min
e∈D:

ide 6=idd

‖ae−ad‖+α, 0
)
.

(8)

Mask Propagation. Mask-based IoU together with opti-

cal flow warping is a strong cue for associating pixel masks

over time [42, 34]. Hence, we also experiment with mask

warping as an alternative cue to association vector similari-

ties. For a detection d ∈ D at time t− 1 with mask maskd
and a detection e ∈ D with mask maske at time t, we define
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the mask propagation score [34, 42] as

maskprop(maskd,maske) = IoU(W(maskd),maske), (9)

where W(m) denotes warping mask m forward by the op-

tical flow between frames t− 1 and t.

Tracking. In order to produce the final result, we still need

to decide which detections to report and how to link them

into tracks over time. For this, we extend existing tracks

with new detections based on their association vector simi-

larity to the most recent detection in that track.

More precisely, for each class and each frame t, we link

together detections at the current frame that have detector

confidence larger than a threshold γ with detections selected

in the previous frames using the association vector distances

from Eq. 7. We only choose the most recent detection for

tracks from up to a threshold of β frames in the past. Match-

ing is done with the Hungarian algorithm, while only allow-

ing pairs of detections with a distance smaller than a thresh-

old δ. Finally, all unassigned high confidence detections

start new tracks.

The resulting tracks can contain overlapping masks

which we do not allow for the MOTS task (c.f . Section 4).

In such a case, pixels belonging to detections with a higher

confidence (given by the classification head of our network)

take precedence over detections with lower confidence.

6. Experiments

Experimental Setup. For Mask R-CNN we use a ResNet-

101 backbone [15] and pre-train it on COCO [29] and

Mapillary [39]. Afterwards, we construct TrackR-CNN by

adding the association head and integrating two depthwise

separable 3D convolution layers with 3×3×3 filter kernels

each (two dimensions are spatial and the third is over time),

ReLU activation, and 1024 feature maps between the back-

bone and the region proposal network. The 3D convolutions

are initialized to an identity function after which the ReLU

is applied. When using convolutional LSTM, weights are

initialized randomly and a skip connection is added to pre-

serve activations for the pretrained weights of subsequent

layers during the initial steps of training. TrackR-CNN

is then trained on the target dataset, i.e. KITTI MOTS or

MOTSChallenge, for 40 epochs with a learning rate of

5 · 10−7 using the Adam [22] optimizer. During training,

mini-batches which consist of 8 adjacent frames of a single

video are used, where 8 was the maximum possible number

of frames to fit into memory with a Titan X (Pascal) graph-

ics card. At batch boundaries, the input to the 3D convolu-

tion layer is zero padded in time. When using convolutional

LSTM, gradients are backpropagated through all 8 frames

during training and at test time the recurrent state is prop-

agated over the whole sequence. The vectors produced by

the association head have 128 dimensions and the associa-

tion loss defined in Eq. 8 is computed over the detections

sMOTSA MOTSA MOTSP

Car Ped Car Ped Car Ped

TrackR-CNN (ours) 76.2 46.8 87.8 65.1 87.2 75.7

Mask R-CNN + maskprop 75.1 45.0 86.6 63.5 87.1 75.6

TrackR-CNN (box orig) + MG 75.0 41.2 87.0 57.9 86.8 76.3

TrackR-CNN (ours) + MG 76.2 47.1 87.8 65.5 87.2 75.7

CAMOT [42] (our det) 67.4 39.5 78.6 57.6 86.5 73.1

CIWT [41] (our det) + MG 68.1 42.9 79.4 61.0 86.7 75.7

BeyondPixels [52] + MG 76.9 - 89.7 - 86.5 -

GT Boxes (orig) + MG 77.3 36.5 90.4 55.7 86.3 75.3

GT Boxes (tight) + MG 82.5 50.0 95.3 71.1 86.9 75.4

Table 2: Results on KITTI MOTS. +MG denotes mask

generation with a KITTI MOTS fine-tuned Mask R-CNN.

BeyondPixels is a state-of-the-art MOT method for cars and

uses a different detector than the other methods.

obtained in one batch. We choose a margin of α = 0.2,

which proved useful in [17]. For the mask propagation ex-

periments, we compute optical flow between all pairs of

adjacent frames using PWC-Net [54]. Our whole tracker

achieves a speed of around 2 frames per second at test time.

When using convolutional LSTM, it runs online and when

using 3D convolutions in near-online fashion due to the two

frames look-ahead of the 3D convolutions.

We tune the thresholds for our tracking system (δ, β, γ)

for each class separately on the target training set with ran-

dom search using 1000 iterations per experiment.

Main Results. Table 2 shows our results on the KITTI

MOTS validation set. We achieve competitive results, beat-

ing several baselines. Mask R-CNN + maskprop denotes

a simple baseline for which we fine-tuned the COCO and

Mapillary pre-trained Mask R-CNN on the frames of the

KITTI MOTS training set. We then evaluated it on the val-

idation set and linked the mask-based detections over time

using mask propagation scores (c.f . Section 5). Compared

to this baseline, TrackR-CNN achieves higher sMOTSA

and MOTSA scores, implying that the 3D convolution lay-

ers and the association head help with identifying objects in

video. MOTSP scores remain similar.

TrackR-CNN (box orig) denotes a version of our model

trained without mask head on the original bounding box an-

notations of KITTI. We then tuned for MOTA scores ac-

cording to the original KITTI tracking annotations on our

training split. We evaluate this baseline in our MOTS set-

ting by adding segmentation masks as a post-processing

step (denoted by +MG) with the mask head of the KITTI

fine-tuned Mask R-CNN. sMOTSA and MOTSA scores for

this setup are worse than for our method and the previous

baseline, especially when considering pedestrians, adding

to our observation that non-tight bounding boxes are not
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(a)

(b)

(c)

(d)

Figure 4: Qualitative Results on KITTI MOTS. (a)+(c)

Our TrackR-CNN model evaluated on validation sequences

of KITTI MOTS. (b)+(d) TrackR-CNN (box orig) + MG

evaluated on the same sequences. Training with masks on

our data avoids confusion between similar near-by objects.

an ideal cue for tracking and that simply using an instance

segmentation method on top of bounding box predictions

is not sufficient to solve the MOTS task. We show quali-

tative results for this baseline in Figure 4. The box-based

model often confuses similar occluding objects for one an-

other, leading to missed masks and id switches. In contrast,

our model hypothesizes consistent masks.

To show that adding segmentation masks as done above

does not give an unfair (dis)advantage, we also use the

Mask R-CNN mask head to replace the masks generated by

our method (TrackR-CNN (ours) + MG). The results stay

roughly similar, so no major (dis)advantage incurs.

In combination, our baseline experiments show that

training on temporally consistent instance segmentation

data for video gives advantages both over training on in-

stance segmentation data without temporal information and

over training just on bounding box tracking data. Joint train-

ing on both was not possible before, which underlines the

usefulness of our proposed MOTS datasets.

CAMOT [42] is a mask-based tracker which can track

both objects from pre-defined classes and generic objects

using 3D information from the stereo setup in KITTI. In

the original version, CAMOT takes as input generic object

proposals from SharpMask [44]. For better comparability,

we used the detections from our TrackR-CNN (obtained by

running it as a normal detector without association) as in-

puts instead. Note that CAMOT can only track regions for

Temporal component
sMOTSA MOTSA MOTSP

Car Ped Car Ped Car Ped

1xConv3D 76.1 46.3 87.8 64.5 87.1 75.7

2xConv3D 76.2 46.8 87.8 65.1 87.2 75.7

1xConvLSTM 75.7 45.0 87.3 63.4 87.2 75.6

2xConvLSTM 76.1 44.8 87.9 63.3 87.0 75.2

None 76.4 44.8 87.9 63.2 87.3 75.5

Table 3: Different Temporal Components for TrackR-

CNN. Comparison of results on KITTI MOTS.

which depth from stereo is available which limits its re-

call. The results show that our proposed tracking method

performs significantly better than CAMOT when using the

same set of input detections.

Since there are not many mask-based trackers with

source code available, we also considered the bounding

box-based tracking methods CIWT [41] and BeyondPix-

els [52] and again converted their results to segmentation

masks using the KITTI fine-tuned Mask R-CNN mask head.

Note that these methods were tuned to perform well on the

original bounding box based task.

CIWT [41] combines image-based information with 3D

information from stereo for tracking jointly in image and

world space. Once more, detections from our TrackR-CNN

were used for comparability. Our proposed tracking sys-

tem which tackles tracking and mask generation jointly per-

forms better than CIWT when generating masks post-hoc.

BeyondPixels [52] is one of the strongest tracking meth-

ods for cars on the original KITTI tracking dataset. It com-

bines appearance information with 3D cues. We were not

able to run their method with our detections since their code

for extracting appearance features is not available. Instead

we used their original detections which are obtained from

RRC [47], a very strong detector. RRC achieves precise

localization on KITTI in particular, while the more conven-

tional Mask R-CNN detector was designed for general ob-

ject detection. The resulting sMOTSA and MOTSA scores

are higher than for our method, but still show that there are

limits to state-of-the-art bounding box tracking methods on

MOTS when simply segmenting boxes using Mask R-CNN.

MOTS Using Ground Truth Boxes. For comparison, we

derived segmentation results based on bounding box ground

truth and evaluated it on our new annotations. Here, we con-

sider two variants of the ground truth: the original bound-

ing boxes from KITTI (orig), which are amodal, i.e. if only

the upper body of a person is visible, the box will still ex-

tend to the ground, and tight bounding boxes (tight) derived

from our segmentation masks. Again, we generated masks

using the KITTI MOTS fine-tuned Mask R-CNN. Our re-

sults show that even with perfect track hypotheses gener-

ating accurate masks remains challenging, especially for

pedestrians. This is even more the case when using amodal
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Association Mechanism
sMOTSA MOTSA MOTSP

Car Ped Car Ped Car Ped

Association head 76.2 46.8 87.8 65.1 87.2 75.7

Mask IoU 75.5 46.1 87.1 64.4 87.2 75.7

Mask IoU (train w/o assoc.) 74.9 44.9 86.5 63.3 87.1 75.6

Bbox IoU 75.4 45.9 87.0 64.3 87.2 75.7

Bbox Center 74.3 43.3 86.0 61.7 87.2 75.7

Table 4: Different Association Mechanisms for TrackR-

CNN. Comparison of results on KITTI MOTS.

boxes, which often contain large regions that do not show

the object. This further validates our claim that MOT tasks

can benefit from pixel-wise evaluation. Further baselines,

where we fill the ground truth boxes with rectangles or el-

lipses can be found in the supplemental material.

Temporal Component. In Table 3, we compare dif-

ferent variants of temporal components for TrackR-CNN.

1xConv3D and 2xConv3D means using either one or stack-

ing two depthwise separable 3D convolutional layers be-

tween backbone and region proposal network, each with

1024 dimensions. Similarly, 1xConvLSTM and 2xConvL-

STM denotes one or two stacked convolutional LSTM lay-

ers at the same stage with 128 feature channels each. The

number of parameters per feature channel in a convolutional

LSTM is higher due to gating. Using more feature channels

did not seem to be helpful during initial experiments. Fi-

nally, None denotes adding no additional layers as temporal

component. Compared to the None baseline, adding two 3D

convolutions significantly improves sMOTSA and MOTSA

scores for pedestrians, while performance for cars remains

comparable. Surprisingly, using convolutional LSTM does

not yield any significant gains over the baseline.

Association Mechanism. In Table 4, we compare dif-

ferent mechanism used for association between detections.

Each line follows the proposed tracking system explained

in Section 5, but different scores are used for the Hungarian

matching step. When using the association head, associa-

tion vectors may match with detections up to β frames in

the past. For the remaining association mechanisms, only

matching between adjacent frames is sensible.

For Mask IoU we only use mask propagation scores from

Eq. 9, which degrades sMOTSA and MOTSA scores. This

underlines the usefulness of our association head which can

outperform an optical flow based cue using embeddings

provided by a single neural network. Here, we also try

training without the association loss (Mask IoU (train w/o

assoc.)), which degrades MOTSA scores even more. There-

fore, the association loss also has a positive effect on the de-

tector itself. Surprisingly, using bounding box IoU (where

the boxes were warped with the median of the optical flow

values inside the box, Bbox IoU) performs almost the same

as mask IoU. Finally, using only distances of bounding box

sMOTSA MOTSA MOTSP

TrackR-CNN (ours) 52.7 66.9 80.2

MHT-DAM [21] + MG 48.0 62.7 79.8

FWT [16] + MG 49.3 64.0 79.7

MOTDT [31] + MG 47.8 61.1 80.0

jCC [20] + MG 48.3 63.0 79.9

GT Boxes (tight) + MG 55.8 74.5 78.6

Table 5: Results on MOTSChallenge. +MG denotes mask

generation with a domain fine-tuned Mask R-CNN.

centers (Bbox Center) for association, i.e. doing a nearest

neighbor search, significantly degrades performance.

MOTSChallenge. Table 5 shows our results on the

MOTSChallenge dataset. Since MOTSChallenge only has

four video sequences, we trained our method (TrackR-CNN

(ours)) in a leaving-one-out fashion (evaluating each se-

quence with a model trained and tuned on the three others).

For comparison, we took pre-computed results of four

methods that perform well on the MOT17 benchmark

and generated masks using a Mask R-CNN fine-tuned on

MOTSChallenge (in a leaving-one-out fashion) to evalu-

ate them on our data. We note that all four sets of re-

sults use the strongest set of public detections generated

with SDP [60], while TrackR-CNN generates its own de-

tections. It is also unclear how much these methods were

trained to perform well on the MOTChallenge training set,

on which MOTSChallenge is based. Despite these odds,

TrackR-CNN outperforms all other methods. The last line

demonstrates that even with the tight ground truth bounding

boxes including track information over time, segmenting all

pedestrians accurately remains difficult.

7. Conclusion

Until now there has been no benchmark or dataset to

evaluate the task of multi-object tracking and segmentation

and to directly train methods using such temporally con-

sistent mask-based tracking information. To alleviate this

problem, we introduce two new datasets based on existing

MOT datasets which we annotate using a semi-automatic

annotation procedure. We further introduce the MOTSA

and sMOTSA metrics, based on the commonly used MOTA

metric, but adapted to evaluate all aspects of mask-based

tracking. We finally develop a baseline model that was de-

signed to take advantage of this data. We show that through

training on our data, the method is able to outperform com-

parable methods which are only trained with bounding box

tracks and single image instance segmentation masks. Our

new datasets now make such joint training possible, which

opens up many opportunities for future research.
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