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Chapter 1

Introduction

1.1 Mott insulators

Collective phenomena play a large role in our everyday life, and are ubiquitous in every

field of science, going from physics to sociology, passing through ethology [1, 2]. A traffic

jam, the motion of bird flocks or the appearance of a magnetic order in a material are few of

many examples of the emergent self-organisation of a large number of individuals that occurs

due to their mutual interaction. Condensed Matter Physics, dealing with systems made of a

large number ∼ 1023 of elementary constituents, seems to be the perfect playground to study

collective emergent phenomena. Due to a large number of degrees of freedom active in a

system, it is generally not sufficient nor possible to tackle its description with a reductionistic

approach. It is necessary first to identify new physical laws that can describe it as a whole

[3, 4]. There are many examples of emergent collective behaviours that arise because of a

large number of interacting constituents and that can not be predicted by considering just

one or a few of them. One famous example is spontaneous symmetry breaking: even if the

system is invariant under a specific symmetry group, it might be that its ground state is not.

This is what happens in many cases, e.g., when phenomena such as superconductivity or

magnetism are observed.

Since the only many-body models that can be solved exactly are those of non-interacting

particles, the common attitude is to search for a minimal description in terms of weakly

interacting quasiparticles, not to be confused with the original constituents. Paradigmatic

examples are provided by the quasiparticles in the Bardeen-Cooper-Schrieffer model for

superconductivity or by the phonons to describe elementary excitations of a lattice with

broken translational invariance, or spin-waves in magnetic systems [5–7].
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Figure 1.1: Panel (a): cubic crystal made of hydrogen like atoms with lattice spacing a. Panel (b):
sketch of the zero-temperature internal energy of the system as function of the unitary cell volume or
of the composition (both denoted by X). The red minimum denotes a metallic (M) phase, instead the
blue one denotes an insulating solution (I).

There are however relevant cases when emergent collective phenomena elude simple

descriptions in terms of independent quasiparticles. One of the most intriguing examples is

provided by the Mott transition, i.e., a metal-insulator transition (MIT) driven by the Coulomb

repulsion among the electrons. Let us consider, as a simple example, a three-dimensional

crystal made of hydrogen-like atoms with a lattice constant a that can be varied for instance

by an external pressure (see Fig. 1.1 (a)). We shall ignore atomic motion, which is instead

important, e.g., for real hydrogen in the solid phase, and brings in additional complications

as the formation of H2 molecules. By changing a we can identify two regimes: when the

atoms are close together, i.e., when a is small, the tunnelling of one electron from one atom

to its neighbours is sufficiently strong to guarantee a conducting behavior; the system is a

metal, actually a half-filled one. Instead, if the atoms of the lattice are infinitely far apart,

i.e. a → ∞, the tunnelling amplitude vanishes, and the system is evidently an insulator. This

result is physically quite intuitive. Much less trivial is to foresee, as originally done by Mott,

that the metal to insulator transition occurs at a finite value of a. Naïvely, one would expect

quantum mechanically that, for any not infinite a, the finite tunnelling amplitude generates a

dispersive band that, being half-filled, describes a metal.

In a seminal work [8], Mott not only provided convincing arguments for the transition, since

then named Mott transition, to take place at finite a, but he was also able to get an estimate

of the critical a at which it should occur. In a simple-minded view, we can regard the above

solid hydrogen model as composed by the same number, one per atom, of negatively charged
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Figure 1.2: Sketch of the Thomas-Fermi potential in the two limits of small and large λT F . In panel
(a) is depicted the case of n

1/3
c a0 > 0.22: in that case the potential is really much short range, and it

supports a bound state (continuous red line) and a low energy free state (dashed red line). In panel (b)
is instead represented the case of n

1/3
c a0 < 0.22: the state that in panel (a) was free now has become

bound.

particles, the electrons, and of positively charged holes, in this specific case stuck on the

immobile atoms. A particle and a hole attract each other via the Coulomb potential, and

can thus form a bound state with bond length λ . According to Mott, the transition happens

when λ becomes smaller than the Thomas-Fermi screening length λT F . Since λT F depends

on the electron density n, we can rephrase the problem of finding the critical a as that of

searching for the critical density nc at which the transition occurs. Indeed, we know that

λT F ∝

(
n

a3
0

)−1/6
depends on n, where a0 is the Bohr radius. This means that, when we lower

down the density, i.e., increase a, λT F increases, too, so the screened Coulomb potential

extends sufficiently far to allow for several bound states that deepen more and more as n

decreases. It follows that the electrons may prefer to localise and essentially become an

integral part of the core, as schematically depicted in Fig. 1.2. The critical density obtained

by Mott [8–12] is:

n
1/3
c a0 ≈ 0.22 . (1.1)

Below this critical value, the system is predicted to be insulating. Such very simple estimate

works particularly well to locate the MIT in doped or photo-excited semiconductors.

Moreover, Mott predicted that the transition from the metal to the insulator had to be

discontinuous. The idea is essentially based on the analogy with the liquid-gas transition,

where the liquid is the plasma of electrons and holes, while the gas is composed of bound

electron-hole pairs. Close to the transition, the internal energy of the system as function of

the relevant thermodynamic variable, that we shall denote as X and might correspond, e.g.,
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Figure 1.3: Sketch of the Hubbard model. In order to simplify the representation, we present it on a
square lattice instead on a cubic one. We see depicted the energy gain −t that we get from moving one
electron from a site to a nearest neighbour one, and the energy cost U of having a doubly occupied or
an empty site.

to the unit cell volume or the composition, should have a shape like that in Fig. 1.1 (b). By

decreasing X , the system goes across a first order phase transition from an insulator to a

metal with a concurrent drop in X from XI to XM. If X represents the alloy composition, so

that changing X means changing the number of carriers, the region between the two minima

is unstable and therefore, at equilibrium, the alloy separates in two phases.

We remark that the Mott insulator has a completely different nature with respect to a band in-

sulator of the Bloch-Wilson kind [13–15], which corresponds to a state with a fully occupied

valence band and empty conduction one. In the Mott case there is not need to completely

fill a band; indeed, a metal-insulator transition can occur even with a partially filled band by

changing some external parameters such as the pressure.

The prototypical model that can describe the Mott transition is the Hubbard model, which

is essentially a simplified version of the previously discussed solid hydrogen. It is a simple

tight-binding model, with nearest neighbour hopping amplitude −t < 0, which includes just

a local charging energy that penalises valence fluctuations with respect to a reference value

and is parametrised by the so-called Hubbard U , see Fig. 1.3. Of course, since we neglect

the long-range character of the Coulomb interaction, we would miss part of the physics

previously described. Still, such a simple model is able to show a Mott transition. Let us

consider the even simpler case in which there is just one valence orbital and one valence

electron per site. In the limit of small interaction, t ≫ U , which would correspond to the

small a case, the model describes a half-filled metal. In the opposite limit U ≫ t, i.e., large

a, we can first diagonalise the potential energy and then treat the hopping perturbatively.
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The former is minimised by the state where each site is occupied just by a single electron,

which is evidently insulating. This state is separated by a gap 2U from the lowest energy

excitations with one site empty and one doubly occupied site. Because of the finite gap,

perturbation theory is well behaved, and thus the system remains insulating even at finite but

small t ≪U . It follows that there must exist a critical (U/t)c < ∞, above which the ground

state is insulating and below which it is metallic.

However, despite the simplicity of the model, this transition is still inaccessible within an

independent particle scheme. Indeed, even though the electron charge is localised in the

insulating phase at large U/t, its spin can still delocalise throughout the lattice. In fact,

although lowest order perturbation theory in t/U does not lead to a charge gap closure, it

generates an antiferromagnetic exchange J, equal to 4t2/U at second-order, which makes

mobile the spin excitations. In other words, in the Mott insulator, there is a clear separation

of spin and charge degrees of freedom, which are instead entangled into one single object,

the electron, in any independent particle scheme. This brief discussion allows us introducing

an ingredient that was not taken into account in the previous description of the Mott insulator-

to-metal transition as the unbinding of electron-hole pairs, but which will be the main focus

of this work. Both in the idealised solid hydrogen model and in its simpler version, the

Hubbard model, the electron has charge and spin, while the hole only charge. Therefore the

electron-hole bound state that constitutes the Mott insulator, although being a neutral object,

still possesses a quantum number, the spin, which must be taken into account to get a proper

description of the physical behaviour, even across the transition.

Mott insulators can be also artificially realised in cold atom systems [16–19], which actually

provide the cleanest realisations of simple Hubbard-like lattice models that can be in this way

studied in different equilibrium or out-of-equilibrium situations. However, although those

artificial systems may be of invaluable help to shed light in the physics of the Hubbard as well

as other lattice models without all complications of real materials, they also lack the richness

of the latter ones. Within real materials, the compounds where the conduction bandwidth

becomes so small as compared to the Coulomb repulsion to stabilise a Mott insulating phase

typically involve elements with partially filled d or f valence shells [20–22], in particular,

3d, 4f and 5f shells [23]. These cases are generally far from the simple picture emerging

from the Hubbard model. This is due to many reasons, first of all to the fact that usually

more than a single band cross the Fermi level. Moreover, in most cases, the Mott transition

is accompanied by a structural distortion, which is often not just a side effect but plays a

relevant role.
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Figure 1.4: Sketch of the magnetic phase diagram of the Hubbard model as function of temperature
T and of the intensity of the Hubbard interaction U/t inspired by DMFT calculations [27–29]. Three
phases are observable: at each finite U and at temperatures close to zero the system is always
antiferromagnetic with a dome-like structure (AFM); at higher temperatures and for small interactions
the system is in a paramagnetic metal separated by a first order phase transition (black continuous
line) from a paramagnetic insulator. The fist order phase transition ends in a critical point indicated by
a dot. For larger temperatures the two phases are separated by a crossover regime (dashed line).

1.2 Low temperatures Mott insulators

As we already mentioned, electron quantum numbers different from the charge are not

involved in the Mott’s localisation phenomenon. For instance, in the case of the solid

hydrogen model, as well as of the half-filled single-band Hubbard model, discussed in

Sec. 1.1, in the state that minimises the potential energy though each electron is localised, its

spin is totally free. Evidently, a system cannot sustain a finite entropy at zero temperature,

all the more since it has means to get rid of it. Therefore, any realistic Mott insulator will

also freeze all other degrees of freedom different from the charge, though at energy scales

substantially lower than the Mott’s localisation one. In general, this freezing corresponds

to some symmetry breaking that takes place below a critical temperature, even though one

cannot exclude exotic scenarios like spin liquids [24, 25].

In the simple case of the half-filled single-band Hubbard model, it is straightforward to predict

which symmetry broken phase is going to be established. As we mentioned, perturbation

theory in the hopping t generates an antiferromagnetic exchange among the localised spins.

In dimensions greater than two, and if the lattice is bipartite and the hopping not frustrated,

it is quite natural to expect that the low temperature phase must describe an antiferromagnetic

insulator [26, 10], which is indeed the case.
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More refined calculations permit to get the actual phase diagram that we qualitatively

sketch in Fig. 1.4. At low temperatures, the system is, for each value of U , an antiferromag-

netic insulator. At small U this is due to the Stoner instability of the nested non-interacting

Fermi surface. At large U the physics is instead that described above, i.e., of a Mott insulator

that orders magnetically to freeze the spin entropy. The two, physically distinct, regimes

are separated just by a crossover, signalled by the maximum in the Néel temperature TN that

occurs around U/t ∼ 5. For that reason, an independent particle scheme like Hartree-Fock,

eventually combined with RPA to access collective spin-wave excitations, provides a rea-

sonable description of the low temperature phase, from the low U Stoner regime, where

Hartree-Fock is justified, up to the large U local moment one. In other words, the Mott insu-

lator seems to become describable by independent particle schemes as soon as a symmetry

breaking intervenes to freeze out the spin degrees of freedom. This is actually the rule in all

realistic Mott insulators that are known to date. One can always find a more or less sophisti-

cated method based on independent particles that is able to reproduce the properties of a Mott

insulating material close to zero temperature. For instance, the monoclinic non-magnetic

insulating phase of VO2, which we shall discuss later in this thesis, has been for long time

believed to be inaccessible to any ab-initio technique based on DFT, and thus taken as an

example of the failure of DFT in describing Mott insulators. However, with the development

of more efficient hybrid functionals, also the monoclinic phase of VO2 has been satisfactorily

reproduced by DFT [30].

In reality, the success of independent particle approaches to describe Mott insulating

materials at low temperature must not mislead about the fundamentally collective charac-

ter of the Mott transition. Indeed, while those approaches may even be working at low

temperature when all degrees of freedom are frozen, they fail at high temperature, when

the clear separation of energy scales between the charge and all other degrees of freedom

overwhelmingly emerges. A simple example of that is again offered by the phase diagram in

Fig. 1.4. Within the Hartree-Fock approximation, the Hubbard interaction U turns into an

exchange splitting, Um, between the majority and minority spins, where m is the difference

between their local densities and corresponds to the local order parameter in the symmetry

broken phase. This exchange splitting also plays the role of a charge gap, i.e., the energy

cost to locally add one electron, which, by Pauli principle, must belong to the minority spin

band, or remove one, which, in the ground state, belongs instead to the majority spin band. It

follows that, as U increases, also the exchange splitting increases, as so TN . This is incorrect,

see Fig. 1.4, since at large U , deep in the Mott insulator, the antiferromagnetic exchange

J ≃ 4t2/U decreases and thus TN decreases, too. In addition, according to Hartree-Fock as
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magnetic order melts, i.e., the order parameter m → 0, the exchange splitting must disappear

and thus also the charge gap; the model must turn back into a metal phase. This is indeed

true at low U , where the magnetic insulating behaviour arises by an instability of the Fermi

sea, but it is certainly wrong at large U , where charge fluctuations remain frozen up to a

temperature TU ∼U ≫ t ≫ TN , above which they are indeed thermally excited but highly

incoherent, since T ≫ t. The system therefore never behaves like a genuine metal at finite

temperature.

The above discussion points out that a realistic Mott insulator may be sharply dis-

tinguished from a band insulator, in the Bloch-Wilson meaning, only at relatively high

temperatures, whereas the distinction is quite elusive at low temperature. This allows us

introducing the concept of a Mott insulator in disguise, i.e., an insulator that becomes as such

only because of interaction and Mott’s localisation, yet it is disguised as a conventional band

insulator by the onset of some symmetry breaking. We shall elaborate further on this idea

throughout this Thesis.

1.3 The orbital quantum number

In the previous sections, we mainly analyzed the effect of the spin degree of freedom (DOF)

at the Mott transition. However, conduction electrons in real materials may, in addition,

possess another quantum number, that is the orbital one. Many materials believed to be Mott

insulators, as vanadium sesquioxide V2O3, have more than a single band crossing the Fermi

level, so a faithful low-energy description has to take this additional DOF into account [31].

In a crystalline environment, the SO(3) orbital symmetry of an isolated atom is drastically

lowered down. In most cases, the orbital degeneracy is completely removed, while in others

only a discrete symmetry survives. On the contrary, unless spin-orbit interaction is strong,

SU(2) spin symmetry is to a large extent preserved. The total or partial absence of symmetry

properties among the orbitals that participate to the Mott’s localisation actually endows the

system with a wealth of different routes to reach a Mott insulating phase, which would not be

the case if just a single orbital were involved, because of the constraints put by spin SU(2).

The potential richness of the Mott transition in multi-orbital systems still has to be fully

explored. Recent years have witnessed a great interest in the orbital selectivity at the Mott

transition and in the role of Hund’s exchange [32–47], yet there are still interesting open

issues.
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In this Thesis, we shall focus on a two-band model at quarter filling, i.e., still one electron

per site as in the half-filled single-band Hubbard model, which is the simplest extension

of the latter model where now the electron that localises at the Mott transition possesses

an additional two-valued quantum number beside the spin. The degeneracy between the

two bands can in principle be removed in different ways: either splitting their centres of

gravity as in the presence of a crystal field or changing the bandwidth or the shape of a

band relatively to the other. In physical systems, all those effects might be simultaneously

present, though it is preferable to investigate them separately in order to assess their relative

importance. Since the role of the crystal field splitting has been already investigated [31], we

shall concentrate on the latter two cases and consider either two bands with the same centre

of gravity, same shape but different bandwidths, or two bands with the same centre of gravity,

same bandwidth but different shapes.





Chapter 2

Main results

In recent years the orbital degrees of freedom have attracted a revived interest, partly stim-

ulated by the physics of ruthenates [48, 49], of iron pnictides [50–52], and of iridates as

well as transition metal compounds with strong spin-orbit coupling [53, 54]. Generally, the

realistic lattice Hamiltonians used to describe such type of systems are characterized by tight

binding parameters that are not invariant under orbital SO(3) rotations. On the other hand,

the sensitivity of such systems to the orbital symmetry breaking is significantly enhanced

by the effects of electronic interaction. For instance, the distinction between different or-

bitals brought about by the hopping integrals or the crystal field splitting could be either

reduced or amplified by strong correlations. Indeed, the interaction can lead to a striking

orbital differentiation [55, 56, 52, 57], eventually causing an orbital-selective Mott transition

(OSMT), i.e. the localization of the most narrow band at expense of the remaining itinerant

ones [32–47]. Moreover, the orbital degrees of freedom are expected to play an important

role in determining which symmetry broken phase is more likely to accompany the Mott

transition when correlations grow at integer electron density.

In order to investigate the role of orbital degrees of freedom in strongly correlated systems,

here we shall focus on interacting two-bands models with an occupation of one electron per

site [58]. In this situation, higher order multipoles do not affect qualitatively the physics,

unless they are of comparable strength as the screened monopole Slater integral. This might

well be possible in real materials, but is quite an exception rather than the rule. For that

reason, we have not included any Coulomb exchange in our study. The two bands can be

made inequivalent by a crystal field that shifts the centre of gravity of one relative to the

other, a case that has already been studied [31]. We have therefore considered separately two

other options, namely,

• two bands with different bandwidth but same shape and centre of gravity;
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Figure 2.1: Panel (a): sketch of the studied model. It consists in two bands at quarter filling, where
EF is the Fermi level. The two bands have different bandwidth 2D1 > 2D2 and, in the non-interacting
case, they have the same centre of gravity. The two states interact with each other through the Hubbard
interaction and there are not inter-band hopping terms. Panel (b): paramagnetic phase diagram of the
model sketched in panel (a). Three phases are shown: a two-band metal (2BM) where the electron
per site is distributed among the two bands, a one-band metal (1BM) where the electron belongs
just to the broad band and a canted antiferro-orbital (canted AFO) insulating phase. The metals are
connected through a continuous phase transition (diamonds), instead they are both connected to the
insulator through a first order transition (triangles). The coexistence region corresponds to the grey
area between the circles and the squares.

• two bands with different shape but same bandwidth and centre of gravity.

The remaining part of this chapter is devoted to briefly summarising the main results

that we obtained studying those models by dynamical mean-field theory, whose detailed

presentation is postponed to Chap. 4 and Chap. 5. These results show that already the simple

addition of one more two-valued quantum number besides the spin enriches a lot the physics

of the Mott transition at one electron per site, especially if such quantum number is not

constrained by any symmetry.

2.1 Two bands with different bandwidth

To begin with we consider the quarter-filled two-band model shown in Fig. 2.1 (a). The

two bands are not hybridized among each other and, as we mentioned, the interaction only

includes a monopole Slater integral parametrised by the Hubbard U . Similar models were

already studied deep in the Mott insulator, where the Hamiltonian can be mapped onto a

Kugel-Khomskii type of spin-orbital Heisenberg model [59–62, 53]. However, the physics of

such systems is to a large extent yet unexplored right at the Mott transition. Here we focus on

this problem and we analyze how the orbital degree of freedom affects the zero temperature
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Figure 2.2: Panel (a): quasiparticle residue of band 1 (circles) and band 2 (squares) as function of the
Hubbard interaction U for a value of the bandwidth ratio α = D2/D1 = 0.5. Inset of panel (a): zoom
of the region where a first order transition from a conducting to an insulating state is observed, with
the corresponding hysteretic behavior. Arrows indicate the direction of the hysteresis cycle. Panel
(b): z and in-plane components of the pseudospin orbital vector τz and τ || as function of α at U = 5.
Arrows form a cartoon for the pseudospin order for specific α points.

Mott transition.

We introduce a parameter α = D2/D1 ∈ [0,1] that quantifies the difference among the band-

widths and fix D1 = 1 the energy unit. In the non-interacting case, the broader band 1 is more

occupied than the narrower one 2. At weak repulsion U , the Hartree-Fock approximation

is valid and predicts that the interaction induces a level repulsion between occupied and

unoccupied states, which effectively acts as a crystal field that lowers band 1, which thus

becomes more populated, and raises band 2, which empties. The issue is what happens at

larger U when Hartree-Fock is not applicable and the system is expected to approach a Mott

transition.

We start by presenting the results within the paramagnetic sector, i.e., not allowing for

magnetism. If the Hartree-Fock picture could be trusted even at sizeable values of U , we

would expect a transition from a quarter-filled two-band metal (2BM) to a one-band metal

(1BM), with half-filled band 1 and empty band 2. In the calculations, we indeed found a

continuous Lifshitz transition from the 2BM to the 1BM for sufficiently small values of α ,

see the phase diagram α vs. U in Fig. 2.1 (b). Upon increasing U the metal eventually gives

up, and the system turns into a Mott insulator through a first order transition. In the insulator,

band 2 is repopulated in such a way that the system shows a canted antiferro-orbital (canted

AFO) order.
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The properties of the different phases are highlighted in Fig. 2.2. Despite the naïve

expectation that the narrower the bandwidth the larger the correlation, here the situation is,

to some extent, the opposite. In Fig. 2.2 (a) the quasiparticle residue Za, with a = 1,2 the

orbital index, is shown as function of the Hubbard interaction U . In the region U < 0.6, the

two quasiparticle residues have almost the same size Z1 ≈ Z2, but for larger values of U we

find Z1 < Z2, meaning that the broader band is more correlated than the narrower. By further

increasing the interaction, the system turns discontinuously into a Mott localized state with

Z1 = Z2 = 0. The hysteresis region is shown in the inset of Fig. 2.2 (a).

As we already mentioned, the insulating phase shows orbital order, which can be characterised

by the z and the in plane components of the pseudo-spin orbital vector τz and τ ||. While

τz = ∑σ ⟨n1,σ −n2,σ ⟩, which measures the orbital imbalance, is uniform across the lattice,

the in plane component τ || = sgn(τx)

√
(τx)2 +(τy)2 is staggered. At α = 0, i.e., when band

2 has zero bandwidth, τ || = 0 and τz = 1, meaning that the system is in a ferro-orbital state

along z. When α = 1 the two bands have the same bandwidth and τ || = 1 while τz = 0,

namely the system is in an antiferro-orbital state (in this case the direction of the staggered

orbital moment is arbitrary because of orbital SU(2) symmetry). The change from one state

to the other is just a continuous crossover, as shown in Fig. 2.2 (b). This kind of orbital

order can be well rationalised by the corresponding Kugel-Khomskii Hamiltonian, which

looks like a standard antiferromagnetic Heisenberg model for spin-1/2, with the role of spin

played by the orbital, in a uniform magnetic field directed along z, which is zero at α = 1

and increases monotonically. As a result, for any α < 1, the lowest energy configuration

is a canted antiferro-orbital state with a finite uniform polarisation along z. The model is

such that there is no spin-flip transition [63]; the ferro-orbital state occurs only at α = 0.

Remarkably, though the Kugel-Khomskii Hamiltonian is strictly justified only for very large

U , its predictions agree well with the actual dynamical mean-field theory results, even at

moderate values of U within the insulating phase.

The phase diagram changes if we allow also for magnetic ordering, see Fig. 2.3 (a).

In comparison with Fig. 2.1 (b), we first note the disappearance of the 1BM phase. This

is expected because of the nesting property of the half-filled one-band Fermi surface. As

mentioned in Sec. 1.2, nesting implies a Stoner instability towards an antiferromagnetic

order. In more realistic circumstances where nesting is absent, the Lifshitz transition could

well survive. In the present case with nesting, instead of the 1BM, we find a ferro-orbital

antiferro-magnetic (FO-AFM) insulator in a quite extended region of the α-U phase diagram.

Only for α > 0.7 the large-U insulator has again the canted AFO order, still accompanied by

antiferromagnetism (AFO-AFM). In this case and unlike before, we do find a continuous

orbital-flip transition, i.e., the analogous of the spin-flip transition in the orbital space, at
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Figure 2.3: Panel (a): magnetic phase diagram in the α-U plane of the model in Fig. 2.1 (a).
Three phases are shown: the 2BM, an antiferro-magnetic insulator with just the broad band 1 filled
(FO-AFM) and an antiferro-magnetic insulator with canted antiferro-orbital order (canted AFO).
The insulators are connected through a continuous phase transition (diamonds), instead the 2BM is
connected to both the insulators through a first order transition (triangles). The coexistence region
corresponds to the grey area between the circles and the squares. Panel (b): evolution of τz and
τ || as function of α at fixed U = 4.5. Panel (c): evolution of the total magnetization m and of the
magnetizations per band ma, with a = 1,2, as function of α at fixed U = 4.5.

a finite value of α within the insulating phase [64]. Both FO-AFM and canted AFO-AFM

insulators turn discontinuously into a 2BM upon decreasing U , though the transition occurs

at smaller values of interaction than in the absence of magnetism.

The evolution in α within the insulating phase at U = 4.5 of the pseudospin components

τz and τ || is shown in Fig. 2.3 (b), while that of the spin magnetization per band, ma =

⟨na,↑− na,↓⟩, with a = 1,2 and of the total spin magnetization, m = m1 +m2, is shown in

Fig. 2.3 (c). Although m is smooth increasing α across the orbital-flip transition, m1 starts to

decrease and, concomitantly, m2 increases from zero. It is a well known fact that a FO phase

leads to AFM correlations, the so-called Goodenough-Kanamori-Anderson rules [65, 66, 26].

It is instead less known and obvious that even a canted AFO could lead to antiferromagnetism,

as we find.

2.2 Two bands with different shape: a model for vanadium

dioxide

We shall now summarise the results that we obtained for a model of two bands with the

same bandwidth, same centre of gravity, but different shape. The study of this model was

originally inspired by the physics of vanadium dioxide, which we briefly present here. A
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more detailed discussion is postponed to Chap. 5.

Vanadium dioxide (VO2) is a transition metal oxide with a great potential for technolog-

ical applications, thanks to its nearly room temperature metal-to-insulator transition. For

this reason, VO2 has been the subject of an intense investigation which dates back to the

1950s [67], but it is still rather active [68] and, to some extent, debated [69, 30, 70–73].

At Tc ∼ 340 K, VO2 crosses a first-order transition from a metal at T > Tc to an insulator at

T < Tc [74, 75], both phases being paramagnetic [76–78]. At the same time, a structural

distortion occurs from a high temperature rutile (R) structure to a low temperature monoclinic

(M1) one.

In the oxidation state V4+, the single valence electron of vanadium can occupy any of the

three t2g orbitals that derive from the 3d-shell split by the crystal field, and which are in turn

distinguished into a singlet a1g (or d||) and a doublet eπ
g (or dπ∗), where the subscripts || and

π∗ indicate, respectively, the bonding and non-bonding character of the orbitals along the

rutile c-axis, cR. In the R phase, vanadium atoms form equally spaced chains along cR. In

the M1 phase, there is an antiferroelectric distortion where each vanadium moves away from

the centre of the oxygen octahedron and the chains, from being straight, become zigzag and,

in addition, they dimerise [79, 80].

A simple picture of the transition was proposed back in 1971 by Goodenough [81]. According

to it, the antiferroelectric distortion first of all increases the crystal field splitting between the

lower a1g and the upper eπ
g . Concurrently, the chain dimerisation opens a hybridisation gap

between bonding and anti-bonding combinations of the a1g. For large enough crystal field

splitting and hybridisation gap, the bonding combination of the a1g fills completely, while

the anti-bonding as well as the eπ
g empty, hence the insulating behaviour.

Goodenough’s mechanism for the metal-insulator transition in VO2 is in essence a single-

particle one: the Peierls instability of the quasi one-dimensional a1g band that becomes

half-filled after the grown crystal field has emptied the eπ
g . However, the properties of the

so-called M2 monoclinic insulating phase that is reached upon as low as ∼ 0.2 % [77]

partial substitution of V with Cr, or under pressure, indicate that correlations effects are not

negligible in VO2 [82]. However, the existence of a metallic phase at temperatures above

the monoclinic to rutile transition suggests that correlation is necessary but not sufficient to

explain the metal-insulator transition. In turns, the M2 phase and the bad metal character of

the R phase [83, 84] suggest that also the coupling to the lattice is necessary but not sufficient.

We actually believe that Goodenough’s scenario is after all correct, though it requires an

active contribution from correlations, thus realising the aforementioned Mott insulator in dis-

guise that can be properly accounted for by many-body techniques, as dynamical mean-field
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Figure 2.4: Panel (a): sketch of the studied model. It consist in a two band model at quarter filling,
where EF is the Fermi level. The two bands have a different shape but same bandwidth, and, in
the non-interacting case without any lattice deformation, they have the same centre of gravity. The
two states interact through a local Hubbard term and there is not inter-band hopping. Panel (b):
zero-temperature internal energy of the system (in arbitrary units) as function of the lattice distortion
X for several values of the Hubbard interaction U . Arrows indicate the position of the absolute
minimum for each U . Filled (open) symbols are for the metallic (insulating) solution, instead straight
and dashed lines are drawn in order to compare the relative position of the metallic and insulating
solutions, respectively.

theory [69], but equally well by independent particle schemes based on DFT [30, 72].

In order to capture the essential aspects of the VO2 physics, we constructed a minimal

model that comprises two bands, one that represents the a1g, band 1, and another the eπ
g ,

band 2, thus neglecting its doublet character that we believe is unessential. To mimic the

quasi-one-dimensional character of the a1g, we assumed a double horn shape of its density of

states, with two peaks close to the bottom and the top of the band. On the contrary, the more

three-dimensional character of the eπ
g band is reflected in a structureless semi-circular density

of states. Both bands have the same bandwidth and are centred at the same energy. Because

of the double-horn shape, at quarter-filling band 1 is more occupied than band 2 at U = 0, so

that, as discussed above, a finite but weak U is expected to generate an effective crystal field

splitting that lowers band 1 and raises band 2. In addition, in order to represent the lattice

distortion that occurs in VO2, we include a classical dispersionless phonon X that couples to

the bands in two ways: it splits them, hence adding a further contribution to the crystal field

produced by U , and concurrently dimerises band 1, i.e., it opens a gap in the middle of its

double-horn shaped density of states. We remark that in the real VO2 the antiferroelectric

distortion, i.e. the displacement of V in the basal plane away from the centre of the oxygen

octahedron, actually increases and decreases the hybridisation of the eπ
g orbitals with the
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Figure 2.5: Panel (a)-(d): zero temperature spectral functions for U = 1.50 at the two minima
observed in Fig. 2.4 (b). Particularly, panels (a) and (b) ((c) and (d)) show the spectral functions
of band 1 and 2, respectively, when the system is in the undistorted metallic (distorted insulating)
phase. Panel (e): free energy F (T ) of the system as function of temperature T for the two (stable and
metastable) solutions encountered in Fig. 2.4 (b) at U = 1.50.

oxygen ligands that are, respectively, closer and further with respect to the off-center position

of the vanadium atom. Such variation of the metal-ligand hybridisation has indeed the

indirect effect of increasing the eπ
g energy, but the raise is quadratic for small displacement.

In order to mimic this effect, we assumed that the phonon coordinate X is coupled linearly to

dimerisation but quadratically to the population imbalance operator n1 −n2.

The evolution of the internal energy of the system as function of the lattice distortion X

for several values of U is shown in Fig. 2.4 (b). For each U we find two minima, one stable

and one metastable. For small U , the stable phase is a metal without any distortion (X = 0).

On the contrary, the stable phase becomes a distorted, X ̸= 0, insulator above a critical U ,

explicitly demonstrating the crucial role of correlations in the metal-insulator transition, in

qualitative agreement with the experiments [77, 85, 74, 75].

In order to gain a better understanding of the different phases, we plot in Fig. 2.5 (a)-(d) the

spectral functions relative to the two minima at U = 1.50, which is a realistic estimate of its

actual value. Panels (a)-(b) show the spectral functions of the metallic undistorted solution,

while panels (c)-(d) those of the distorted insulator. In the metastable metal phase, both bands

are partially filled, with a larger occupancy of band 1 with respect to band 2. The stable

insulating phase is instead characterised by a a1g band split into a bonding and anti-bonding

components, and the energy gap of between the bonding a1g and the eπ
g , still in accordance

with experiments [86].
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By separately evolving with temperature the two solutions at U = 1.50, we find the free

energy crossing of Fig. 2.5 (e), which signals a first order phase transition between a low

temperature distorted insulator and a high-temperature undistorted metal.

All the above results are in qualitative agreement with the actual behaviour of VO2, suggesting

that our simple modelling is representative of the physics of the compound.





Chapter 3

Dynamical mean-field theory

In Chap. 1 we commented about the Mott physics. In this chapter, we will derive a simple

model Hamiltonian which can capture the essential ingredients of the strongly correlated

electrons and the basic equations for a trustable technique to solve it. In doing so we will

introduce some concepts that will be important in the following parts of this thesis.

3.1 The Hubbard model

The description of real materials is, in general, a problem of outmost difficulty. It involves the

description of many (approximately ∼ 1023) degrees of freedom. The complete Hamiltonian

of the problem involves the kinetic contributions of the electrons and of the nuclei (ions), the

electron-electron, the nucleus-nucleus and the electron-nucleus interactions. In the following

we will completely neglect the kinetic term that comes from the nuclei: since their mass is

much larger than the electrons one, we make use of the Born-Oppenheimer approximation

and consider them as static. Correspondingly, the nucleus-nucleus interaction reduces to a

constant shift in the energy and can be safely neglected. We consider the system of a regular

(i.e. Bravais) lattice, thus the nuclei are arranged in a periodic structure. The electrons move

on a background periodic potential created by the regular layout of the ions. In presence of

such lattice potential, the many degenerate electronic levels arrange in a band structure which

expresses the energy of the electrons in a particular lattice structure. Should a structural

transition occur in a system, it will be reflected in a dramatic change of the band structure.

In the tight binding description, the motion of the electrons is described in terms of a hopping

process from site i to site j, occurring with a quantum mechanical probability amplitude ti j

[87, 88]. In most cases, the hopping amplitude decays rapidly with the distance so that it is

meaningful to assume that just the hoppings among nearest neighbor sites are different from
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zero. Moreover, if we assume that all the atoms in the lattice are equal, we can write ti j = t,

where i and j are nearest neighbors.

In this approach the kinetic term reads:

HK =−t ∑
⟨i, j⟩

∑
σ

c
†
i,σ c j,σ , (3.1)

where c
†
i,σ (ci,σ ) is the creation (annihilation) operator of one electron with spin σ on site i

and the sum ∑⟨i, j⟩ is restricted just to nearest neighbour lattice sites.

Finally, one should take into account the Coulomb interaction among the electrons. For a

generic system of s or p-orbital electrons this term is small with respect to the bandwidth,

fixed by the large overlap between neighbouring electronic wave functions. However, for

materials with d or f -electrons the situation can change dramatically. The more localized

nature of the d/ f -orbital wave functions makes their overlap in space smaller, ultimately

leading to narrow bands. In this situation, the interaction term becomes of roughly the

same order of the kinetic term and can not be neglected. It is well known that the Coulomb

interaction among two charges in the vacuum is long-ranged, instead inside a material the

long-range character is suppressed by the screening of the local charge due to the conduction

electrons. This effect is the Thomas-Fermi screening that we mentioned in Chap. 1, that

changes the spatial dependence of the potential from ∝ 1
|xxxi−xxx j| when we are in vacuum to

∝ e
−λ−1

T F
|xxxi−xxx j |

|xi−xj| in a compound. The Thomas-Fermi screening length λT F for a real material

such as copper is estimated to be ∼ 0.55 Å.

We can take into account this screening effect when we write the tight binding formulation

of the Coulomb interaction. This leads to retain just the local term, since it will be for sure

the dominant contribution of the expansion, and we can write it as:

HU =
U

2 ∑
i

nini , (3.2)

where ni is the number operator for site i and U is the strength of the Hubbard repulsion. We

notice that this energy contribution, at fixed occupation, assumes its minimum value when

the system does not have any doubly occupied site, i.e. when the electrons are not close one

to the other.

We notice that each one of the two terms in Eq. (3.1) and Eq. (3.2) can be easily diagonalized,

the former in reciprocal space, the latter in direct space. Instead, the sum of the two, known
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as the Hubbard model [89–91], does not have a simple solution:

H =−t ∑
⟨i, j⟩

∑
σ

c
†
i,σ c j,σ +

U

2 ∑
i

nini . (3.3)

This model contains the basic elements of the true Hamiltonian of the problem: the kinetic

energy of the electrons, the interaction of them with the static ionic potential and the electron-

electron interaction at the minimal level. Despite its apparent simplicity, no exact solution of

this model are known in dimension d > 1 [92]. The physics of this model is the subject of

an intense investigation by means of analytic or numerical methods. The Hubbard model

is able to describe the Mott transition from a metallic state to a correlated insulator, as we

already discussed in Chap. 1. The proximity to such transition is universally recognized to

be an essential ingredient for the many unexpected properties which characterize the strongly

correlated electrons systems.

The absence of exact solutions for the model Eq. (3.3) stimulated over the years the develop-

ment of many approximate analytical and numerical methods. A suitable approach to tackle

the description of correlated electrons has been introduced nearly twenty years ago. This

method enabled to obtain a controlled solution of the Hubbard model providing an accurate

description of the Mott transition. This approach, named Dynamical Mean Field Theory

(DMFT), is based on the expansion in the reciprocal dimensionality 1/d. At any finite dimen-

sionality, it is reasonable to approximate the original lattice problem with infinite degrees

of freedom with an effective single-site local problem, with a smaller number of degrees

of freedom, as for example in any mean-field approach. The key idea of DMFT is that, for

d → ∞, an exact map of the local problem onto an effective quantum many-body problem,

i.e. with infinite degrees of freedom, is possible. In facts, in the limit of infinite coordination

number a relevant simplification arise: the locality of the self-energy function, which express

the effects of interaction at the single particle level. As a mean-field mapping, the DMFT

neglects the spatial fluctuations. However, contrary to static mean-field approaches, the

DMFT capture exactly the local quantum fluctuations which partly characterize the physics

of the correlated systems.

3.2 Dynamical mean field theory

DMFT and its extensions represent the state of the art techniques to treat strongly interacting

fermions [29]. In this section, we will derive and discuss the basic DMFT equations. We

will see that in analogy with static mean-field, the central quantity of interest in DMFT is the

Weiss field. Contrary to static mean-field however, in the DMFT formalism, the Weiss field
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takes the form of a function (as opposed to a number). Within DMFT an interacting system of

electrons on a lattice is mapped onto that of a single quantum impurity coupled to an effective

bath. The properties of the bath, described by a Weiss field, are fixed self-consistently by

requiring that the single particle properties of the auxiliary problem are the same as the local

ones of the original problem. The functional nature of the Weiss field makes the fulfilment of

such self-consistent condition more complicated than in a conventional static mean-field.

The key idea in the derivation of the DMFT equations is taken from a well-known technique

developed within classical statistical mechanics [93], i.e the cavity method. This consists

in focusing on a specific site o of the lattice model and to integrate out all the degrees of

freedom of other sites. In this way we get an effective model for site o. Note that this

reduction is exact. However, some approximation will be required in order to solve such

effective problem. In the DMFT approach such approximation is obtained by the limit of

infinite dimensionality.

The first step consist in writing the action formulation of the Hubbard model Eq. (3.3), and

this can easily be done by using Grassmann algebra [94]:

S =
∫ β

0
dτ [∑

i,σ

c∗i,σ (τ) (∂τ −µ) ci,σ (τ)− ∑
⟨i, j⟩

∑
σ

(t)i, j c∗i,σ (τ)c j,σ (τ)+

U

2 ∑
i

ni (τ)ni (τ)] .

(3.4)

ci,σ (τ) and c∗i,σ (τ) are Grassmann variables at imaginary time τ , as well as ni (τ) =

∑σ c∗i,σ (τ)ci,σ (τ) and µ is the chemical potential that we tune in order to fix the desired

occupation ⟨ni⟩. We introduced the notation (t)i, j for the hopping amplitude just to remark

which are the sites involved in the motion process. From this action that describes the whole

lattice system we want to get an effective action for a single specific site o. In order to do

so, we can look at Eq. (3.4) as a sum of three contributions: the action of the site o (So), the

action of the system without site o (S(o)) and the action that describes the interaction of site o

with the rest of the lattice (∆S), so at the end S = So +S(o)+∆S. For later convenience we

can introduce a more compact notation for the Grassmann variables on site o:

ηi = (t)i,o co,σ , (3.5)
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and we do in the same way for the complex conjugate variable, so we arrive to write:

∆S =−
∫ β

0
dτ

′

∑
i ̸=o

∑
σ

(
c∗i,σ ηi +η∗

i ci,σ

)
,

So =
∫ β

0
dτ [∑

σ

c∗o,σ (τ) (∂τ −µ) co,σ (τ)+
U

2
no (τ)no (τ)] ,

S(o) =
∫ β

0
dτ [∑

i̸=o

∑
σ

c∗i,σ (τ) (∂τ −µ) ci,σ (τ)

− ∑
⟨i, j⟩̸=o

∑
σ

(t)i, j c∗i,σ (τ)c j,σ (τ)+
U

2 ∑
i̸=o

ni (τ)ni (τ)] .

(3.6)

where the sum ∑
′

means that we have to perform it just on the nearest neighbors of site o. In

order to get the effective action Se f f we have to impose:

1
Ze f f

e−Se f f [c∗o,a,σ ,co,a,σ ] =
1
Z

∫ (

∏
i ̸=o

∏
σ

Dc∗i,σDci,σ

)
e−S

=
1
Z

e−So

∫ (

∏
i̸=o

∏
σ

Dc∗i,σDci,σ

)
e−S(o)−∆S .

(3.7)

In this expression the partition function of the original lattice Z as well as the effective

partition function Ze f f of the single site effective problem appear. We also define Z(o) as

the partition function of the system described by the action S(o). Moreover, the notation
∫ (

∏i̸=o ∏σ Dc∗i,σDci,σ

)
means that we have to perform a functional integral over all the

Grassmann variables c∗i,σ and ci,σ for each site i different from o. From the previously given

relations it is easy to get:

Se f f = So − ln
(
⟨e−∆S⟩(o)

)
−C , (3.8)

where the average ⟨· · · ⟩(o) means that we are averaging over the system without site o. C is

the constant C = ln
(

Ze f f Z(o)

Z

)
that we will not write explicitly in the next steps. By taking

into account that ⟨∆S⟩(o) = 0, we arrive to write:

Se f f =So +
∞

∑
n=1

′

∑
i1,··· ,in ̸=o

′

∑
j1,··· , jn ̸=o

∫ β

0
dτi1 · · ·dτindτ j1 · · ·dτ jn

η∗
i1
(τi1) · · ·η∗

in
(τin)η j1

(
τ j1

)
· · ·η jn

(
τ jn

)
G
(o)
i1,··· ,in, j1,··· , jn

(
τi1 , · · · ,τin ,τ j1 , · · · ,τ jn

)
,

(3.9)
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Figure 3.1: Cayley tree with coordination number z = 3. Adapted from [95].

where G
(o)
i1,··· ,in, j1,··· , jn

(
τi1 , · · · ,τin ,τ j1 , · · · ,τ jn

)
is the n-particle connected Green’s function

of the fully interacting model with site o removed, and the indexes i1, · · · , in, j1, · · · , jn are

multilabel for the spin and the lattice site.

We are now able to see the great semplification of the problem that occurs in the limit of

infinite coordination for the model in Eq. (3.3). In order to preserve the extensivity of the

energy in this limit, the hopping amplitude must scale as 1√
z
, so we have to perform the

substitution t → t√
z
. From the definition that we gave in Eq. (3.5) of the Grassmann variables

it follows that the n-th order term of the expansion in Eq. (3.9) scales as z1−n. As soon as

z → ∞ just the n = 1 term will remain different from zero, so we can rewrite the effective

action as:

Se f f = So +

′

∑
i̸=o

′

∑
j ̸=o

∑
σ

∫ β

0
dτi

∫ β

0
dτ jη

∗
i,σ (τi)η j,σ

(
τ j

)
G
(o)
i, j

(
τi,τ j

)
=

=−
∫ β

0
dτi

∫ β

0
dτ j ∑

σ

c∗o,σ (τi)G
−1
0

(
τi,τ j

)
co,σ

(
τ j

)
+

U

2

∫ β

0
dτ no (τ)no (τ) .

(3.10)

In equilibrium conditions the non-interacting single-particle Green’s function of the single

site effective problem is invariant for translations in time G
−1
0

(
τi,τ j

)
= G

−1
0

(
τi − τ j

)
so in

Matsubara frequencies we can write, by comparing the two expressions in Eq. (3.10):

G
−1
0 (iωn) = iωn +µ − t2

z

′

∑
i, j

G
(o)
i, j (iωn) . (3.11)
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We can now consider a specific lattice system called Bethe lattice, that represent the limit

of infinite coordination z → ∞ of a Cayley tree, as shown in Fig. 3.1. When we remove site

o in such a kind of lattice all the nearest neighbors of o are disconnected. For this reason

the Green’s function G
(o)
i, j (iωn) that appears in Eq. (3.11) has to be computed for i = j, i.e.

G
(o)
i, j (iωn) = G

(o)
i,i (iωn)δi, j. Since we are working in the limit of infinite connectivity, the

removal of one site does not change the local Green’s function, so G
(o)
i,i (iωn) = Gi,i (iωn).

Moreover, by assuming that the system is invariant for translations in space we get that:

Gi,i (iωn) = G(iωn)δi,i. At the end Eq. (3.11) can be rewritten as:

G
−1
0 (iωn) = iωn +µ − t2G(iωn) . (3.12)

Let us now consider a simple non interacting problem. In this limit the Green’s function of the

effective model G0 (iωn) is equal to the local Green’s function of the original problem G(iωn),

leading to G0 (iωn) = G(iωn). In this case Eq. (3.12) can be rewritten, by substituting the

imaginary Matsubara frequency iωn with the complex variable ζ , as:

G−1 (ζ ) = ζ +µ − t2G(ζ ) , (3.13)

that leads to the local Green’s function on the Bethe lattice:

G(ζ ) =
(ζ +µ)−

√
(ζ +µ)2 −4t2

2t2 , (3.14)

from which we can compute the DOS

D(ε) =− 1
π

Im
[
G
(
ζ → ε + i0+

)]
=

1
2πt2

√
4t2 − (ε +µ)2 θ

(
4t2 − (ε +µ)2

)
. (3.15)

The Bethe lattice DOS has finite bandwidth, as any tight binding model in generic lattices

in finite dimensions. If we consider instead the limit of infinite dimensions of a hypercubic

lattice, we get a gaussian DOS, that has a finite value in every energy range.

The greatest simplification brought about by the limit of infinite coordination number z → ∞

is the local nature of the lattice self-energy, that in this limit coincide with the self-energy of

effective problem. This can be deduced by looking at the skeleton perturbation expansion

of the single particle self-energy, as was done in [96, 97]. The argument is based on some

considerations similar to the ones performed when we excluded all the Green’s function with

more than one particle from the expression of the effective action Eq. (3.9), and we will not

analyze it in detail. It is sufficient to know that Σi, j (iωn) = Σ(iωn)δi, j, and this means that it

is also independent by the momenta.
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Exploiting the locality of the self-energy we can close the equations by writing a self-

consistence condition for the Weiss field. This conditions relates the local interacting physics

of the original problem, expressed in terms of the local interacting Green’s function, with the

properties of the effective bath, expressed by the Weiss field itself.

We can write the local interacting Green’s function of the lattice in terms of the local

self-energy function as [98]:

G(iωn) =
∫ ∞

−∞
dε

D(ε)

iωn +µ − ε −Σ(iωn)
. (3.16)

The Dyson equation for the effective problem stated in Eq. (3.10) reads:

G
−1 (iωn) = G

−1
0 (iωn)−Σ(iωn) . (3.17)

Finally, due to the equivalence of site o to any other site, it follows that G (iωn) = G(iωn)

and making use of Eq. (3.12) we obtain:

G−1 (iωn) = iωn +µ − t2G(iωn)−Σ(iωn) , (3.18)

which can be recasted in terms of a self-consistent equations of the form:

G
−1
0 (iωn) = G−1 (iωn)+Σ(iωn) . (3.19)

With this procedure we were able to reduce the original lattice problem to the solution of an

effective single site model, supplemented by a self-consistence condition. This is typical of

any mean-field approach but, contrary to the classical case, here the effective problem is yet

a quantum many-body one. The DMFT mapping establishes a correspondence between the

local quantities computed for the lattice and the quantities computed for the effective model.

3.3 Mapping on the Anderson impurity model

In order to solve the DMFT equations, it is very useful to obtain a Hamiltonian formulation

of the problem. To this end, it is straightforward to realize that, considering the action of an

Anderson impurity model (AIM), we can obtain an expression equivalent to that in Eq. (3.10)

integrating out the conduction band, i.e. the bath, degrees of freedom. This enables one

to identify the AIM as a Hamiltonian representation of the effective single-site problem
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discussed in Sec. 3.2. More explicitly, the AIM Hamiltonian reads:

HAIM = HB +HI +HB−I ,

HB = ∑
l,σ

εl c
†
l,σ cl,σ ,

HI =−µnd +
U

2
ndnd ,

HB−I = ∑
l,σ

Vl

(
c

†
l,σ dσ +d†

σ cl,σ

)
,

(3.20)

where HB is the bath Hamiltonian, HI the Hamiltonian of the impurity and HB−I represent

the hopping processes that can take place from the bath to the impurity and vice versa. c
†
l,σ

(cl,σ ) is the bath creation (annihilation) operator of one electron in the state l with spin σ .

d
†
σ (dσ ) is the creation (annihilation) operator for an electron on the impurity with spin σ ,

and nd = ∑σ d
†
σ dσ is the impurity number operator. εl represents the energy value of the l-th

bath level, instead Vl is the size of the hopping probability amplitude of one electron to move

from the impurity to the bath energy level εl and vice versa. We assume that those terms

are real. The number of bath sites is infinite, so l = 1, · · · ,∞. The non-interacting impurity

Green’s function can be written as:

G
−1
0,AIM (iωn) = iωn +µ −∆(iωn) , (3.21)

where ∆(iωn) is the hybridization function of the problem defined as:

∆(iωn) = ∑
l

V 2
l

iωn − εl

. (3.22)

Even if the model Eq. (3.20) formally reproduces the same action in Eq. (3.10), this does

not mean that they have the same solution. In order to get this result we have to fix the

parameters (εl,Vl) of the AIM so that the non-interacting Green’s function in Eq. (3.21) is

equal to G0 (iωn) in Eq. (3.17).

3.4 Self-consistent solution scheme

Now that we have shown the basic equations of the DMFT we can outline a general solution

scheme for the problem. As any non-linear system of equations, the solution of the DMFT

problem corresponds to an optimization problem. The simplest, and in many cases working,
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approach is to use an iterative method. The initial step is to guess the Weiss field G0 (iωn) =

G0,AIM (iωn) which is the main unknown of the problem. In many cases this step ultimately

means that we have to guess some values for the parameters of the AIM (εl,Vl). The iterative

procedure is then the following:

1. Given the Weiss field a solution of the AIM is obtained, generally using numerical

techniques such as Quantum Monte-Carlo or Exact Diagonalization. The direct output

of this step is the calculation of the impurity self-energy Σ(iωn).

2. From the knowledge of the self-energy one can compute, by using Eq. (3.16), the local

interacting Green’s function Gnew (iωn) of the lattice problem.

3. Next the Weiss field G0,new (iωn) is updated using the self-consistency relation Eq. (3.17):

G0,new (iωn) =
[
G−1

new (iωn)+Σ(iωn)
]−1

The whole procedure is iterated until convergence is reached. The convergence is usually

evaluated in terms of a suitable function, such as the Weiss field or the self-energy. The

solution is usually achieved within 10-100 iterations, depending on the particular regime of

the model.

The key step in the DMFT iterative solution is the solution of the quantum many-body

problem placed by the auxiliary AIM. To this end, a variety of methods have been developed

over many years. In this thesis, we used a technique named Exact Diagonalization (ED),

which allow obtaining an accurate solution at zero or finite, but low, temperature. In the next

section, we shall describe with some details the ED algorithm.

3.5 Exact diagonalization

The ED [99] method is based on the approximation of the Hamiltonian Eq. (3.20), that in

principle has an infinite number of bath states, to a Hamiltonian that has, instead, a finite

number l = 1, · · · ,Ns of levels:

HAIM ≈
Ns

∑
l=1

∑
σ

[
εlc

†
l,σ cl,σ +Vl

(
c

†
l,σ dσ +h.c.

)]
−µnd +

U

2
ndnd . (3.23)

As a consequence, the hybridization function that appears in the expression of the Weiss field

in Eq. (3.21) is written as:

∆(iωn) =
Ns

∑
l=1

V 2
l

iωn − εl

. (3.24)
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This approximation can be seen as the projection of the true Weiss field G0 (iωn) into

the restricted functional subspace that contains the hybridization functions of the kind

Eq. (3.24). The discretized finite system, for a given set of Hamiltonian parameters, can

then be diagonalized exactly using Lanczos based techniques [100]. This allows to obtain

the lowest part of the spectrum and to evaluate the (impurity) interacting Green’s function

G(iωn) in terms of its Lehmann (or spectral) representation:

G(iωn) =∑
N

1
ZN

∑
i, j

⟨ψN
i |dσ |ψN+1

j ⟩⟨ψN+1
j |d†

σ |ψN
i ⟩

iωn −
(

EN+1
j −EN

i

)
(

e−βEN
i + e

−βEN+1
j

)

+∑
N

1
ZN

∑
i, j

⟨ψN
i |d

†
σ |ψN−1

j ⟩⟨ψN−1
j |dσ |ψN

i ⟩

iωn −
(

EN
i −EN−1

j

)
(

e−βEN
i + e

−βEN−1
j

)
,

(3.25)

where ZN is the partition function of the problem for fixed number of particles N in the

system (that can be computed from the knowledge of the eigenvalues), the states |ψN
i ⟩ are

the eigenstates of the Hamiltonian and EN
i are the corresponding eigenvalues. β = 1/T is the

inverse temperature. While the expression Eq. (3.25) is exact if the sum over i and j takes

into account all the excited states of the problem, in practice the Lanczos approach allows to

obtain directly the amplitudes with some states j which are connected to the target states, i.e.

the ground state or low lying excited ones.

The number of levels generally considered for the discretization of the bath is of the order

of Ns = 5−12. The computation of the Green’s function in Eq. (3.25) needs only a finite

number of excited states that increases with the temperature [101–103]. At zero temperature

Eq. (3.25) simplifies since the summation over the index i disappears (we consider just the

ground state), the sum of the Boltzmann factors is equal to one while the partition function

equals the number of degenerate states.

By implementing the procedure discussed in Sec. 3.4 we get, at each step, a function

G0,new (iωn) that may lay out from the space of the functions with hybridization functions

of the kind Eq. (3.24). For this reason, we have to project back to that subspace the new

Weiss field. This procedure, which is part of the self-consistency, is performed by means of a

multi-dimensional conjugate gradient minimization in the functional space of the Weiss field.

As said the ED method enables to investigate the physics at zero-temperature, i.e. in the

ground state, giving direct access to local functions on the whole complex plane. Moreover,

the adaptive nature of the discretized effective bath minimizes the finite size effects, so that

the scaling with the number of bath sites converges already for Ns = 8−12.





Chapter 4

Correlation-driven Lifshitz transition

and orbital order in a two-band

Hubbard model

In this chapter, we present the results that we get by considering a system of two bands

with different bandwidth at quarter filling. Before doing so, we show some results about a

formally similar model that represents the paradigm for the orbital-selective Mott transition

(OSMT) [35–47]: a two-band Hubbard model with bands with different bandwidth but at

half rather than at quarter filling [32–34]. The Hamiltonian of the problem is

H =− 1√
z

∑
⟨RR′⟩,σ

2

∑
a=1

ta

(
c

†
Raσ c

R′aσ +H.c.
)
+

U

2 ∑
R

nR

(
nR −1

)
, (4.1)

on a Bethe lattice of coordination number z that we send to infinity (see Sec. 3.2). In (4.1)

the operator cRaσ (c†
Raσ ) annihilates (creates) an electron at site R in orbital a = 1,2 with

spin σ =↑,↓, nR = ∑aσ nRaσ = ∑aσ c
†
Raσ cRaσ is the number operator at site R, and ta a

nearest neighbour hopping integral, diagonal in the orbital index a. Hereafter we shall

assume t1 = 1 ≥ t2 and define the hopping anisotropy parameter α = t2/t1 ∈ [0,1]. Being at

half-filling means that the average occupation per site is of two electrons ⟨nR⟩= 2.

The model in Eq. (4.1) was studied in [33] by using Gutzwiller technique and we report

the phase diagram in the α-U plane in Fig. 4.1 (a). Three phases are observed: a two band

metal (2BM) where both bands are conducting, a phase with the narrow band localized

and the broad one still itinerant (OSMT) and a Mott insulating state where both bands

are localized (INS). All the transitions are continuous and both bands are at half-filling,

separately, in all the regions of the phase diagram. Of course, when we enter the OSMT
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Figure 4.1: Panel (a): non-magnetic phase diagram of the model Eq. (4.1) in the U–α plane. We
observe three different phases: a two-bands metal (2BM) at small U and large enough α , an orbital
selective Mott phase (OSMT) for small α and small U and a Mott insulator with both bands localized
(INS) for sufficiently large values of the interaction. The different phases are connected through a
continuous transitions. A tricritical point is present at the merging of the transition lines. Panel (b):
quasiparticle residues Za as function of U , for α = 0.3. Both Z1 and Z2 vanish at U ≃ 3.5 signaling
the transition to the Mott state. Adapted from [33].

phase the band with the smaller bandwidth is more correlated than the broad one, since the

first is localized, the second is not. By looking at the evolution of the quasiparticle weight

per band Za ≈ ma

m∗
a
, where ma (m∗

a) is the bare (dressed) mass of the carriers in band a, as

function of the Hubbard interaction amplitude U for α = 0.3, we get the same scenario even

in the 2BM phase, with Z2 < Z1. The picture that we can sketch from this brief analysis

is that the smaller is the bandwidth the larger are the effects of the correlation on it. The

occupations of the two bands do not change by increasing the size of the Hubbard interaction.

This phenomenon is paradigmatic of many physical situations, the best-known examples

being heavy fermions [104] and ruthenates [48].

Starting from this scenario, we consider the same model as in Eq. (4.1) but with an occupation

of one electron per site. This may appear as a small change in the model, but we will see

how it affects the phase diagram in Fig. 4.1 (a).

We notice that in the model Eq. (4.1) the effect of the Hund’s coupling was disregarded. This

was done in order to simplify the comparison of the phase diagram in Fig. 4.1 (a) with the

one that we are going to present in the next sections. Indeed, the model that we will consider

does not include the effect of the Hund’s interaction.
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4.1 The model

We consider the Hubbard model of two orbitals with different hopping integrals

H =− 1√
z

∑
⟨RR′⟩,σ

2

∑
a=1

ta

(
c

†
Raσ c

R′aσ +H.c.
)
+

U

2 ∑
R

nR

(
nR −1

)
−µ ∑

R

nR , (4.2)

where µ is the chemical potential and we use the same notation we used in Eq. (4.1) for

the operators and the parameters. As we anticipated we shall focus on the quarter-filled

density case, i.e. ⟨nR⟩= 1, and we consider an interaction term (see (4.2)) which includes

the monopole Slater integral U > 0, but not the Coulomb exchange J responsible of Hund’s

rule. This term corresponds to the density-density part of the Kanamori interaction [105, 51]

with no Hund’s coupling. We study this model on the Bethe lattice.

We introduce the local spin and orbital pseudo-spin operators, σσσR and τττR, respectively,

through:

σσσR = ∑
aσσ ′

c
†
Raσ σσσσσ ′ c

Raσ ′ ,

τττR = ∑
σab

c
†
Raσ σσσab cRbσ ,

where σσσ = (σ x,σ y,σ z), with σ x,y,z being the Pauli matrices. The Hamiltonian (4.2) is

invariant under global spin-SU(2) rotations. On the contrary, orbital SU(2) symmetry holds

only at α = 1, while for any α < 1 the symmetry is lowered down to U(1), which corresponds

to uniform rotations around the orbital pseudo-spin z-axis. It follows that a finite expectation

value of the z-component of the uniform pseudo-spin operator, which defines the orbital

polarisation

τz =
1
V

∑
Rσ

⟨nR1σ −nR2σ ⟩ , (4.3)

V being the number of lattice sites, is allowed by symmetry, while a finite expectation value

of σσσR and of τ
x,y
R would break a Hamiltonian symmetry, the spin SU(2) and the orbital U(1),

respectively. We underline that when α = 1 the symmetry of the model is enlarged to SU(4).

The ground state of the system, in this peculiar case, was studied in [106] for the square

lattice. They observe that the unitary cell of the system becomes a square plaquette of four

atoms, with couples of them dimerized. Each dimer involves just two of the four possible

colors, but at the end on a plaquette all of them are involved. Dimers with the same colours

are never nearest neighbor. Due to the specificity of this point α = 1, we will not consider it

in our study.
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Figure 4.2: Panel (a): Orbital polarisation τz as function of α for the non interacting (U = 0) case.
Panel (b): Schematic representation of the canted AFO phase, assuming that the U(1) symmetry
is broken along x, i.e., φ = 0 in Eq. (4.9). The arrows represent the configuration of the orbital
pseudo-spin vectors τττ at the two sites (red dots) A and B in the unit cell. θ is the angle between the z

direction and the pseudospin τττ on sublattice A (on sublattice B the angle has the value −θ ).

4.1.1 Weak and strong coupling analyses

We can actually anticipate some features of the phase diagram by simple arguments in the

weak and strong coupling regimes, respectively.

Weak coupling

When U = 0, the system describes a quarter-filled two-band metal (2BM) with uniform

orbital polarisation τz = 0 at α = 1 that increases monotonically as α decreases (see Fig. 4.2

(a)). A finite U ≪ α , small enough to justify the Hartree-Fock approximation, introduces an

effective crystal field splitting between the two bands

H → HHF =− 1√
z

∑
⟨RR′⟩,σ

2

∑
a=1

ta

(
c

†
Raσ c

R′aσ +H.c.
)

−∑
R

(
µHF nR +∆eff

R

(
n1R −n2R

))
,

(4.4)

where[31, 107]

∆eff
R =

U

2
⟨n1R −n2R ⟩= U

2
τz , ∀R , (4.5)

which, for any α < 1, favors the occupation of the band 1 that has larger bandwidth. If such

mean-field result remained valid even at sizeable U , we would expect a topological Lifshitz
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transition from a quarter-filled 2BM into a half-filled one-band metal (1BM). We note that,

as long as the model remains in a quarter-filled 2BM phase, it is stable towards a Stoner-like

instability with modulated magnetic and/or orbital ordering, which, in the present case,

is expected to corresponds to a translational symmetry breaking where the two-sublattice

become inequivalent. On the contrary, the half-filled 1BM phase should become immediately

unstable towards such symmetry breaking [108], turning the metal phase into an insulating

one with magnetic and/or orbital ordering. In particular, since the hopping is diagonal in the

orbital index, we expect a magnetic order that corresponds to a simple Néel antiferromagnet,

where, because of spin SU(2) invariance, symmetry can be broken along any spin direction.

Conversely, the Hamiltonian for any α < 1 is only invariant under orbital U(1) rotations

around the pseudo-spin z-axis. Therefore, the possible orbital orderings cannot be anticipated

as simply as for the spin ones, and we must resort to some more sophisticated calculation.

However, since all transitions are expected to occur at finite U , there is no guarantee that

the above mean-field arguments hold, and thus the need of DMFT that is able to provide

accurate results for any interaction strength.

Strong coupling

In order to foresee which orbital ordering is most likely to occur, we can still perform

some simple analysis. Deep in the Mott insulator, i.e. at strong coupling U ≫ 1, we can

map the lattice model Eq. (4.2) onto an effective Kugel-Khomskii spin-orbital Heisenberg

Hamiltonian H
U≫1−→ HKK [26, 59], where

HKK =
1
z

∑
⟨RR′⟩

{
1

16U

(
1+σσσR ·σσσR′

)[(
1+α2)

+
(
1−α2)(τz

R + τz
R′

)
+
(
1+α2)τz

R τz
R′

+2α
(

τx
R τx

R′ + τ
y
R τ

y

R′

)]

− 1
8U

(
1−α2)(τz

R + τz
R′

)
− 1

4U

(
1+α2)

}
.

(4.6)

We can solve this hamiltonian at the mean field level factorizing the wave-function into a

spin part, | ψσ ⟩, and an orbital pseudo spin one, | ψτ⟩. We assume that the expectation value

on the spin wave-function

⟨ψσ | σσσR ·σσσR′ | ψσ ⟩=−ε ∈ [−1,1] . (4.7)
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Figure 4.3: Panel (a): mean field phase diagram of the strong coupling Hamiltonian Eq. (4.6) as a
function of α and of the phenomenological parameter ε , defined in Eq. (4.7). The diagram shows
three distinct phases: a ferro- (FO) and an antiferro- (AFO) orbital state along the z-direction of the
pseudospin and a canted AFO. The AFO phase is connected to the canted AFO through a first order
transition (dashed line). The FO phase is separated from the canted AFO by a continuous transition
(solid line). When ε > 0 (ε < 0) the system has antiferromagnetic (ferromagnetic) correlations. Along
the line α = 1 the model is SU(4) invariant, and our simple mean field approximation does not apply
any more. Panel (b): the quasiparticle residues Za as function of U , for α = 0.5. Both Z1 and Z2

vanish at U =Uc2 ≃ 2.80 signaling transition to the Mott insulator. Inset: Hysteretic behaviour of Za

near the critical point. Filled (open) symbols are obtained continuing the solution from small (large)
values of U .

Let us briefly comment about the meaning of Eq. (4.7). In a generic lattice

⟨σσσR ·σσσR′⟩= ⟨σσσR⟩ · ⟨σσσR′⟩+O

(
1
z

)
, (4.8)

so that in the limit of infinite coordination, z → ∞, the parameter ε in Eq. (4.7) is finite as

long as spin SU(2) symmetry is broken, in which case the mean-field approximation predicts

an antiferromagnetic spin configuration, ε = 1, and a ferro-orbital (FO) one, with expectation

value ⟨ψτ | τz
R | ψτ⟩= 1, ∀R. On the contrary, if we were to discuss the mean-field phase

diagram of the Hamiltonian (4.6) in the paramagnetic sector and in the limit z→∞, we should,

strictly speaking, set ε = 0. In this case the mean-field approximation for any 0 < α < 1

predicts two degenerate pseudo spin configurations, one, which we denote as antiferro-orbital

(AFO), characterized by the finite expectation value ⟨ψτ | τz
R | ψτ⟩= (−1)R, and the other,

which we denote as canted antiferro-orbital (canted AFO), see Fig. 4.2 (b), with non-zero
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expectation values

⟨ψτ |
(

cosφ τx
R + sinφ τ

y
R

)
| ψτ⟩= (−1)R τ || ,

⟨ψτ | τz
R | ψτ⟩= τz ,

(4.9)

where τz = cosθ = (1−α)/(1+α), τ || = sinθ and φ is free, signalling breaking of the

orbital U(1) symmetry. This result does not agree with DMFT, see below, which suggests that

higher order terms in 1/U , not included in Eq. (4.6), split the above accidental degeneracy.

As a matter of fact, the actual DMFT phase diagram can be still rationalized through the

mean-field treatment of the simple Hamiltonian (4.6), proviso a finite ε is assumed even in

the paramagnetic sector and despite z → ∞.

For the above reason, we shall hereafter take ε as a free parameter, in terms of which the

phase diagram as function of α is that shown in Fig. 4.3 (a). Whenever ε < 0 (ferromagnetic

correlations) and α < 1 the system is in an AFO state. When instead ε > 0, as physically

expected, we find either a FO state for α < ε or a canted AFO one otherwise. The transition

between the two phases is continuous within mean-field. Finally, for ε = 0, as we mentioned,

the canted AFO and the AFO are accidentally degenerate. The transition between them is

first order.

4.2 Paramagnetic DMFT solution

We now turn to exact DMFT and start by analyzing the model (4.2) searching for param-

agnetic solutions. However, since the Hamiltonian is not orbital pseudo-spin invariant, we

cannot avoid orbital ordering.

As we commented in the previous section, since the Bethe lattice is bipartite and the Hamil-

tonian is not frustrated, the most likely spatial modulation breaks the symmetry between

the two sub-lattices, which we shall label as sublattice Λ = A and Λ = B. Within DMFT,

the lattice model is mapped onto two distinct effective impurity problems, one for each

sub-lattice. In this work we shall employ zero-temperature exact diagonalization as impurity

solver (see Sec. 3.5), with a total number Ns = 10 of sites (8 bath levels).

We first consider an intermediate value of the bandwidth ratio α = 0.5 and we show how

the weakly interacting 2BM is driven to a Mott insulating state by increasing the interaction

strength U . Such phase-transition is revealed by the evolution of the quasiparticle residue

Za =

(
1− ∂ReΣaa(ω)

∂ω

)−1

|ω=0

, (4.10)
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Figure 4.4: Panel (a)-(f): the spectral functions Aa(ω) for α = 0.5 and sublattice Λ = A. Data for
a = 1 (a = 2) are reported on the left (right) column. The results are for increasing values of U :
U = 0.0 (panels (a), (b)), U = 2.1 < Uc1 (panels (c), (d)), U = 3.1 > Uc2 (panels (e), (f)). Orbital
polarisation τz (panel (g)) and staggered in-plane component of the pseudospin τ || (panel (h)) as
function of the interaction strength U . Data are for α = 0.5. The arrow indicate the direction in the
hysteresis cycle.

which quantifies the degree of Mott’s localization of quasi-particles, being Za → 1 in the

non-interacting limit and Za → 0 at the Mott transition.

The results for Za are reported in Fig. 4.3 (b). In the weakly interacting regime the

effects of the interaction are nearly identical on the two bands, i.e. Z1 ≃ Z2. However, upon

increasing U , the two quantities start differentiating, with the wider band becoming more

correlated than the narrower one, i.e. Z1 < Z2 [109], at odds with the paradigm of the orbital

selective Mott transition [32]. At a critical value of U , the electrons on both bands localize,

as signalled by the simultaneous vanishing of Z1 and Z2. We find that the metal-insulator

Mott transition is first order. In the inset of Fig. 4.3 (b) we show that Za at the transition

suddenly jump to zero, and we also observe a clear hysteresis loop. The coexistence region

extends between Uc1 ≃ 2.20 and Uc2 ≃ 2.80.

A direct insight into the solution is obtained by the evolution of the spectral functions

Aa (ω) = − 1
π ImGaa

loc (ω) with a = 1,2, shown in Fig. 4.4 (a)-(f). At U = 0 the spectral

functions have the typical semi-elliptical shape of the Bethe lattice. Upon increasing the

interaction, see Fig. 4.4 (c)-(d), we observe at high-energy the gradual formation of the

Hubbard sidebands, coexisting with the low-energy quasiparticle peaks. For U > Uc2 the

system undergoes a transition into a Mott insulator. The corresponding spectral functions

show a large gap around the Fermi level (ω = 0) and the two Hubbard sidebands centered at

about ω =±U/2.
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Figure 4.5: Panel (a): quasiparticle residues Za as function of U and for α = 0.1. Inset: the same
quantities near the first order transition. The arrows indicate the hysteresis cycle. Panel (b): uniform
orbital polarisation, τz, and staggered one, τ ||, as a function of U . Data are for α = 0.1. The arrows
indicate the hysteresis cycle near the Mott transition.

We note that in the Mott insulator the band 2 has still weight below the Fermi level, namely,

unlike the mean-field expectation, we do not find a transition into a one-band model with

maximum orbital polarisation. In Fig. 4.4 (g) and (h) we show the values of the uniform

orbital polarisation, τz, and staggered one, τ ||, as function of U across the Mott transition.

We always find a finite uniform polarisation, but also an antiferro-orbital polarisation in the

xy-plane, which we have denoted as canted AFO state (see Fig. 4.2 (b)). This result suggests

that the observed degeneracy between the AFO along the z direction and the canted AFO

mentioned in Sec. 4.1.1 is removed in favor of the canted AFO state.

In the non-interacting limit, τ || = 0 while the uniform orbital polarisation along z is finite,

due to the different bandwidths of the two orbitals. In agreement with mean-field, upon

increasing U the wide band population grows at expenses of the narrow one, thus leading

to an increase of τz while τ || remains zero. However this tendency does not proceed till a

2BM-to-1BM transition, i.e. till τz → 1; before that happens a first-order Mott transition

takes place. At the transition, we find a sudden increase of τ || to an almost saturated value

τ || ≈ 0.9, and, consequently, τz suddenly drops to a very small value, only slightly larger

than the non-interacting one.

We now consider a smaller value of the bandwidth ratio, α = 0.1. The large mismatch

between the two bandwidth greatly enhances the occupation imbalance among the two

orbitals, already in the uncorrelated regime. We start by the behaviour of the quasiparticle

residues Za, shown in Fig. 4.5 (a). Differently from the previous α = 0.5 case, the two

bands have distinct Za already at relatively small values of U , now with the narrower band
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more correlated than the wider one. This behaviour is reversed at U ≃ 1.2, at which the

wider more populated band 1 becomes also the most correlated one. Further increasing

the correlation strength eventually drives the system into a Mott insulating state, as before

through a first-order transition at which both quasiparticle residues drop to zero.

It is useful to compare the behaviour of Za with the evolution of the orbital polarisations

τz and τ ||, shown in Fig. 4.5 (b). For very small U the system is characterized by a large

value of uniform polarisation, τz, and vanishing staggered one, τ ||. By slightly increasing the

interaction strength, the orbital polarisation rapidly saturates to τz = 1. Concomitantly, the

narrower band empties while the wider one reaches half-filling. Therefore correlation drives

in this case a continuous topological Lifshitz transition from a 2BM to a 1BM, as predicted

by the Hartree-Fock approximation. Interestingly, the narrower band keeps a high degree of

correlations, as demonstrated by the decreasing behaviour of Z2, see Fig. 4.5 (a). In other

words, although essentially empty, the band 2 is not completely decoupled from band 1.

More insights can be gained by the behaviour of the spectral functions, shown in Fig. 4.6

(a)-(f). The large orbital occupation imbalance is already visible in the non-interacting limit,

with the wider band being nearly centered around the Fermi level and, correspondingly,

the narrower one nearly empty. Upon increasing the interaction U , the narrower band 2

gets shifted entirely above the Fermi level, yet it still shows spectral weight at high energy

resulting from correlation effects. Simultaneously, the wider band recovers a particle-hole

symmetric shape characterized by a three-peaks structure, with a renormalized central feature

flanked by the two precursors of the Hubbard sidebands. For U >Uc2 a spectral gap opens

in the the half-filled wider band signaling the onset of a Mott insulating state. Notably, also

the previously empty narrow band shows the formation of a Mott gap which separates a large

spectral feature above the Fermi level from a tiny spectral weight below it, see the arrows in

Fig. 4.6 (f). The systems is thus characterized by Z1 = Z2 = 0 when it enters into the Mott

state, see Fig. 4.5 (a). As for the larger values of α , the resulting insulating state has a finite

in-plane staggered polarisation, τ ||, and a reduced value of the uniform one, τz, see Fig. 4.5

(b).

In order to ascertain the strong-coupling picture of section 4.1.1, we study the evolution

of the orbital order in the Mott insulator at large U . In Fig. 4.6 (g) we report the behaviour of

both uniform, τz, and staggered, τ ||, polarisations as function of α for U = 5. When α → 0,

τz → 1 and τ || → 0, while the opposite occurs for α → 1. The evolution between these two

limits is continuous, namely the critical αc = 0. We note that those results do not change

by decreasing or increasing the interaction strength, provided the system remains within the
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Figure 4.6: Panel (a)-(f): spectral functions for α = 0.1 and fixed spin on sub-lattice A. Data are for
increasing values of U : U = 0.0 (panels (a)-(b)), U = 1.2 (panels (c)-(d)) U = 3.3 (panels (e)-(f)).
Note the different scales in the y-axis. Arrows in panel (f) indicate tiny spectral weight below the
Fermi level for narrow band. Panel (g): Uniform orbital polarisation τz and staggered in-plane
component of the pseudospin τ || as function of α . Data are for U = 5.0.

insulating regime. This result further confirms the larger stability of the canted AFO with

respect to the AFO along the z direction in the paramagnetic domain.

We summarize all previous results in the U-α phase-diagram of Fig. 4.7. We find three

distinct phases: a metallic state at small U and large enough α in which both bands are

occupied (2BM); a metallic phase at small U and α with a half-filled wider band and an empty

narrower one (1BM); a canted AFO ordered Mott insulator at large enough interaction. The

two metallic phases are connected through a continuous Lifshitz transition [110] associated

to the correlation induced emptying of the narrow band. For a generic value of α , increasing

the interaction U drives the system into a Mott state through a first-order transition. This

transition is associated with a large coexistence region (grey shaded area) for Uc1 <U <Uc2

[111]. The merging of the Mott and the Lifshitz transition lines is a tricritical point [112].

Interestingly, the insulator and the 1BM spinodal lines show a residual dependence on α .

This reveals the strong entanglement between the two bands. Thus, although in the 1BM

phase the wider band is half-filled and particle-hole symmetric, its description can not be

simply reduced to that of a single-band Hubbard model.

This description is recovered only in the limit α → 0, where just the broader band is filled

for each value of the interaction strength. We emphasize that the quarter filling condition

⟨nR⟩= 1 differentiates this model from the Falicov-Kimball one [113]. We find that the 1BM

to Mott insulator transition at α = 0 takes place continuously at Uc =Uc2, as in the DMFT

description of the Mott transition in the single-band Hubbard model [29]. However, for any
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Figure 4.7: The non-magnetic phase diagram of the model in the U–α plane. Three different phases
are present: a two-bands metal (2BM) at small U and large enough α; a one-band metal (1BM) for
small α and small U ; and a Mott insulator with canted AFO order. The 2BM phase is connected
to the 1BM through a continuous topological Lifshitz transition (diamonds). The transition to the
canted AFO ordered Mott insulator is of first-order. The spinodal lines (filled circles and squares)
delimitate the coexistence region. The first-order critical line (filled triangles) is computed from the
energy crossing of the two solutions. A tricritical point is present at the merging of the transition line.

non-zero α a finite staggered in-plane polarisation appears, and thus both bands are partially

occupied.

4.3 Anti-ferromagnetic DMFT results

In the previous section we artificially prevented the DMFT solution to spontaneously break

spin-SU(2) symmetry and order magnetically, specifically into a simple Néel antiferromag-

netic configuration since the lattice is bipartite and the Hamiltonian not frustrated. Here

we shall instead leave the system free to order also magnetically, and study the interplay

between spin and orbital orderings. Because of spin SU(2) symmetry, all symmetry breaking

directions are equivalent, and thus we choose for convenience the z-axis and define the

staggered magnetization of orbital a = 1,2 as

ma =
1
V

∑
R∈A

⟨nRa↑−nRa↓ ⟩−
1
V

∑
R∈B

⟨nRa↑−nRa↓ ⟩ ,

and the full staggered magnetization as m = m1 +m2.
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Figure 4.8: Panels (a)-(b): uniform orbital polarisation τz and staggered spin magnetization m as
functions of the interaction U . Data are for α = 0.4. The system undergoes a first-order transition
from the 2BM to an antiferromagnetic (AFM) state, with finite m. The orbital polarisation saturates
to τz = 1 corresponding to a ferro-orbital (FO) ordering of the AFM state. The arrows indicate the
directions of the solutions in the coexistence region UAFM

c1 = 0.9 <U < 1.2 =UAFM
c2 . Panels (c)-(f):

Spin resolved spectral functions for α = 0.4, sub-lattice Λ = A, corresponding to majority spin up,
and U = 1.6. Data for the wide band are in panels (c)-(d), those for the narrow band in panels (e)-(f).

We start taking α = 0.4. In Fig. 4.8 (a) and (b) we show the evolution of the uniform

orbital polarisation τz and staggered magnetization m as function of U . By increasing the

interaction from U = 0, τz slowly increases, but the system remains a paramagnetic 2BM,

thus m = 0. For U = UAFM
c2 ≃ 1.2 we find a first-order transition to an antiferromagnetic

(AFM) ordered state, signaled by the sudden increase of the staggered magnetization m.

Concurrently, the uniform orbital polarisation saturates, τz = 1. We thus find that the magnetic

transition appear simultaneously with the emptying of the narrow band, as expected by the

Stoner instability of a half-filled single band.

We can gain insight into the nature of the AFM phase at large U by looking at the spin

resolved spectral functions of the two orbitals, shown in Fig. 4.8 (c)-(f). The wider band 1

has a particle-hole symmetric spectrum. Conversely, the narrower band lies entirely above

the Fermi level.

We now study how the phase diagram changes with α . In Fig. 4.9 (a) and (b) we show the

dependence upon α of the staggered magnetization and polarisation, m and τ ||, respectively,

and of the uniform orbital polarisation τz, deep in the insulating phase at U = 4.5. For

α ≲ 0.7 we find the same behaviour as at α = 0.4, m ≃ 1, τz ≃ 1 and τ || = 0. Surprisingly,

at α ≃ 0.7 we observe a second order transition, above which also the orbital U(1) symmetry

breaks spontaneously and the model develops a finite staggered polarisation τ ||. The stag-

gered magnetization remains almost saturated, but now has contribution from both bands.
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Figure 4.9: Panel (a): uniform orbital polarisation, τz, and staggered one, τ ||, as function of α . Panel
(b): total and orbital resolved staggered magnetization, m, m1 and m2, as function of α . Data are for
U = 4.5. The solution displays a continuous transition from the ferro-orbital antiferromagnetic state
to a canted antiferro-orbital but still antiferromagnetic state at α ≃ 0.7. Panels (c)-(f): Spin-resolved
spectral functions for α = 0.9 on sublattice A, U = 4.5 for the wide band (panels (a) and (b)) and the
narrow one (panels (c) and (d)).

Indeed, since for α < 1 the solution corresponds to a canted AFO ordering, the system has a

finite FO component along the z-direction of τ , ultimately giving rise to AFM correlations

similar to the one-band case.

To get further insight in the nature of the AFM phase for α > 0.7 we show in Fig. 4.9

(c)-(f) the spin- and orbital-resolved spectral functions at α = 0.9. It is instructive to compare

these data with those reported in Fig. 4.8 (c)-(f). For this larger value of the bandwidth ratio,

the two orbitals have almost indistinguishable spectral functions, unlike below the transition

at α ≃ 0.7.

We summarize our findings in the magnetic phase-diagram drawn in Fig. 4.10. We

find three distinct phases. At small U the 2BM is stable. For larger U an AFM ordered

insulator sets in. The magnetic transition is first-order, with a coexistence region that shrinks

on approaching α = 0. The magnetic transition takes place for any α and for values of U

smaller than those required in the absence of magnetism, i.e. UAFM
c < Uc. In particular,

as expected by comparison with the single-band Hubbard model, the 1BM region gets

completely suppressed by the onset of AFM order. Moreover, the AFM phase is cut in two by

a second order transition line associated with a change in orbital ordering. For α < 0.7 the

AFM has a saturated uniform orbital polarisation, in which only the wide band is occupied

and contributes to the magnetic ordering. Increasing the bandwidth ratio above α ≃ 0.7 leads

to spontaneous orbital-U(1) symmetry breaking, signalled by a finite in-plane staggered



4.4 Conclusions 47

Figure 4.10: Magnetic phase-diagram of the model in the U-α plane. The phase diagram shows
two main regions: a paramagnetic 2BM for small values of the interaction U and an AFM insulator
for U > UAFM

c . The magnetic transition is of the first-order. The (gray) shaded area indicates the
coexistence region. The AFM phase is further divided in two by a continuous transition: an AFM
with a canted AFO order for α > 0.7, and an AFM with full orbital polarisation for α < 0.7.

orbital polarisation. In this phase both bands are almost equally occupied and thus both

contribute to the AFM order. Interestingly, we find that this transition is independent by the

interaction strength U and that we can reproduce it at the mean field level by assuming a

value ε ≈ 0.7 for the spin-spin correlation parameter that appears in Fig. 4.3 (a).

We emphasize that the above results are valid as long as α < 1. When α = 1 the enlarged

SU(4) symmetry of the model may entail different type of spin-orbital orders [106] that we

did not analyze.

4.4 Conclusions

Despite its simplicity, two quarter-filled bands with different bandwidths subject to a

monopole Slater integral U , the model (4.2) shows a remarkably rich phase diagram once

the interplay between orbital and spin degrees of freedom are fully taken into account. In

particular, because of the bandwidth difference, the interaction U generates an effective

crystal field that tends to empty the narrower band. This shows that correlations may not

just enhance an existing crystal field, as pointed out in Ref. [114] in connection with the

physics of V2O3, but even generate one despite its absence in the original Hamiltonian. The

depletion of the narrower band continues till a topological Lifshitz transition occurs, above
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which only the wider band remains occupied and specifically half-filled. In our case study,

with a bipartite lattice and unfrustrated Hamiltonian, as soon as the narrower band empties,

a Stoner instability takes place driving the half-filled wider band into an antiferromagnetic

insulator. This magnetic insulator still shows an active role of the orbital degrees of freedom

that can drive a further phase transition between an insulator where only the wider band is

occupied into another one where a canted antiferro-orbital order appears, and thus both bands

are populated.

We argue that, in a generic situation where some degree of frustration is unavoidably

present, either geometric or caused by longer range hopping integrals, the one-band metal,

with only the wider band occupied, might remain stable till a finite U Mott transition, as

we indeed found by preventing magnetism. We thus expect that the generic phase diagram

must include, for not too strong repulsion U , a quarter-filled two-band metal separated from

a half-filled one-band metal by an interaction-induced Lifshitz transition. Both metal phases

must eventually give way to a Mott insulator above a critical U , whose precise magnetic and

orbital properties will critically depend on the degree of frustration. We end emphasising that,

at odds with the naïve expectation that a narrower band must also be the more correlated one,

we here find right the opposite. This is due to the effective crystal field ∆eff that progressively

empties the narrow band and at the same time brings the broad band closer and closer to the

half filling condition, enhancing the correlation effect on the wider band.

These results permit us to enlighten the concept presented in Chap. 1 of Mott insulator

in disguise. Indeed, the Mott insulating phase of the model becomes well describable

within an independent particle scheme as, e.g., Hartree-Fock, once symmetry breaking

is allowed. Indeed, the Hartree-Fock approximation not only allows to rationalise the

gradual depopulation of band 2 upon increasing the interaction U , but also the onset of

antiferromagnetism, and the consequent insulating behaviour, as soon as band 2 empties

completely thus leaving band 1 half-filled. Nonetheless, several features remain unaccessible

to Hartree-Fock, for instance the discontinuous character of the transition at large α and thus

large U , revealing the essential importance of the Mott physics.



Chapter 5

Vanadium dioxide: a Mott insulator in

disguise

Electronic devices like MOSFETs based on conventional semiconductors are known to have

intrinsic size limitations. A gate voltage adds carriers to a semiconductor on a surface layer

whose thickness is of the order of the electrostatic screening length, which is usually short.

This implies that, upon decreasing the size of the semiconductor device towards the nanometer

scale, the carrier surface density becomes smaller and smaller, around ∼ 1012 ÷1014 1/cm2

[119], and thus also the ON/OFF ratio (the ratio between the flowing currents in the presence

and absence of the gate voltage).

A possible route to overcome this limitation consists in using, instead of a semiconductor, a

material that can go across a resistive phase transition by changing some external parameter,

including a gate voltage. Mott insulators are evidently promising candidates for such a

purpose. Indeed a Mott insulator has, typically, a bulk charge density of ∼ 1020÷1022 1/cm3

[120], all of which should become available to electric transport as soon as the insulator

turns metallic. The use of Mott insulating materials instead of semiconductors in electronic

devices is commonly referred to as Mottronics [121–123]. The most promising candidate

for Mottronics is vanadium dioxide, which has the metal-insulator transition temperature

Tc ∼ 340 K closest to room temperature, see Fig. 5.1 (a). This material has a large ON/OFF

ratio that remains sizeable by scaling, as displayed in Fig. 5.1 (b) for a 200 nm layer. In that

particular case the resistivity jump is about four orders of magnitudes, but for bigger samples

jumps up to five orders of magnitudes are observed. Furthermore, the transition temperature

can be controlled by strain, leading to highly customisable devices [124]. Changing the

temperature is not the only way one can induce the phase transition: the metallic phase

can be stabilised starting from the insulator even through the application of an electric field

[125, 126, 117] or of a gate voltage in an electric-double layer transistor (EDLT) configuration



50 Vanadium dioxide: a Mott insulator in disguise

Figure 5.1: Panel (a): metal-insulator transition temperature for several TMO (adapted from [117]).
Panel (b): resistivity as function of temperature for a 200 nm layer of VO2 (adapted from [118]).

[127, 128]. For all those reasons, VO2 has been massively studied both theoretically and

experimentally since the seminal experiment by Morin in 1959 [67].

In this chapter, we would like to built and solve a simple model that can qualitatively describe

the physics of VO2. Before doing so, we shall need to review some properties of this

compound.

5.1 Electronic and structural properties of VO2

Simultaneously with the metal-to-insulator transition that occurs decreasing the temperature

below Tc ∼ 340 K, VO2 undergoes also a structural distortion. The high temperature (T > Tc)

crystal structure is shown in Fig. 5.2 (a); it is a rutile (R) structure with tetragonal symmetry.

When T < Tc the lattice structure becomes monoclinic, the so called M1 phase shown in

Fig. 5.2 (b). In the M1 phase, pairs of vanadium atoms, originally aligned along the rutile

c-axis, cR, see Fig. 5.2 (a), tilt outside this axis and get closer to each other, see Fig. 5.2 (b).

In other words, the chains of V along cR from being straight in the R phase become zig-zag

and dimerised in the M1 phase.

Vanadium in VO2 is in the ionic configuration V4+:[Ar] 3d1. The tetragonal crystal field of

the rutile structure splits the 3d shell into a lower threefold degenerate t2g and a higher eg

doublet. The t2g orbitals are shown in Fig. 5.2 (c), (d) and (e). The dx2−y2 orbital, also called

a1g, has two lobes pointing towards the cR axis, and, since cR/aR ∼ 0.63 < 1, it gives rise to

a band with a pronounced quasi-one-dimensional character. On the contrary, the bands that

derive from the dxz and dyz orbitals, so called eπ
g , are more isotropic.
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Figure 5.2: Panel (a): crystal structure of the metallic rutile (R) phase with tetragonal symmetry.
Here red circles indicate vanadium atoms, instead white circles indicate oxygen atoms. Panel (b):
crystal structure of the monoclinic (M1) insulating phase. Couples of vanadium atoms that were
belonging to the cR axis in the rutile phase, in the M1 crystal structure tilt outside it and dimerize.
Panels (c), (d) and (e): orbitals of vanadium atoms that mainly contribute to the bands at the Fermi
level. Orbital dx2−y2 has two lobes that lie on the cR axis. Panels (a)-(b) are adapted from [80], panels
(c)-(e) are adapted from [129].

The pictorial representation of the density of states (DOS) of the metallic and insulating

phases is shown in Fig. 5.3 (a) and (b), respectively. In the rutile metal, all three bands cross

the Fermi level EF . Note the shape of the a1g DOS, evocative of a quasi one-dimensional

system. In the monoclinic insulator, the eπ
g bands are pushed above the Fermi level, while the

a1g one is split into two sub-bands, the lower fully occupied and the upper empty. Optical

measurements are shown in Fig. 5.3 (c). In the rutile metal, red curve, a Drude peak is

observed at zero frequency, whereas in the M1 insulator, blue curve, there is an optical gap at

low frequencies, and a first hump around 1.5 eV, denoted with letter A. This peak is believed

to derive from the transitions between the lower a1g sub-band and the eπ
g , see Fig. 5.3 (b).

The second peak at 2.4 eV, denoted with letter B, is argued to correspond to the transitions

between the two a1g sub-bands, compare with Fig. 5.3 (b). The other structures in Fig. 5.3

(c) involve oxygen-p orbitals, not included in Fig. 5.3 (a) and (b).

We already mentioned in Chap. 2 that a satisfying description of the transition was given

by Goodenough [81], which we briefly recall here. The structural change that occurs in

the M1 phase can be conveniently viewed as an antiferroelectric distortion. Each vanadium

atom moves away from the centre of the oxygen octahedron. The displacement has two

components, one perpendicular and one parallel to cR, and is staggered along that axis. The



52 Vanadium dioxide: a Mott insulator in disguise

Figure 5.3: Sketch of the DOS in the metallic R phase, panel (a), and insulating M1 phase, panel (b).
The dashed line indicates the Fermi level EF of the system. Panel (c), adapted from [86], shows the
real part of the optical conductivity of a 100 nm thick sample of VO2 as function of frequency in the
metallic (red) and insulating (blue) phases.

parallel displacement is thus responsible for dimerisation, whilst the perpendicular one of the

tilting. The latter, in particular, has the indirect effect of pushing up in energy the eπ
g band

much above the Fermi level, as demonstrated by the optical conductivity in Fig. 5.3 (c) and

schematically shown in Fig. 5.3 (b). Once the eπ
g band empties, the quasi-one-dimensional

a1g one remains half-filled and dimerization, i.e., the displacement || to cR, can dig a Peierls’

hybridisation gap at the Fermi level between bonding and anti-bonding combinations as

illustrated in Fig. 5.3 (b). The system thus becomes insulating.

However, Goodenough’s view of the transition completely overlooks the contribution

that may come from the interaction among the electrons. Several authors, as Mott and

Friedman [130] and Zylbersztejn and Mott [82], pointed out the leading role of interaction

in determining the gap size of vanadium dioxide. Particularly, they noticed that by slight

substitution of V with Cr, V1−xCrxO2 enters into a new crystal structure, called M2, which is

still insulating. The full phase diagram as function of the temperature and an applied uniaxial

pressure (not dissimilar to Cr doping) is shown in Fig. 5.4 (b), and the crystal structures that

appear therein are schematically depicted in Fig. 5.4 (a) [74]. The M2 phase is characterized

by an alternation of undimerised zig-zag and dimerized straight chains. The phase indicated

as T (a shorthand for transitional) has characteristics intermediate between the M1 and the M2

phases and connects them with continuity. The undimerised zig-zag chains show magnetic

properties that are well described by a one-dimensional antiferromagnetic Heisenberg model,

which can hardly be explained without invoking sizeable electron-electron interaction. Since

the M2 phase is observed already for tiny tensile stress, Zylbersztejn and Mott concluded

that the interaction in the M1 phase must have a similar strength. Moreover, the size of the

optical gap in both phases is almost the same, suggesting that its origin might not be simply
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Figure 5.4: Panel (a): sketch of the crystal structures of vanadium dioxide that can be reached by
changing its temperature and/or its tensile pressure (chemical doping). Panel (b): tensile stress-
temperature phase diagram of VO2. A positive tensile stress means that we are stretching the sample,
a negative value means that we are squeezing it. The transition from the M1 to the M2 phase happens
with continuity through the T phase. Adapted from [74].

the structural distortion [131].

One might, therefore, speculate, following Zylbersztejn and Mott, that the metal-insulator

transition in vanadium dioxide is solely triggered by electronic correlations, rather than by

the structural distortion as in Goodenough’s scenario. This is actually not correct. Indeed, if

the charge localisation were only due to correlations, the system should remain insulating

also above the structural transition, while in reality it is metallic. We then conclude that the

electronic correlations are necessary but not sufficient to explain the transition. Moreover,

from the behaviour under chromium substitution as well as from the poor metal character of

the R phase [132, 84, 133, 83], we must equally conclude that also the lattice distortion is

necessary but not sufficient.

We end listing some facts about VO2 that any theory must cope with:

• the presence of a metal phase above the structural transition;

• the strong first order character of the MIT [134–137, 67, 138];

• the mass divergence of the conduction electrons when the metal gets closer and closer

to the insulating state [132, 84, 133, 83];

• the sizeable phonon contribution to the entropy across the transition [139];
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Figure 5.5: Panel (a): near-field scattering amplitude of a sample of VO2 at 343 K. The red, green and
light blue regions represent a metallic phase (where the scattering amplitude is larger), instead the dark
blue ones represent an insulator. From the image it emerges the simultaneous presence of metallic
and insulating clusters as expected for a first order phase transition. By lowering the temperature the
insulating clusters start to nucleate, until they cover the whole sample at 341 K. Panel (b): evolution
of the zero-frequency effective mass of the carriers in the metallic system as function of temperature
with respect to the bare mass. Adapted from [84].

• the occurrence of a dynamical phase transition in non-equilibrium situations without

any structural bottleneck (despite what previously reported) [140–142];

• the existence of an antiferromagnetic insulating phase (M2) for low applied uniaxial

pressure or low values of chromium doping [77, 74];

• the almost independence of the gap size by the crystal structure of the different M1,

M2 and T phases [82];

• the evidences of a monoclinic metal phase [143–146].

5.1.1 Evidences of a monoclinic metal

We here analyze in more details the aforementioned mass divergence in the metallic phase

when the temperature is lowered down to Tc. Due to the first order character of the transition,

when the system enters in the coexistence region, phase separation is expected. In such situa-

tion, it is not easy to understand which are the properties of the metallic and the insulating

phases, separately, since usual experimental measurements provide only space-averaged

quantities. The near-field scattering amplitude is shown in Fig. 5.5 (a) permits to distinguish

the spatial regions that are metallic from those that are instead insulating, thus making
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Figure 5.6: Panel (a) and (b): resistance and tilting angle δ of a monocrystal of vanadium dioxide
at ambient pressure as function of temperature (adapted from [145]). Panel (c): time evolution of
the intensity of two diffraction peaks of vanadium dioxide starting from the M1 phase after a sudden
excitation. The blue line corresponds to a diffraction peak sensitive to the dimerization component
of the crystal distortion, instead the red one to a peak sensitive to the tilting. The dynamics of the
process is schematized in panel (d). At the initial time ti the system is in the monoclinic M1 insulating
phase, then, after the excitation, the dimerization melts at time t1 and the tilting disappears after a
longer time t2 > t1. Panel (c) and (d) are adapted from [80].

possible to study just the part of the sample with the desired properties. In this way, from the

measurement of the real and imaginary parts of the optical conductivity, it was possible [84]

to extract the mass renormalization of the carriers in the metallic islands, which we report in

Fig. 5.5 (b). It is evident a large increase of the effective mass upon approaching the transition,

as predicted by the Brinkman-Rice theory for the MIT [132]. This observation might also

indicate a different character of the metallic phase when the coexistence region is approached.

Other experiments point out in a cleaner way that this last possibility is very meaningful.

Fig. 5.6 (a) and (b) show the resistance of a single crystal of vanadium dioxide and the

value of the tilting angle δ with respect to the cR axis as function of temperature. From

those images we infer that, by increasing the temperature, metallisation starts when the
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angle δ is still finite, meaning that the system passes through a monoclinic metal before

reaching the rutile phase. Moreover, in Fig. 5.6 (c) we can observe the time evolution of

two diffraction peaks after a sudden excitation due to a near-infrared pulse, which heats

the system above the monoclinic-to-rutile transition. The blue and red lines correspond to

diffraction peaks sensitive to dimerization and tilting, respectively. Since the characteristic

time for the disappearance of the dimerization, τ1 = 307 fm, is found to be much shorter

than that of the tilting, τ2 = 9.2 ps, one must conclude that the latter is far more stable than

the former. Fig. 5.6 (d) shows a cartoon of the transition induced by the pulse, where at the

initial time the system is in the monoclinic M1 phase. After a time τ1, the dimerization melts,

but only above τ2 the tilting disappears. In equilibrium conditions, this would correspond

to a larger critical temperature of the antiferroelectric component ⊥ to cR than that || to cR

and responsible of dimerization. As a matter of fact, such observation was already done by

Goodenough in his early work [81]. In view of those pieces of evidence, it is likely that the

monoclinic metal phase observed in several experiments [143–146] has a crystal structure

with tilting but no dimerization.

In conclusion, there are a wealth of experiments suggesting that a faithful modelling of

vanadium dioxide should include the coupling with the two lattice distortions separately

[147, 148].

5.1.2 Earlier theoretical works

We would like here to briefly review some of the main theoretical results obtained in the past

years about vanadium dioxide. We will overlook the two milestones by Goodenough [81]

and Zylbersztejn and Mott [82] since we already discussed them at length. We then start

by recalling the argument by Rice, Launois and Pouget [149] to justify the importance of

correlations in VO2. As we said, in the M2 phase the chains that are not dimerised behaves

magnetically as one-dimensional Heisenberg antiferromagnets. According to Rice, Launois

and Pouget, they must be better viewed as Mott insulators since the Fermi surface does not

display perfect nesting [150] and thus magnetism cannot arise by Stoner instability. Since

the M1 structure can be interpreted as the superposition of the two types of lattice distortions

present in M2, those authors concluded that M1 must be as correlated as M2, and both

regarded as Mott insulators.

Another evidence of the importance of correlations comes from band structure calcula-

tions. Density functional theory (DFT) calculations based on local density approximation

(LDA) or on generalized gradient approximation (GGA) are not able to reproduce the gap

opening in the M1 and M2 phases [129]. Nonetheless, they can shed light on the electronic
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Figure 5.7: Density of states of the three t2g states at the Fermi level of vanadium dioxide in the rutile
structure, as obtained by LDA. Adapted from [129].

structure in the rutile phase. Fig. 5.7 shows the LDA density of states around the Fermi level

projected onto the three t2g orbitals [129]. The band with mainly dx2−y2 orbital character has

indeed a quasi-one-dimensional shape with two pronounced peaks, as we already mentioned.

Also the dyz DOS shows two peaks, though on average lower than the dx2−y2 ones, which

actually result from backfolding the bands from the Brillouin zone of the body-centred

tetragonal lattice to the smaller zone of the simple tetragonal cell. We also note that the three

bands have almost the same bandwidth, despite what was originally believed [82, 151].

LDA+U calculations can instead reproduce the opening of the gap in both insulating states

of VO2, but they predict an antiferromagnetic ground state not only for the M2 but also for

the M1 structure [152, 153]. More refined DFT calculations based on hybrid functionals

that improve the exchange energy are instead able to reproduce the gap opening in both the

M2 and M1 phases with the proper magnetic properties [30]. As mentioned in Chap. 1, we

expect that a single particle approach can reproduce the low temperature broken symmetry

phase even of Mott insulators, though this does not answer the key question about the driving

force of the MIT in VO2.

Single-site paramagnetic DMFT calculations showed that an insulating phase can be sta-

bilised without the inclusion of the lattice degrees of freedom, though that requires an

unrealistically large value of the Hubbard repulsion ∼ 25 eV [154]. Once again, this result
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demonstrates that the lattice must play an important role in VO2.

Many other theoretical works attached this issue combining ab initio methods with DMFT,

which is believed to account for the short-range effects of the interaction better than straight

DFT-LDA. Since the unit cell of insulating VO2 contains more than one vanadium, cluster

DMFT was implemented. By means of this technique, the authors of Ref. [69] pointed out

that strong correlations actually enhance the tendency towards spin-Peierls dimerisation via

non-local self-energy corrections, thus explaining the gap opening in the M1 phase. The

important role of correlations also in the metal R phase was later highlighted by a calculation

based on DFT-LDA combined with single-site DMFT [155], which showed a substantial

increase of the effective mass by decreasing temperature, in qualitative agreement with the

data shown in Fig. 5.5 (b). Soon after, it was suggested [154] that a possible mechanism able

to explain the transition is an orbital selective Mott transition driven by a Peierls distortion.

Such possibility was however confuted by a subsequent DMFT study [70] that instead argued

for the crucial role played by Mott’s localisation in conjunction with a strong inter-site

exchange, partly confirming the prediction by Rice, Launois and Pouget.

Therefore, despite those state-of-the-art calculations, existing results are still quite controver-

sial, and it is not easy to find any common framework. This is the reason why it might be

better to come back to a simple minimal model that can describe the essential features of the

transition in a transparent way. This approach was recently attempted in [156, 71, 73], where

it is argued that the dimer Hubbard model (DHM), essentially a single-band Hubbard model

at half-filling with a two-atom unit cell, can provide a good description of VO2. This model,

however, ignores completely the eπ
g bands and includes from the start an explicit dimerisation,

hence it cannot describe the structural transition accompanying the metal-insulator transition.

Other models were actually studied in the past [157, 158, 151], in which lattice deformation

is explicitly taken into account. In most cases a simplified Born-Oppenheimer approach is

used, where the electronic Hamiltonian at fixed phonon displacement is solved to provide

an additional contribution, besides the elastic energy, to the lattice potential, whose minima

identify the equilibrium states. Despite the interesting results thus obtained, the models

studied therein lacks some ingredients that, in our opinion, may be important, or include

others that do not seem to be present according to experiments and ab-initio calculations. For

instance, in [157] a single-band model was studied without any electron-electron interaction;

in [158] a two-band model was considered in which the electrons are coupled just to a

dimerizing mode without any electron-electron interaction. The most comprehensive analysis

was presented in [151] on a three-band Hubbard model that includes the coupling with a

single mode that however induces both dimerisation of the a1g band and the splitting between

the latter and the eπ
g one. The a1g bandwidth was assumed smaller than the eπ

g one, which is
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not compatible with ab-initio results, and the interaction treated within Hartree-Fock. The

model we are going to present is actually quite close to the previous one, though we shall

handle with interaction in a better way through DMFT.

5.2 The model

We consider a quarter filled two-band Hubbard model. One band, the band 1, is meant to

describe the a1g, while the other, band 2, the eπ
g . We shall thus ignore the fact that the eπ

g

is, in reality, a doublet, which we believe is not essential. We further add two classical

dispersionless lattice modes: one, with coordinate X1, opens a dimerisation gap in the a1g,

while the other, with coordinate X2, modulates the crystal field splitting between the two

orbitals.

The model Hamiltonian is

H = Hel +Hel−ph +Hph . (5.1)

Hel is the purely electronic part and reads

Hel =
2

∑
a=1

∑
kkk

(
εa,kkk −µ

)
na,kkk +

U

2 ∑
i

ni (ni −1) , (5.2)

where nkkk,a is the occupation number at momentum kkk of the orbital a = 1,2, ni the total

electron number operator at site i, µ the chemical potential that enforces the quarter filling

condition, and finally U the on-site Hubbard repulsion. In order to emphasise the quasi-one-

dimensional character of band 1 as opposed to band 2, we assume the following density of

states (DOS):

D1 (ε) =
1

N

[
aε2 −bε4 +D2 (bD2 −a

)]
,

D2 (ε) =
2

πD

√
1−
( ε

D

)2
,

(5.3)

with ε ∈ [−D,D] and N a normalisation factor. We take b > a/D2 > 0 so that D1 (ε) has

a double-peak structure evocative of a one-dimensional DOS [151]. Hereafter, we shall

take D = 1 the energy unit, and fix aD3 = 1.9 and bD5 = 2.1. The resulting DOS’s are

shown in Fig. 5.9 (a) and (b). We have deliberately chosen the two bands with the same

bandwidth as well as centre of gravity, which is indeed suggested by ab-initio calculations

in the R phase and as also the advantage of better highlighting the interplay of interaction
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and electron-phonon coupling. Moreover, in Eq. (5.2) we just include the monopole Slater

integral U > 0, and neglect higher order multipoles responsible of Hund’s rules as well as

the long-range part of the Coulomb interaction. This approximation, that makes the analysis

more transparent, is justified for the values of U ≤ 1.5 that we shall use.

The classical potential of the lattice, see Eq. (5.1), written as a Ginzburg-Landau theory

for the antiferroelectric phase transition [147, 148], has the following expression, valid up to

the sixth order in the phonon displacements,

Hph ≡ Φ
(
X1,X2

)

= N

(
1
2

α
(
X2

1 +X2
2
)
+

1
4

β1 (2X1X2)
2 +

1
4

β2
(
X2

1 −X2
2
)2

+
1
6

γ
(
X2

1 +X2
2
)3

)
,

(5.4)

where N is the number of sites. The term proportional to β1 favours a deformation of the

lattice that involves just one of the two modes, while the term proportional to β2 prefers

deformations in which |X1| = |X2|. In the specific example of VO2, β2 > β1, i.e., it is

preferable to equally displace both modes [148] rather than just one of them. The electron-

phonon coupling can be written as:

Hel−ph =−gX1 ∑
kkkσ

(
c

†
1,kkk,σ c1,kkk∗,σ

+H.c.
)
− δ

2
X2

2 ∑
i

(
n1,i −n2,i

)

≡−gX1 Odimer −
δ

2
X2

2 Oc.f. ,

(5.5)

where c1,kkk,σ creates an electron at the momentum kkk in band 1 with spin σ , and kkk∗ is the

particle-hole conjugate of kkk such that ε1,kkk = −ε1,kkk∗ . The quadratic coupling in the crystal

field term is intentional and has a simple physical explanation. The tilting component of the

antiferroelectric distortion in the M1 phase corresponds to the displacement of vanadium

away from the centre of the oxygen octahedron, parallel to the diagonal of the rutile basal

plane. As a result, the hybridisation between the eπ
g and the p-orbitals of the oxygens closer to

the new displaced vanadium position increases, while that with the further oxygens decreases.

Such hybridisation change has the net effect of raising the eπ
g level of a quantity that is

quadratic for small displacements, hence the expression in Eq. (5.5). Since the Hamiltonian

is invariant under X1 →−X1 and X2 →−X2, we shall for simplicity study only the case with

X1,X2 > 0.

Before presenting our results, that we obtained by DMFT, we shall here briefly discuss

some general properties of the model that can be anticipated by simple arguments. Since we

assume classical phonons, and neglect their kinetic energy, the problem reduces to find the
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minima of the potential

Φeff
(
X1,X2

)
= Φ

(
X1,X2

)
+ ⟨Hel ⟩−gX1 ⟨Odimer⟩−

δ

2
X2

2 ⟨Oc.f. ⟩

≡ Φ
(
X1,X2

)
+E

(
X1,X2

)
,

(5.6)

where the expectation values are calculated on the ground state of the Hamiltonian Hel +

Hel−ph at fixed U , X1 and X2. Let us try to infer how the electronic contribution E
(
X1,X2

)

may depend on the phonon coordinates. At U = 0, the difference in DOS shapes of the two

bands implies that band 1 is more populated than band 2, so that ⟨Oc.f. ⟩ ≡ Oc.f.
(
X1,X2

)
> 0,

is finite already for X2 = X1 = 0. For small displacements, such that linear response theory is

valid,

E
(
X1,X2

)
≃ E (0,0)− δ

2
X2

2 Oc.f.
(
0,0
)
− 1

2
χdimer g2 X2

1 − 1
8

χc.f. δ
2 X4

2 , (5.7)

where χdimer and χc.f. are the thermodynamic susceptibilities in the corresponding channels,

the mixed one being absent since the two bands are not hybridised with each other. We thus

expect a softening of both modes, whose spring constants changes into α1 = α −g2 χdimer

for X1, and α2 = α −δ Oc.f.
(
0,0
)

for X2. In addition, a quartic term in X2 appears, whose

strength is larger the larger the electronic susceptibility to a crystal field splitting is. We note

that the dimerisation susceptibility ∼ ln |µ|, where |µ| is the distance between the centre of

band 1 DOS, that we assume to be the zero of energy, and the chemical potential µ < 0.

If U is finite but very small, the Hartree-Fock approximation can be safely used. Within

Hartree-Fock, the main effect of U is to lower the energy of occupied states and raise that of

unoccupied ones. It follows that Oc.f.
(
0,0
)

grows with U , so that mode X2 gets even softer.

Concurrently, since band 2 empties more and more, the chemical potential moves closer

to the centre of band 1, hence the dimerisation susceptibility grows. Beyond Hartree-Fock,

the interaction U causes also a narrowing of the quasiparticle bandwidth, which implies

a further increase of both susceptibilities, especially of χc.f. that behaves similarly to the

magnetic susceptibility, one measuring the response to a field that splits the orbital index but

not the spin, and the other vice versa. If the dimerisation coupling g = 0, further increasing

U is thus expected to make phonon X2 softer and softer, and, at the meantime, larger and

larger the strength of the quartic term, which might result into a new minimum appearing in

Φeff
(
X1,X2

)
at X2∗ > 0, and coexisting with that in the origin if α2 is still positive. Should

such minimum being the absolute one, it would correspond just to a monoclinic metal phase

with a depleted band 2. For X2∗ above a critical value X2c, band 2 empties completely and

thus band 1 becomes half-filled, the chemical potential thus reaching zero. In this case and as
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soon as g ̸= 0, also X1 will displace from the origin and dig a dimerisation gap within band 1,

thus leading to the expected insulating behaviour. Even in such a circumstance, a minimum

in the origin might still be present.

The above simple-minded discussion already suggests that our model Hamiltonian might

indeed reproduce the actual physics of VO2, as we shall further confirm by a straight DMFT

calculation. In order to simplify that calculation, in the following we shall consider just

one phonon mode, essentially enforcing the condition X1 = X2 = X that corresponds to the

preferential direction for a finite displacement, see Eq. (5.4). We shall further neglect β1 and

γ terms in Eq. (5.4), and thus write

Φ
(
X1,X2)→ Φ(X) =

k

2
X2 . (5.8)

and

Hel−ph =−gX ∑
kkkσ

(
c

†
1,kkk,σ c1,kkk∗,σ

+H.c.
)

− δ

2
X2 ∑

i

(
n1,i −n2,i

)
,

(5.9)

Even with these simplifications, the model Hamiltonian Eq. (5.1) has several parameters

to be fixed. We shall take U = 1.5, in units of the half bandwidth, which is similar to the

value estimated and used in the literature [159, 160, 151] taking into account that the realistic

value of the half-bandwidth, our energy unit, is D ≃ 1eV. The other parameters, which

involve the phonon coordinate, are chosen to be g = 0.4, δ = 0.05 and k = 0.2, values that

provide results compatible with estimates of the electron-phonon coupling [161, 158], and of

the lattice energy change across the rutile-to-monoclinic transition [162].

5.3 DMFT results

As mentioned, we have solved this problem by single-site ED DMFT (see Chap. 3) with a

bath up to 8 levels. We start by presenting the zero-temperature results and then we move to

the analysis of the finite temperature ones.

In Fig. 5.8 we show the evolution of the effective potential Eq. (5.6) as function of the

displacement X for several values of U . For each U , even in the non-interacting case, the

potential displays two minima, one at X = 0 that is always metallic, and one at X ̸= 0 that is
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Figure 5.8: Zero-temperature internal energy of the system (in arbitrary units) as function of the
amplitude of the crystal distortion X for several values of the Hubbard interaction U . Filled (open)
symbols correspond to a metallic (insulating) solution. The continuous (dashed) horizontal lines
indicate the values of the metallic (insulating) minimum at each value of U . Arrows indicate the
position of the absolute minimum for each value of the interaction.

instead always insulating. The absence of a distorted metallic phase is likely a consequence

of using a single variable X rather than two as before. When U is sufficiently small (U ≲ 0.5)

the stable phase of the system is the undistorted metal at X = 0; the other minimum at finite X

thus corresponds to a metastable phase. For bigger values of U ≳ 0.5 the situation is reversed:

the stable phase is now the distorted insulator, while the metal at X = 0 is metastable. These

results highlight the fundamental role of interaction in stabilising an insulating and distorted

ground state, in qualitative accordance with the phase diagram shown in Fig. 5.4 (b).

More insight about the two coexisting solutions can be gained by looking at the spectral

functions Aa (ω) =− 1
π Im Gloc,aa (ω) for a = 1,2. In the non-interacting case at U = 0 the

spectral functions at the two minima are shown in Fig. 5.9. As mentioned, the different shape

of the DOS leads to a population imbalance even at X = 0, when n1 ∼ 0.61 > n2 ∼ 0.39.

In the insulating minimum at X = 2.30, band 1 is split into a bonding σ (ω ∼−0.35) and

anti-bonding σ∗ (ω ∼ 1.95) combinations by the phonon, see Fig. 5.9 (c). On the contrary,

band 2 is pushed above the Fermi level, see Fig. 5.9 (d). As a result, the σ orbital is fully

occupied, while band 2 and the uppermost σ∗ are empty. This behaviour shows that the

presence of a distorted dimerised insulator is possible also without interaction in such simple

model and with our choice of Hamiltonian parameters, even though this insulating phase is

metastable.
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Figure 5.9: The spectral functions Aa (ω), a= 1,2 for the two minima observed in Fig. 5.8 for U = 0.
The metallic phase corresponds to X = 0 [(a) and (b)], while the insulator to X = 2.30 [(c) and (d)].

Figure 5.10: The spectral functions Aa (ω), a= 1,2 for the two minima observed in Fig. 5.8 for
U = 1.5. The metallic phase corresponds to X = 0 [(a) and (b)], instead the insulator corresponds to
X = 2.15 [(c) and (d)].
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For U = 1.5, which we mentioned is a reasonable estimate of the realistic value in VO2,

the situation is the opposite, the distorted insulator is the stable phase, whereas the undistorted

metal is metastable. In the latter both bands start to show the presence of Hubbard side bands,

see Fig. 5.10 (a) and (b). At the stable insulating minimum, located at X = 2.15, see Fig. 5.10

(c) and (d), the weight of the Hubbard bands seems considerably smaller than that observed

in the metallic solution. On the contrary, the size of the gap between σ and band 2 is instead

bigger than in the metastable insulating phase at U = 0. This behaviour is actually common:

once the Mott insulator is allowed to break a symmetry, in the present case X → −X , in

order to freeze the residual degrees of freedom, it partly undresses from correlations and

ends to resemble more to a conventional band insulator, like the U = 0 metastable one in our

case study. On the contrary, the dimerisation gap between σ and σ∗ is smaller than in the

metastable insulator at U = 0. This is also not surprising since this is actually a hybridisation

gap that must be renormalised downwards by the short-range repulsion. The minimal gap,

to be identified with the optical one, separates the filled σ band from the empty band 2, in

agreement with experiments, and its value Egap ∼ 0.5, in units of D ≃ 1 eV, is not far from

the experimental one Eex
gap ∼ 0.6 eV [78, 86], which supports our choice of parameters.

In order to get further insights about the degree of correlation, one can study the quasi-

particle residues in the metallic phase:

Za =

(
1− ∂ReΣaa(ω)

∂ω

)−1

|ω=0

, (5.10)

with a = 1,2. The two bands show almost the same value of this quantity and, at X = 0, we

get Za ∼ 0.68 for both a = 1,2, actually consistent with other calculations [160, 155, 154],

indicating an intermediate degree of correlation.

We now move to finite temperature T and study the evolution of the free energies

corresponding to each of the two minima observed at zero temperature. We compute the

entropy as function of T through the equation

S (X ,T ) =
∫ T

0
dT

′ 1
T

′
∂Φe f f (X ,T ′)

∂T
′ =

∫ Φe f f (X ,T )

Φe f f (X ,0)

dΦe f f

T
′ (

Φe f f

) , (5.11)

which requires the knowledge of the internal energy that we actually calculate. Estimating

the elastic constants through the curvature of each minimum at U = 1.5, we find a value

∼ 0.02 in the undistorted metal phase, and a larger one ∼ 0.10 in the distorted insulator at

X = 2.15. This result implies softer phonons, hence larger entropy, in the metal than in the

insulator, in accordance with experimental estimates [139]. However, since our modelling of
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Figure 5.11: Free energy as function of temperature T at the two minima X = 0 and X = 2.15
observed at zero temperature for U = 1.5. The first order transition occurs at Tc ∼ 0.014.

the distortion is oversimplified with respect to reality, we preferred not include the phonon

contribution to the entropy, thus underestimating the metal free energy. In addition, we

checked for same values of T that the position in X of the insulating minimum does not move

appreciably with temperature since the internal energy does so. For this reason, we kept fixed

the displacement of the insulating phase at its T = 0 value X = 2.15 at U = 1.5, see Fig. 5.8.

The free energy F (X ,T ) = Φe f f (X ,T )−T S (X ,T ) is shown in Fig. 5.11 for X = 0 and

X = 2.15 at U = 1.5. We observe a crossing at Tc ∼ 0.014, signalling a first order phase

insulator-to-metal transition. Below Tc, the free energy of the distorted insulating phase

is lower than that of the metal at X = 0. Above Tc the situation is reversed: the metal at

X = 0 becomes the most stable phase, whilst the distorted insulator turns metastable. By

converting in Kelvin the temperature Tc, we get Tc ∼ 162 K, of the same order of magnitude

as the experimental value, once again supporting our choice of parameters.

5.4 Conclusions

Despite its simplicity, the model Hamiltonian Eq. (5.1) seems able to catch some of the

main physical properties of vanadium dioxide. We obtained the right order of magnitude for

several quantities, such as the band gap of the monoclinic phase, the transition temperature,

the energy separation of the bonding and anti-bonding bands and the renormalisation of the

bands in the undistorted metal. Moreover, the model leads to a first order insulator-to-metal
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transition upon increasing the temperature or lowering the interaction. The insulating phase

has also the experimentally observed inter-band gap. From our results, it thus emerges that

the insulating M1 phase of VO2 is another example of a Mott insulator in disguise, since,

despite its resembling a Peierls’s dimerised band insulator, it would not be a stable phase

without the interaction U .





Chapter 6

NCA and OCA impurity solvers

In recent years the possibility to create ultrashort laser pulses with a duration of the order of

the femtosecond opened the way to the realization of ultrafast experimental setups, the most

common of them being the pump-probe ones. In such experiments a short and intense laser

pulse (the pump) is used to drive a system out of equilibrium and a second one (the probe) is

sent on the same sample after a delay ∆t in order to measure which are the characteristics of

the transient state reached by the system. The typical time scale of the electron-electron in-

teraction is of the order of tens to hundreds of femtoseconds while that of the electron-lattice

interaction is typically of the order of picoseconds [22]. Thus, pump-probe experiments

enable one to investigate the effects on the dynamics of the electron-electron interaction,

even before the coupling to the lattice starts to be relevant for the relaxation. With such exper-

iments it is possible to see the action, at different time-scales, of the intertwined degrees of

freedom which characterize a system and its equilibrium properties, beyond the conventional

adiabatic point of view. In the same way, pump-probe experiments also give access to novel

meta-stable phases which are usually not accessible from the thermal pathway.

These type of experiments have been broadly used to study many correlated materials such

as, for example, the vanadium dioxide [142, 163, 117, 141, 164]. For this compound in

particular a transition from the monoclinic M1 insulator to a monoclinic metallic phase was

observed at the ultrafast time scale, opening the intriguing possibility for the realization of a

switch able to operate in the femtosecond domain.

Another phenomenon that comes from the non equilibrium world is related to the possibil-

ity of light-induce a transient superconducting phase in the alkali doped fulleride K3C60

above its critical temperature Tc ∼ 20 K [165]. A clean experimental confirmation of the

superconducting nature of the photo-induced phase is still lacking (i.e. a measurement of

the Meissner effect), anyway the present experimental result can be rationalized in some

theoretical frameworks [166–168]. This state is observed even at room temperature, and it



70 NCA and OCA impurity solvers

would give rise to potentially interesting applications.

Despite the large progresses that have been made in this field from the experimental side,

from the theory one there are many obscure points that still have to be enlighten. Particularly,

the theoretical methods implemented so far are trying to provide a microscopic description

of the observed dynamics of correlated materials driven out of equilibrium. A promising

methodology is provided by the non equilibrium non-crossing approximation (NE-NCA)

applied to DMFT [169]. In this chapter we will first derive the equations to implement

equilibrium NCA [170–173] and one crossing approximation (OCA) [174] as a solver for

the AIM. Those approximations work well in the limit of small hybridizations and of temper-

atures larger than the Kondo one. In the last part of the chapter we develop the equations for

NE-NCA. Motivated by the previously mentioned experimental achievements we develop a

formalism that can be applied in both the cases with and without superconducting symmetry

breaking.

6.1 The model

We want to study the multi-orbital attractive Hubbard model, equal to the usual one but

with the sign of the interaction changed (U < 0), leading to an attractive electron-electron

interaction. This model can support superconductive and Bose-Einstein condensate (BEC)

solutions [175]. In the spirit of the DMFT analysis, we can write an Anderson-like impurity

model that reproduces the same effective action that we obtain for a single site of the original

lattice model, see Sec. 3.3. The model that we obtain is the AIM with superconducting bath,

explicitly written as [176]:

H = Himp +Hbath +Hhyb ,

Himp = ∑
a,b

∑
σ

Ea,b,σ d†
a,σ db,σ +Hint ,

Hbath = ∑
p,σ

εp,σ c†
p,σ cp,σ −∑

p

[
∆c

†
p,↑c

†
−p,↓+∆∗c−p,↓c

p,↑

]
,

Hhyb = ∑
p,a

∑
σ

[
V a

p,σ c†
p,σ da,σ +V a∗

p,σ d†
a,σ cp,σ

]
,

(6.1)

where a,b are the orbital indexes, σ is the spin, p the bath index. da,σ (d†
a,σ ) is the operator

that annihilates (creates) an electron on the level a with spin σ of the impurity, instead cp,σ

(c†
p,σ ) is the operator that annihilates (creates) an electron on the level p (= 1,2, · · · ,Ns) with

spin σ of the bath. Ea,b,σ is the hopping amplitude of an electron with spin σ from the

level b to the level a of the impurity, and Hint is the interaction, a local term that involves
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just the impurity operators. εp,σ is the energy of an electron on the level p and spin σ in

the bath and ∆ is the amplitude of the superconducting coupling of the bath electrons. We

assume a complex s-wave kind of superconductivity ∆ = |∆|e−2iφ . V a
p,σ is the amplitude of

the coupling of the bath level p with the impurity level a for spin σ . In the following we

assume that the bath energy levels are independent by the spin, so εp,σ = εp.

Since we are dealing with superconductivity, it is convenient to define the Nambu spinor of

the bath:

ψp =

(
c

p,↑
c

†
−p,↓

)
, (6.2)

and to write the expression of the modulus of the eigenvalues of the bath Hamiltonian Hbath,

Ep =
√

ε2
p + |∆|2. We can define the imaginary time hybridization matrix in the Nambu

index as:

∆̄ab (τ) =− 1
Ns

∑
p

(
V a∗

p,↑ 0

0 V a
−p,↓

)
⟨Tτψp (τ)⊗ψ†

p (0)⟩
(

V b
p,↑ 0

0 V b∗
−p,↓

)
. (6.3)

Tτ is the time ordering operator and ⊗ the direct product, that has to be interpreted as

ψp (τ)⊗ψ†
p (0) =

(
c

p,↑ (τ)c
†
p,↑ (0) c

p,↑ (τ)c−p,↓ (0)

c
†
−p,↓ (τ)c

†
p,↑ (0) c

†
−p,↓ (τ)c−p,↓ (0)

)
. (6.4)

We can explicitly compute the hybridization function of the bath

(
∆̄ab (τ)

)
11 =

1
Ns

∑
p

V a∗
p,↑V

b
p,↑

1+ eβEp




−cos2 (θp)e(β−τ)Ep − sin2 (θp)eτEp , τ ∈ (0,β )

cos2 (θp)e−τEp + sin2 (θp)e(τ+β )Ep , τ ∈ (−β ,0)
,

(
∆̄ab (τ)

)
12 =

2e2iφ

Ns
∑
p

V a∗
p,↑V

b∗
−p,↓

1+ eβEp
e

β
2 Ep




−sinh

((
τ − β

2

)
Ep

)
, τ ∈ (0,β )

sinh
((

τ + β
2

)
Ep

)
, τ ∈ (−β ,0)

,

(
∆̄ab (τ)

)
21 =

(
∆̄ab (τ)

)∗
12 ,

(
∆̄ab (τ)

)
22 =

1
Ns

∑
p

V a
−p,↓V

b∗
−p,↓

1+ eβEp




−sin2 (θp)e(β−τ)Ep − cos2 (θp)eτEp , τ ∈ (0,β )

sin2 (θp)e−τEp + cos2 (θp)e(τ+β )Ep , τ ∈ (−β ,0)
,

(6.5)
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where the third relation is true if we can map
(

V a∗
p,↑,V

b∗
−p,↓

)
in
(

V a
−p,↓,V

b
p,↑

)
, and we assume

that this is the case. The angle θp is defined as:

sin2 (θp) =
1
2

[
1− εp

Ep

]
. (6.6)

6.2 Aim of the calculation

We want to develop a DMFT solver, so, as we saw in Sec. 3.2 an important step in this

direction consist in the computation of the single-particle impurity Green’s function of the

problem. In real time this is defined as:

Ga,b (t2 − t1) =−i⟨Tt Ψa (t2)⊗Ψ
†
b (t1)⟩ (6.7)

where the spinor Ψa (t) is equal to:

Ψa (t) =

(
1 0

0 −1

)(
da,↑ (t)

d
†
a,↓ (t)

)
=

(
da,↑ (t)

−d
†
a,↓ (t)

)

The spinorial operators that appear in Eq. (6.7) are written in the Heisenberg representation,

so they evolve through the time translation operator that involves the full Hamiltonian of the

problem:

Ψa (t) = eiHtΨa (0)e−iHt (6.8)

We define H0 = Himp +Hbath and H1 = Hhyb, so the total Hamiltonian H is equal to the sum

of an unperturbed part H0 and of a perturbation H1. We have to bear in mind that, since the

part of the Hamiltonian Himp that belongs to the unperturbed H0 is non-quadratic, Wick’s

theorem does not apply for the impurity operators. This may lead to some complications if

we have to compute the average of a product of operators [177].

In order to write the propagator of the system in a suitable form to apply perturbation theory

in the hybridization coupling, we have to review some basic notions related to the pictures

in quantum mechanics. The time evolution of an operator in the Heisenberg and in the

interaction representations is given, respectively, by:

AH (t) = eiHtASe−iHt ,

AI (t) = eiH0tASe−iH0t ,
(6.9)
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instead the time evolution of a state in the Schroedinger and interaction pictures is written,

respectively, as:

|φS (t)⟩= e−iH(t−t0)|φS (t0)⟩=US (t, t0) |φS (t0)⟩ ,
|φI (t)⟩= eiH0tUS (t, t0)e−iH0t0 |φI (t0)⟩=UI (t, t0) |φI (t0)⟩ .

(6.10)

From the definition of UI (t, t0) and by considering its time derivative, it immediately follows

i∂tUI (t, t0) = H1,I (t)UI (t, t0) . (6.11)

The differential equation Eq. (6.11) can be iteratively solved, arriving at the solution

UI (t, t0) = Tt

[
e
−i
∫ t

t0
dt ′H1,I(t

′)
]
. (6.12)

The generic operator written in Heisenberg picture respect the following identity

AH (t) = eiHt
(
e−iH0tAI (t)eiH0t

)
e−iHt =UI (0, t)AI (t)UI (t,0)

=UI (0, t)eiH0tASe−iH0tUI (t,0) .
(6.13)

so that, by comparing Eq. (6.9) with Eq. (6.13), we get the equivalence e−iHt = e−iH0tUI (t,0).

This means that Eq. (6.8) can be rephrased as

Ψa (t) =UI (0, t)eiH0tΨa (0)e−iH0tUI (t,0)

=UI (0, t)eiHimptΨa (0)e−iHimptUI (t,0) ,
(6.14)

where the last equivalence follows from the commutation among the impurity and bath

operators. We can define the un-hybridized impurity and bath propagators, respectively, as:

R0 (t,0) = e−iHimpt ,

RB
0 (t,0) = e−iHbatht ,

(6.15)

so that the total un-hybridized propagator is simply given by the product of the two expres-

sions in Eq. (6.15):

R̃0 (t,0) = R0 (t,0)RB
0 (t,0) = e−i(Himp+Hbath)t . (6.16)

The previous definitions allow us to write the full propagator of the impurity as

R(t,0) = e−iHimptUI (t,0) = R0 (t,0)Tt

[
e−i

∫ t
0 dt ′R̃0(0,t ′)HhybR̃0(t

′,0)
]
, (6.17)
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in which we have to trace out the bath operators. Eq. (6.8) straightforwardly becomes:

Ψa (t) = R(0, t)Ψa (0)R(t,0) .

The computation of the full impurity propagator R(t, t0) is crucial to get the impurity Green’s

function Eq. (6.7). In the next section we give a scheme to obtain this quantity in the NCA.

6.3 Derivation of the NCA equations at equilibrium

In Sec. 6.2 we defined the propagators for the system in real time, anyway, in order to perform

perturbation theory it is more convenient to work in imaginary time τ , so that we do not

have to deal with the signs coming from the presence of the imaginary units. We work under

equilibrium conditions, so the propagators depend just by the time difference between the

final and the initial time of the propagation. The full expression of the evolution operator for

the impurity is then:

R(τ) = R0 (τ)Tτ

[
e−

∫ τ
0 dτ ′R̃0(−τ ′)HhybR̃0(τ

′)
]

(6.18)

If the bath and the impurity are un-hybridized, meaning that the Hamiltonian Hhyb goes to

zero, the dressed impurity propagator becomes equal to the bare one, as expected. Since we

do not know how to compute exactly the time ordered term that appears in Eq. (6.18), we

can rewrite its expression by a Taylor expansion

Tτ

[
e−

∫ τ
0 dτ ′R̃0(−τ ′)HhybR̃0(τ

′)
]
= 1̂−

∫ τ

0
dτ ′R̃0(−τ ′)HhybR̃0

(
τ ′
)
+

+
∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′R̃0(−τ ′)HhybR̃0

(
τ ′
)

R̃0(−τ ′′)HhybR̃0
(
τ ′′
)
+ · · ·

(6.19)

All the odd powers in Eq. (6.19) do not preserve the parity of the number of particles in the

bath, so when we trace out the operators of the bath they go to zero. Since the unperturbed

Hamiltonian H0 is quadratic in the bath operators, Wick’s theorem can be applied. The first

non-trivial term different from zero is the second order one. If we stop the expansion at that

stage Eq. (6.18) becomes:

R̂(τ) = R̂0 (τ)+
∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′R̂0

(
τ − τ ′

)
Ŝ(1)

(
τ ′− τ ′′

)
R̂0
(
τ ′′
)

(6.20)
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with:

Ŝ(1) (τ) = ∑
a,b

[
Ψ̂t

a

(
12×2 ⊗ R̂0 (τ)

)
∆̄t

ba (−τ)
(

Ψ̂
†
b

)t

− Ψ̂†
a

(
12×2 ⊗ R̂0 (τ)

)
∆̄ab (τ)Ψ̂b

]

(6.21)

The notation with the hat means that now we are dealing with matrices written in the local

Hilbert space of the impurity. The matrix 12×2 is the identity in the Nambu space, and

the product 12×2 ⊗ R̂0 (τ) means that the matrix R̂0 (τ) acts on both the components of the

Nambu vectors. Of course the dimension of the local Hilbert space dramatically depends by

the number of orbitals of the considered problem.

Eq. (6.20) and Eq. (6.21) have the drawback that they do not constitute a self-consistent

approximation. We can cure this problem by substituting the bare propagators in Eq. (6.20)

and Eq. (6.21) with the dressed ones. In this way we get the NCA equations:

R̂(τ) = R̂0 (τ)+
∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′R̂

(
τ − τ ′

)
ŜNCA

(
τ ′− τ ′′

)
R̂0
(
τ ′′
)
, (6.22)

with

ŜNCA (τ) = ∑
a,b

[
Ψ̂t

a

(
12×2 ⊗ R̂(τ)

)
∆̄t

ba (−τ)
(

Ψ̂
†
b

)t

− Ψ̂†
a

(
12×2 ⊗ R̂(τ)

)
∆̄ab (τ)Ψ̂b

]
.

(6.23)

By considering the diagrammatic representation of this equation, the name of the approxi-

mation scheme becomes apparent: just the diagrams without any crossing of the bath lines

appear in the expansion. The role played by ŜNCA (τ) is the same played by the self energy

in the usual Dyson equation for the Green’s function, so we call it in the same way. Once we

have solved self-consistently Eq. (6.22) we become able to compute the impurity Green’s

function in the NCA.

If the superconducting coupling is settled equal to zero, so that the hybridization function in

Eq. (6.5) is purely diagonal, we recover the same equations obtained for the AIM without

superconducting terms in the bath [178].

6.3.1 Useful quantities in NCA

In order to stress the importance of the quantity R̂(τ), we explicitly show how it is related

to some observables and to other useful functions. We start by illustrating the form of the
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imaginary time impurity Green’s function Gab (τ2 − τ1) in the NCA scheme:

Gab (τ2 − τ1) =−⟨TτΨa (τ2)⊗Ψ
†
b (τ1)⟩=

=−θ (τ2 − τ1)⟨Ψa (τ2)⊗Ψ
†
b (τ1)⟩+θ (τ1 − τ2)⟨Ψ†

b (τ1)⊗Ψa (τ2)⟩=

=−θ (τ2 − τ1)
1
Z

Tr
[
R̂(β + τ1 − τ2)Ψ̂aR̂(τ2 − τ1)⊗ Ψ̂

†
b

]
+

+θ (τ1 − τ2)
1
Z

Tr
[
R̂(β + τ2 − τ1)Ψ̂

†
bR̂(τ1 − τ2)⊗ Ψ̂a

]
,

where we omitted, for simplicity, the direct product of the R̂ matrix with the identity in the

Nambu space. The trace appearing therein has to be considered just on the local Hilbert

space and not on the Nambu one. The partition function Z is:

Z = Tr
[
R̂(β )

]
.

and the statistical average of a generic local operator A can still be written in terms of R̂(β ):

⟨A⟩= 1
Z

Tr
[
R̂(β ) Â

]
.

6.4 Derivation of the OCA equations

We can now go a step further in the hybridization expansion, by considering the next different

from zero order in Eq. (6.19). By retaining just the terms that correspond to Feynman

diagrams in which the hybridization lines cross one time, we arrive to write the expression

of the self-energy in the OCA. We follow the same procedure depicted in Sec. 6.3, and the
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self-energy that we obtain is:

ŜOCA (τ) =−∑
a,b

∑
c,d

∑
l,m

∑
h,k

∫ τ

0
dτ2

∫ τ2

0
dτ1

[
(
Ψ̂t

a

)
l
R̂(τ − τ2)

(
Ψ̂b

)
m

R̂(τ2 − τ1)
(

Ψ̂†
c

)
h

R̂(τ1)
(

Ψ̂
†t
d

)
k(

∆̄ca (β + τ1 − τ)
)

l,h

(
∆̄db (β − τ2)

)
m,k

+

+
(
Ψ̂t

a

)
l
R̂(τ − τ2)

(
Ψ̂

†t
b

)
m

R̂(τ2 − τ1)
(

Ψ̂†
c

)
h

R̂(τ1)
(
Ψ̂d

)
k

(
∆̄ca (β + τ1 − τ)

)
l,h

(
∆̄bd (τ2)

)
m,k

+

+
(

Ψ̂†
a

)
l
R̂(τ − τ2)

(
Ψ̂

†t
b

)
m

R̂(τ2 − τ1)
(
Ψ̂t

c

)
h

R̂(τ1)
(
Ψ̂d

)
k

(
∆̄ac (τ − τ1)

)
l,h

(
∆̄bd (τ2)

)
m,k

+

+
(

Ψ̂†
a

)
l
R̂(τ − τ2)

(
Ψ̂b

)
m

R̂(τ2 − τ1)
(
Ψ̂t

c

)
h

R̂(τ1)
(

Ψ̂
†t
d

)
k(

∆̄ac (τ − τ1)
)

l,h

(
∆̄db (β − τ2)

)
m,k

] ,

(6.24)

where l,m,h,k = 1,2 are Nambu indexes. The total self-energy of the problem is given by

the sum of the NCA and the OCA terms in Eq. (6.23) and Eq. (6.24), so we write:

Ŝtot (τ) = ŜNCA (τ)+ ŜOCA (τ) . (6.25)

The Dyson equation remains substantially unchanged with respect to the one that we wrote

in Eq. (6.22), the only difference being that the self-energy is the one in Eq. (6.25):

R̂(τ) = R̂0 (τ)+
∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′R̂

(
τ − τ ′

)
Ŝtot

(
τ ′− τ ′′

)
R̂0
(
τ ′′
)
. (6.26)

The self-energy in the OCA Eq. (6.24) is much more involved with respect to the one in the

NCA, especially for the presence of the double time integral. Luckily we can simplify its

computation by defining some ad hoc functions so that, at the end, we can reduce the double
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integral as two single-variable integrals. We define:

(
f̂1
)ad

l,k
(τ,τ2) = ∑

b,m

(
Ψ̂t

a

)
l
R̂(τ − τ2)

(
Ψ̂b

)
m

(
∆̄db (β − τ2)

)
m,k

,

(
f̂2
)ad

l,k
(τ,τ2) = ∑

b,m

(
Ψ̂t

a

)
l
R̂(τ − τ2)

(
Ψ̂

†t
b

)
m

(
∆̄bd (τ2)

)
m,k

,

(
f̂3
)ad

l,k
(τ,τ2) = ∑

b,m

(
Ψ̂†

a

)
l
R̂(τ − τ2)

(
Ψ̂

†t
b

)
m

(
∆̄bd (τ2)

)
m,k

,

(
f̂4
)ad

l,k
(τ,τ2) = ∑

b,m

(
Ψ̂†

a

)
l
R̂(τ − τ2)

(
Ψ̂b

)
m

(
∆̄db (β − τ2)

)
m,k

,

(6.27)

and:

(ĝ1)
da
k,l (τ,τ2) = ∑

c,h

∫ τ2

0
dτ1R̂(τ2 − τ1)

(
Ψ̂†

c

)
h

R̂(τ1)
(

Ψ̂
†t
d

)
k

(
∆̄ca (β + τ1 − τ)

)
l,h

,

(ĝ2)
da
k,l (τ,τ2) = ∑

c,h

∫ τ2

0
dτ1R̂(τ2 − τ1)

(
Ψ̂†

c

)
h

R̂(τ1)
(
Ψ̂d

)
k

(
∆̄ca (β + τ1 − τ)

)
l,h

,

(ĝ3)
da
k,l (τ,τ2) = ∑

c,h

∫ τ2

0
dτ1R̂(τ2 − τ1)

(
Ψ̂t

c

)
h

R̂(τ1)
(
Ψ̂d

)
k

(
∆̄ac (τ − τ1)

)
l,h

,

(ĝ4)
da
k,l (τ,τ2) = ∑

c,h

∫ τ2

0
dτ1R̂(τ2 − τ1)

(
Ψ̂t

c

)
h

R̂(τ1)
(

Ψ̂
†t
d

)
k

(
∆̄ac (τ − τ1)

)
l,h

.

At the end, the OCA part of the self-energy Eq. (6.24) can be written

ŜOCA (τ) =−∑
a,d

∑
l,k

4

∑
η=1

∫ τ

0
dτ2
(

f̂η

)ad

l,k
(τ,τ2)(ĝη)

da
k,l (τ,τ2) .

In this last form it is easier to computationally perform the self consistent cycle to solve the

Dyson equation Eq. (6.26). We just mention that the way in which useful quantities can be

computed in the OCA is reported in [178].

6.5 Derivation of the NCA equations for the non equilib-

rium case

We want now to consider an out of equilibrium problem. In this respect, we have to slightly

modify the definition of the impurity propagator with respect to the one that we gave in the

previous sections [179, 169, 180]. We are interested in studying the transient dynamics of

the system and not just the asymptotic state reached at infinite times. Due to this reason
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Figure 6.1: Kostantinov-Perel contour C in the complex plane. We notice that this is an oriented
contour in which the upper branch goes in the forward direction, instead the lower one goes in the
backward one.

we have to consider a time evolution of the operators on the Kostantinov-Perel contour (the

Keldysh contour from t0 to t plus a peace along the imaginary axis from t0 to t0 − iβ ) shown

in Fig. 6.1. Since we are out of equilibrium, the propagator depends by the two times among

which we are evolving the system.

By using a notation similar to the one we introduced before, the bare impurity propagator

gets the form:

R0
(
z,z′
)
=−iTC

[
e−i

∫
C dz1Himp(z1)

]
, (6.28)

where z,z′ are complex variables that live on the Kostantinov-Perel contour C and TC is the

time ordering operator on C. The integral that appears at the exponent of the exponential has

to be performed along the contour. With respect to the equilibrium case, we have defined the

propagator with an imaginary unit that was not included before. Due to this reason we have

to be careful when we compute the composition of two propagators. The initial condition

will be changed as:

R0
(
z,z−

)
=−i1 , (6.29)

where z− is infinitesimally before z and 1 is the identity operator.

In a similar way we can define the bath and the total bare propagators as:

RB
0
(
z,z′
)
= iTC

[
e−i

∫
C dz1Hbath(z1)

]
,

R̃0
(
z,z′
)
= R0

(
z,z′
)

RB
0
(
z,z′
)
,

(6.30)
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with initial conditions:

RB
0
(
z,z−

)
= i1 ,

R̃0
(
z,z−

)
= 1 .

(6.31)

The fully dressed impurity propagator has the same formal expression as Eq. (6.18), but the

time ordering and the integration at the exponent of the exponential have to be considered

on the contour. Moreover the propagators depend explicitly by the initial and final times.

The procedure that we implement in order to get the NCA equations for the non equilibrium

case is the same as in equilibrium, and as a matter of fact the result that we get has the same

formal structure:

R̂
(
z,z′
)
= R̂0

(
z,z′
)
+
∫

C
dz1

∫

C
dz2 R̂0 (z,z1) ŜNCA (z1,z2) R̂

(
z2,z

′) , (6.32)

where the self-energy is:

ŜNCA (z1,z2) = i∑
a,b

[Ψ̂t
a

(
12×2 ⊗ R̂(z1,z2)

)
∆̄t

b,a (z2,z1)
(

Ψ̂
†
b

)t

− Ψ̂†
a

(
12×2 ⊗ R̂(z1,z2)

)
∆̄a,b (z1,z2)Ψ̂b] .

(6.33)

The contour integrals in Eq. (6.32) have to be interpreted in the following way:

∫

C
dz1 −→





∫ z
z′ dz1 , z > z′
∫ z

t0
dz1 +

∫ t0−iβ
t0

dz1 +
∫ t0

z′ dz1 , z < z′
. (6.34)

Again, Eq. (6.32) can be solved self-consistently, but in this case the un-known matrix of

functions R̂(z1,z2) depends by two variables, making the problem much more difficult to be

solved with respect to the equilibrium one. For this reason we want to find another way to

solve it. The bare impurity propagator R0 (z,z
′) satisfies the equation of motion:

[i∂z −Himp (z)]R0
(
z,z′
)
= δC

(
z,z′
)
, (6.35)

where δC (z,z
′) is the Dirac’s delta on the contour. By applying

[
i∂z − Ĥimp (z)

]
to Eq. (6.32)

we get an integro-differential equation

i∂zR̂
(
z,z′
)
= Ĥimp (z) R̂

(
z,z′
)
+
∫

C
dz1ŜNCA (z,z1) R̂

(
z1,z

′)+δC

(
z,z′
)
. (6.36)
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If in Eq. (6.36) we exclude the case z = z′, the Dirac’s delta can be canceled out. This

equation is less computationally expansive to be solved than Eq. (6.32); indeed, once that we

have an initial condition for the propagator, we have a recipe to evolve it in time. In order to

explicitly solve this problem, we have to project it on its Keldysh components. This is done

in App. B.

6.5.1 Useful quantities in non-equilibrium NCA

In this section we follow [181]. If we set t0 = 0 we can write the partition function of the

system:

Z = Tr
[
iR̂
(
−iβ ,0+

)]
.

The occupation for spin σ on the impurity level a is given by:

na,σ (z) = ⟨d†
a,σ (z)da,σ

(
z−
)
⟩= 1

Z
Tr
[
R̂(0,z) d̂†

a,σ R̂(z,0) R̂
(
0,z−

)
d̂a,σ R̂

(
z−,0

)]
=

=− 1
Z

Tr
[
R̂
(
z−,0

)
R̂(0,z) d̂†

a,σ d̂a,σ

]
=

i

Z
Tr
[
R̂
(
z−,z

)
d̂†

a,σ d̂a,σ

]

For the double occupancies of the level a of the impurity we have:

Da (z) = ⟨d†
a,↑ (z)d

a,↑
(
z−
)

d
†
a,↓
(
z−−)d

a,↓
(
z−−−)⟩= i

Z
Tr
[
R̂
(
z−,z

)
d̂

†
a,↑d̂

a,↑d̂
†
a,↓d̂

a,↓

]

We can even write the normal part of the impurity Green’s function, given by:

Ga,b,σ

(
z,z′
)
=−i⟨TCda,σ (z)d

†
b,σ

(
z′
)
⟩=

=−i
[
θC

(
z,z′
)
⟨da,σ (z)d

†
b,σ

(
z′
)
⟩−θC

(
z′,z
)
⟨d†

b,σ

(
z′
)

da,σ (z)⟩
]
=

=
i

Z

(
θC

(
z,z′
)
−θC

(
z′,z
))

Tr
[
R̂
(
z′,z
)

d̂a,σ R̂
(
z,z′
)

d̂
†
b,σ

]

The anomalous Green’s function is instead:

Fa,b,σ

(
z,z′
)
=−i⟨TCd

†
a,↑ (z)d

†
b,↓
(
z′
)
⟩=

=
i

Z

(
θC

(
z,z′
)
−θC

(
z′,z
))

Tr
[
R̂
(
z′,z
)

d̂
†
a,↑R̂

(
z,z′
)

d̂
†
b,↓

]

To conclude we write also the superconducting order parameter:

δa,b (z) = ⟨d†
a,↑ (z)d

†
b,↓
(
z−
)
⟩= i

Z
Tr
[
R̂
(
z−,z

)
d̂

†
a,↑d̂

†
b,↓

]
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6.6 Conclusions

In this chapter we obtained a complete set of equations that permit to solve the impurity

problem with superconducting bath under equilibrium conditions in the framework of the non

crossing and of the one-crossing approximations. Moreover, we obtained the equations for

solving the same problem out of equilibrium in the NCA. The derivation that we implemented

is clean and permit to reproduce, in the non-superconducting case, the equations already in

the literature. Once implemented they open the possibility for the study of a broad number of

systems, ranging from the metal-insulator transition induced by out of equilibrium sources

to the Bose-Einstein condensate induced by external perturbations. We will comment a bit

more about those possible realizations in Chap. 7 devoted to the general conclusions and

perspectives for future works.



Chapter 7

Conclusions and perspectives

In this thesis, we analyzed the simplest generalizations of the single band Hubbard model

at half filling, so systems with two bands interacting through a local Hubbard repulsion

at quarter filling. More specifically, we analyzed the effect of the breaking of the orbital

degeneracy in two cases: one with two bands with the same shape but different bandwidth,

the second with same bandwidth but different shape coupled to a lattice deformation. We

believe that the second of those provides a good description of the qualitative physics of

vanadium dioxide.

The method that we used in order to study those problems is DMFT with exact diagonal-

ization as impurity solver, particularly cheap from the computational point of view. This

method of solution of the Anderson problem is not exact but quickly converges to a good

approximation of the true solution as it is common for variable grid methods (indeed, both

the energy levels of the bath and the hybridization of them with the impurity are free to

adjust themselves). In Chap. 3 we presented the DMFT with particular emphasis on its ED

formulation.

In Chap. 4 we analyzed the system with bands with different bandwidth at quarter filling.

For this model, we were able to draw the phase diagrams both in the paramagnetic and the

magnetic cases as a function of the Hubbard interaction U and of the bandwidth ratio α . The

obtained results are at zero temperature. For what concerns the metallic phase the picture

that we get is, to some extent, the opposite with respect to the one for the same model at

half filling. There the band with the smaller bandwidth is the more correlated one, instead

at quarter filling there are some regimes in which it is the broader band the most correlated.

In the insulating state, we observe a spontaneous symmetry breaking of the orbital U(1)

symmetry, leading to a canted AFO order in the paramagnetic case. When we allow for

the presence of a magnetic kind of order antiferromagnetism settles in for each value of

the bandwidth ratio, and we observe the occurrence of an orbital-flip transition at a finite
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value of α . Particularly, when the two bands have a comparable bandwidth (α > 0.7) we

observe again the canted AFO order, instead when one band has a bandwidth quite smaller

than the other (α < 0.7) just the broad band is filled. In any case, the system remains an

antiferromagnet across the orbital transition.

Chap. 5 was devoted to the presentation of some experimental and theoretical results about

vanadium dioxide that suggest a Mott nature for the insulating phases of VO2, even if dis-

guised by a lattice distortion that plays an important role for its stabilization. The correlated

nature of this compound can be directly observed by looking at the bad metallic behaviour

of the high-temperature rutile phase. We also introduced a model that can describe some of

those features. Particularly, we were able to observe the correct qualitative behaviuor for

the transition from a distorted insulator to an undistorted metal induced by increasing the

temperature or by decreasing the Hubbard interaction. Moreover, we obtained the proper

order of magnitude for several quantities as the energy gap in the monoclinic insulating

phase, the energy separation between the bonding and the anti-bonding states and the critical

temperature for the occurrence of the first order transition.

Due to a large number of experiments available about vanadium dioxide, it would be inter-

esting to study the dynamics of this model in the out of equilibrium case. Of course, the

presence of the lattice distortion complicate the description, and ad hoc methods have to be

tailored to treat such problem.

Despite the nice portrait of the material properties that we got from this model study, yet there

are some limitations. A better description of the compound can be gained by considering

two distinct phonons coupled to the two interactions since there is experimental evidence

that the components of the structural phase transition are two. It will be challenging to

understand which is the proper range of variation for the coupling constants α , β1, β2 and

γ that appear in Eq. (5.4), for which we can try to refer to some experimental results [139].

Those considerations pave the way to further theoretical investigation that can lead to a better

description of the compound and possibly explain other experimental observations, e.g. the

presence of the monoclinic metal.

In Chap. 6 we focused on the derivation of the equations that permit to implement an impurity

solver in the NCA or OCA in the equilibrium case and in NCA for the out of equilibrium

condition. The equations are suitable for the description of a superconducting or a BEC state.

Unfortunately, we did not have time to implement the equations in a code and then to get

some results, but we are planning to do so in the next future. The system that we would like

to study is, at the present time, a single band model at half-filling with attractive Hubbard

interaction U . Since NCA works well in the limit of small hybridizations, i.e., large values of

U , we have to work in the region where we have, at low temperatures, the BEC, and at larger
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temperatures the pseudo-gap phase with preformed pairs. In this case, it would be interesting

to study the possibility of a transition from the pseudo-gap phase to the BEC by driving the

system out of equilibrium.

Another ongoing project that will be the object of subsequent analysis is related to the results

reported in App. A. We consider again a two band system, but with a different occupation

with respect to the one mainly considered in this thesis. Indeed, we studied the large U limit

of a two bands model at half-filling, allowing for the presence of a crystal field splitting and

Hund’s coupling. In a model close to the mentioned one [182], studied on a square lattice in

a ribbon geometry, a magnetic pattern not of the (π,π) kind is observed, and an explanation

for its occurrence is still lacking. We hope to get some information more about this peculiar

kind of order by analyzing the strong coupling expansion of a simpler model with respect to

the one in which the phenomenon was first observed, but with the same lattice geometry.
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Appendix A

Strong coupling expansion

General derivation

In this section we will follow [183] in order to develop a general formalism that permits to

perform a strong coupling expansion for a generic Hamiltonian problem. We consider the

Hamiltonian H = H0 +V that acts on a Hilbert space H . This Hamiltonian satisfies the

eigenvalue equation:

H|ψ⟩= E|ψ⟩ . (A.1)

H0 has a degenerate ground state, and this manifold belongs to the Hilbert space H0. The

Hamiltonian satisfies the eigenvalue problem:

H0|ψ0⟩= E0|ψ0⟩ .

We define two projectors: P, that projects on the Hilbert space H0, and Q = 1−P, that

projects on H \H0, so that P+Q acts as the identity on H . We can rewrite Eq. (A.1) as:

(P+Q)H (P+Q) |ψ⟩= E (P+Q) |ψ⟩ ,

so on H0:

PHP|ψ⟩+PHQ|ψ⟩= EP|ψ⟩ , (A.2)

and on H \H0:

QHP|ψ⟩+QHQ|ψ⟩= EQ|ψ⟩ .

Since, for a projector, holds the property Q2 = Q, we can rewrite the last equation as:

(E −QHQ)Q|ψ⟩= QHP|ψ⟩ ,
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and, at the end:

Q|ψ⟩= (E −QHQ)−1
QHP|ψ⟩ . (A.3)

By substituting Eq. (A.3) into Eq. (A.2) we get:

PHP|ψ⟩+PHQ
1

E −QHQ
QHP|ψ⟩= EP|ψ⟩ .

Now we can define an effective Hamiltonian He f f that acts on the Hilbert space H0 starting

from the Hamiltonian that acts on the full Hilbert space H :

He f f = P(H0 +V )P+P(H0 +V )Q
1

E −QHQ
Q(H0 +V )P .

Since H0 has eigenstates in H0, the product QH0P is equal to zero. We can rewrite:

He f f = PH0P+PV P+PV Q
1

(E0 −QH0Q)− (E0 −E +QV Q)
QV P .

By using the expansion:
1

A−B
=

1
A

∞

∑
n=0

(
B

1
A

)n

,

where, in our case, A = E0 −QH0Q and B = E0 −E +QV Q, we arrive at the expression

He f f =PH0P+PV P+

+PV Q
1

E0 −QH0Q

∞

∑
n=0

[
(E0 −E +QV Q)

1
E0 −QH0Q

]n

QV P .
(A.4)

By stopping the expansion at n = 0, we get

Hn=0
e f f = PH0P+PV P+PV Q

1
E0 −QH0Q

QV P . (A.5)

Eq. (A.4) is not good if we want to go beyond the n = 0 limit. In that case we need to know

the true ground state energy of the system E that generally is not known. In that case is better

to use Kato’s perturbation theory.

In the next sections we apply this general formalism to two specific cases:

• two bands at quarter filling with different bandwidth interacting by the Hubbard

interaction;

• two un-hybridized bands at half filling with the same bandwidth interacting by the

Hubbard and Hund interactions, lifted by a crystal field.
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Warming up: the Kugel-Khomskii Hamiltonian

Let us consider a two band Hubbard model with bands with different bandwidth. We consider

the system at quarter filling, so with an average occupation of one electron per site. The

Hamiltonian of the problem reads as:

H =− ∑
⟨R,R′⟩

∑
a,b

∑
σ

ta,b

(
c

†
R,a,σ c

R′,b,σ +h.c.
)
+

U

2 ∑
R

nR (nR −1)−µ ∑
R

nR . (A.6)

with R and R′ lattice site labels, and the summation over R and R′ in the kinetic term has to

be performed just over nearest-neighbor sites. cR,a,σ (c†
R,a,σ ) is the annihilation (creation)

operator of one electron on site R in orbital a = 1,2 and spin σ =↑,↓. nR is the number

operator on site R, ta,b the probability amplitude of the hopping process of an electron from

orbital b on site R′ to orbital a on site R nearest neighbor of R′, and vice versa. U is the

strength of the Hubbard interaction, and µ the chemical potential that we change in order

to fix the occupation. Essentially, the model Eq. (A.6) has the same structure of the one

presented in Sec. 4.1, except for the fact that here we are allowing for inter-band hoppings.

We want to derive an effective Hamiltonian for model Eq. (A.6) valid in the limit of strong

correlation regime U ≫ ta,b ∀ a,b = 1,2. This problem was already treated by Kugel and

Khomskii in [59], and we briefly sketch its derivation. In order to do so we can use Eq. (A.5),

with

H0 =
U

2 ∑
R

nR (nR −1)−µ ∑
R

nR ,

V =− ∑
⟨R,R′⟩

∑
a,b

∑
σ

ta,b

(
c

†
R,a,σ c

R′,b,σ +h.c.
)
.

(A.7)

Instead of considering the whole lattice, let’s restrict the calculation to two nearest neighbor

sites R and R′. In the limit of large interaction, the electrons are localized, so the Hilbert space

H0 on which the projector P acts is the one of one electron states. We can write the states

that we use in order to build the projector P as the direct product of the local state with one

electron on each of the two sites {| ↑,0⟩, | ↓,0⟩, |0,↑⟩, |0,↓⟩}R⊗{| ↑,0⟩, | ↓,0⟩, |0,↑⟩, |0,↓⟩}R′

with the convention that | ↑,0⟩R means that we have one electron with spin up in orbital

1 on site R. Since the kinetic term V changes the occupations on the sites involved in the

hopping process, we can conclude that P(V )R,R′ P = 0. For each state that appears in the

projector P the expectation value of the Hamiltonian (H0)R,R′ is equal to −2µ . The action of

(V )R,R′ on a state that belongs to H0 leads the system to arrive in a state that belongs to the

set {|0,0⟩}R ⊗{| ↑↓,0⟩, |0,↑↓⟩, | ↑,↓⟩, | ↓,↑⟩, | ↑,↑⟩, | ↓,↓⟩}R′ ∪{| ↑↓,0⟩, |0,↑↓⟩, | ↑,↓⟩, | ↓,↑
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⟩, | ↑,↑⟩, | ↓,↓⟩}R ⊗{|0,0⟩}R′ . The projector Q has a non null action just on this subspace of

H \H0. The expectation value of H0 on one of those states is always equal to U −2µ , and

since E0 =−2µ we can rewrite Eq. (A.5) without the projectors, by simply reminding that

the Hamiltonian as to act on the states with one electron per site

H
R,R′
e f f =− 1

U
∑

σ ,σ ′
∑
a,b

∑
a′,b′

ta,bta′,b′(c
†
R,a,σ c

R′,b,σ c
†
R′,b′,σ ′cR,a′,σ ′+

+ c
†
R′,b,σ cR,a,σ c

†
R,a′,σ ′ ĉR′,b′,σ ′) =

(A.8)

=
1
U

∑
σ ,σ ′

∑
a,b

∑
a′,b′

ta,bta′,b′(c
†
R,a,σ c

R,a′,σ ′c
†
R′,b′,σ ′cR′,b,σ+

+ c
†
R′,b,σ ĉR′,b′,σ ′c

†
R,a′,σ ′cR,a,σ )+

− 1
U

∑
σ

∑
a,a′

∑
b

ta,bta′,b(c
†
R,a,σ c

R,a′,σ + c
†
R′,a,σ c

R′,a′,σ ) .

In order to encode directly in the operators the constraint about the number of the electrons

per site, we can map the action of couples of fermionic operators in some spin and pseudospin

ones. Indeed we can characterize each local state with two quantum numbers, one related

to the spin ⟨σ z
R⟩=±1, where ⟨σ z

R⟩=+1 (⟨σ z
R⟩=−1) means that we have an electron with

spin up (down) on site R, and the other related to the orbital or pseudospin degree of freedom

⟨τz
R⟩=±1, where ⟨τz

R⟩=+1 (⟨τz
R⟩=−1) means that we have one electron in orbital 1 (2)

on site R. The mapping is performed as follows:

c
†
R,a,↑c

R,a,↓ −→
(

1
2
+(−1)a−1 τz

R

)
σ+

R ,

c
†
R,a,↓c

R,a,↑ −→
(

1
2
+(−1)a−1 τz

R

)
σ−

R ,

c
†
R,1,σ cR,2,σ −→ τ+R

(
1
2
+(−1)σ−1 σ z

R

)
,

c
†
R,2,σ cR,1,σ −→ τ−R

(
1
2
+(−1)σ−1 σ z

R

)
,

c
†
R,a,σ cR,a,σ −→

(
1
2
+(−1)a−1 τz

R

)(
1
2
+(−1)σ−1 σ z

R

)
,

c
†
R,1,↑c

R,2,↓ −→ τ+R σ+
R ,

c
†
R,1,↓c

R,2,↑ −→ τ+R σ−
R ,

c
†
R,2,↑c

R,1,↓ −→ τ−R σ+
R ,

c
†
R,2,↓c

R,1,↑ −→ τ−R σ−
R .

(A.9)
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With this map we are reducing the local Hilbert space of the problem from the dimension

of 16 ({| 0,0⟩, |↑,0⟩, |↓,0⟩, | 0,↑⟩, | 0,↓⟩, |↑↓,0⟩, | 0,↑↓⟩, |↑,↓⟩, |↓,↑⟩, |↑,↑⟩, |↓,↓⟩, |↑↓,↑⟩, |↑↓
,↓⟩, |↑,↑↓⟩, |↓,↑↓⟩, |↑↓,↑↓⟩}) to the dimension of 4 ({|↑,0⟩, |↓,0,⟩, | 0,↑⟩, | 0,↓⟩}) . This is

allowed since we are in the limit of huge interaction compared to the kinetic term, so the

charge fluctuations are suppressed.

By performing the substitutions we arrive at the form

H
R,R′
e f f =

1
4U

(1+σσσR ·σσσR′){t2
11 + t2

22 +2t2
12 +

(
t2
11 − t2

22
)(

τz
R + τz

R′
)
+

+
(
t2
11 + t2

22 −2t2
12
)

τz
Rτz

R′ +2t12
[
t11 + t22 +(t11 − t22)τz

R

]
τx

R′+

+2t12
[
t11 + t22 +(t11 − t22)τz

R′
]

τx
R+

+2
[
t11t22

(
τx

Rτx
R′ + τ

y
Rτ

y

R′
)
+ t2

12
(
τx

Rτx
R′ − τ

y
Rτ

y

R′
)]
}+

− t12

U
(t11 + t22)(τ

x
R + τx

R′)−
1

2U

(
t2
11 − t2

22
)(

τz
R + τz

R′
)
+

− 1
U

(
t2
11 + t2

22 +2t2
12
)
.

(A.10)

If we impose t12 = 0, t11 = 1/2 and t22 = α/2, we get HKK = 1
z ∑⟨R,R′⟩H

R,R′
e f f encountered

in Eq. (4.6).

A less-trivial derivation: two bands at half filling

We consider a two-band Hubbard model with bands with different bandwidth. The system is

at half filling, so with an average occupation of two electrons per site. The Hamiltonian of

the problem reads as:

H =− ∑
⟨R,R′⟩

∑
a,b

∑
σ

ta,b

(
c

†
R,a,σ c

R′,b,σ +h.c.
)
+

U

2 ∑
R

nR (nR −1)

−∆∑
R

(
nR,1 −nR,2

)
− 2

3
JNs + J ∑

R

(
τττ2

R −
(
τz

R

)2
)
.

(A.11)

∆ is a crystal field term, instead J represents the intensity of the Hund’s coupling. In the

following we will consider a situation of the kind U > J,∆ ≫ ta,b. We can divide the
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Hamiltonian as:

H0 =
U

2 ∑
R

nR (nR −1) ,

V =− ∑
⟨R,R′⟩

∑
a,b

∑
σ

ta,b

(
c

†
R,a,σ c

R′,b,σ +h.c.
)
−∆∑

R

(
nR,1 −nR,2

)
− 2

3
JNs + J ∑

R

(
τττ2

R −
(
τz

R

)2
)
.

(A.12)

The first part of the expansion will be the same as before, with the only difference that,

since this time we have two electrons per site, the denominator of Eq. (A.5) will be equal to

−2U instead of −U as in Sec. A. The subspace in which we act is given by the local states

{| ↑↓,0⟩, |0,↑↓⟩, | ↑,↓⟩, | ↓,↑⟩, | ↑,↑⟩, | ↓,↓⟩}R. Those states can be identified by using four

quantum numbers, like the total spin σ , its z component σ z, the total pseudospin τ and its z

component τz. We can write:

| ↑,↑⟩= |σ = 1,σ z =+1;τ = 0,τz = 0⟩ ,
| ↓,↓⟩= |σ = 1,σ z =−1;τ = 0,τz = 0⟩ ,
| ↑,↓⟩+ | ↓,↑⟩√

2
= |σ = 1,σ z = 0;τ = 0,τz = 0⟩ ,

| ↑,↓⟩− | ↓,↑⟩√
2

= |σ = 0,σ z = 0;τ = 1,τz = 0⟩ ,

| ↑↓,0⟩= |σ = 0,σ z = 0;τ = 1,τz =+1⟩ ,
|0,↑↓⟩= |σ = 0,σ z = 0;τ = 1,τz =−1⟩ .

Once we have mapped the states on those generalized angular momenta, we can map them

on some bosonic states through the Schwinger’s map [184, 185], that works as:

σ+ −→ a
†
s,1as,2 ,

σ− −→ a
†
s,2as,1 ,

σ z −→ 1
2
(ns,1 −ns,2) ,

σσσ2 −→ 1
4
(ns,1 +ns,2 +1)2 − 1

4
,

with as,l (a†
s,l) the bosonic operator that annihilates (creates) a boson in a level l = 1,2.

Essentially, we map the spin and the pseudospin degree of freedom into two bosonic states
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each, so the map for the states becomes:

| ↑,↑⟩= |σ = 1,σ z =+1;τ = 0,τz = 0⟩= |ns,1 = 2,ns,2 = 0;nt,1 = 0,nt,2 = 0⟩ ,
| ↓,↓⟩= |σ = 1,σ z =−1;τ = 0,τz = 0⟩= |ns,1 = 0,ns,2 = 2;nt,1 = 0,nt,2 = 0⟩ ,
| ↑,↓⟩+ | ↓,↑⟩√

2
= |σ = 1,σ z = 0;τ = 0,τz = 0⟩= |ns,1 = 1,ns,2 = 1;nt,1 = 0,nt,2 = 0⟩ ,

| ↑,↓⟩− | ↓,↑⟩√
2

= |σ = 0,σ z = 0;τ = 1,τz = 0⟩= |ns,1 = 0,ns,2 = 0;nt,1 = 1,nt,2 = 1⟩ ,

| ↑↓,0⟩= |σ = 0,σ z = 0;τ = 1,τz =+1⟩= |ns,1 = 0,ns,2 = 0;nt,1 = 2,nt,2 = 0⟩ ,
|0,↑↓⟩= |σ = 0,σ z = 0;τ = 1,τz =−1⟩= |ns,1 = 0,ns,2 = 0;nt,1 = 0,nt,2 = 2⟩ .

It is useful to have the states written this way because the combination of two hopping

processes (one electron that moves from one site and another one that go back to the

original lattice position) can change all the four local quantum numbers of the starting

configuration. This means that the total spin and the total pseudospin are generally not

conserved quantities. Since it is not easy to write down an operator that does not conserve

the total angular momentum when it has to act on the basis of the total angular momentum

and its z component [186], it is better to use this other basis, where the action of an operator

of that kind is trivial.

By defining few operators, we can perform a quite compact mapping of couples of fermionic

operators:

nR,a,σ −→
1
2

(
Kz

s,R +(−1)σ−1 σ z
R +Kz

t,R +(−1)a−1 τz
R

)
+

(−1)σ−1 (−1)a−1
(

Kx
s,RKx

t,R +K
y
s,RK

y
t,R

) ,

c
†
R,a,σ cR,a,σ̄ −→

(
Kz

s,R −1
)

σσ
R−

(−1)a−1
[
Kx

t,RQx
s,R +K

y
t,RQ

y
s,R + i(−1)σ−1

(
Kx

t,RP
y
s,R −K

y
t,RPx

s,R

)] ,

c
†
R,a,σ cR,ā,σ −→

(
Kz

t,R −1
)

τa
R−

(−1)σ−1
[
Kx

s,RQx
t,R +K

y
s,RQ

y
t,R + i(−1)σ−1

(
Kx

s,RP
y
t,R −K

y
s,RPx

t,R

)] ,

c
†
R,a,σ cR,ā,σ̄ −→

[
Qx

s,RQx
t,R +Q

y
s,RQ

y
t,R − (−1)σ−1 (−1)a−1

(
Px

s,RPx
t,R +P

y
s,RP

y
t,R

)]
+

i
[
(−1)σ−1

(
P

y
s,RQx

t,R −Px
s,RQ

y
t,R

)
+(−1)a−1

(
Qx

s,RP
y
t,R −Q

y
s,RPx

t,R

)] ,

(A.13)
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where τ1 = τ+ (τ2 = τ−), σ↑ = σ+ (σ↓ = σ−) and:

Kz
Γ,R =

1
2

(
1+nΓ,R,1 +nΓ,R,2

)
,

K+
Γ,R = a

†
Γ,R,1a

†
Γ,R,2 ,

K−
Γ,R = aΓ,R,1aΓ,R,2 ,

P+
Γ,R =

1
2

((
a

†
Γ,R,1

)2
+
(

a
†
Γ,R,2

)2
)

,

P−
Γ,R =

1
2

((
aΓ,R,1

)2
+
(

aΓ,R,2

)2
)

,

Q+
Γ,R =

1
2

((
a

†
Γ,R,1

)2
−
(

a
†
Γ,R,2

)2
)

,

Q−
Γ,R =

1
2

((
aΓ,R,1

)2
−
(

aΓ,R,2

)2
)

,

(A.14)

with Γ = s, t. The K operators are the ones introduced by Schwinger. They satisfy an

hyperbolic algebra and K+ and K− change the value of the total angular momentum. The

P and Q operators change, instead, also the z component and not just the total angular

momentum. Even if those operators permit to write the effective Hamiltonian in a more

compact way, they do not encode the constrain about the occupation of two particles for each

state. The simplest way in which we can impose it is through a projection of the Hamiltonian

that we get on the generic local wave-function:

|ψR⟩=
6

∑
n=1

cR (n) |n⟩R , (A.15)

having labeled:

|1⟩= |ns,1 = 2,ns,2 = 0;nt,1 = 0,nt,2 = 0⟩ ,
|2⟩= |ns,1 = 1,ns,2 = 1;nt,1 = 0,nt,2 = 0⟩ ,
|3⟩= |ns,1 = 0,ns,2 = 2;nt,1 = 0,nt,2 = 0⟩ ,
|4⟩= |ns,1 = 0,ns,2 = 0;nt,1 = 2,nt,2 = 0⟩ ,
|5⟩= |ns,1 = 0,ns,2 = 0;nt,1 = 1,nt,2 = 1⟩ ,
|6⟩= |ns,1 = 0,ns,2 = 0;nt,1 = 0,nt,2 = 2⟩ .
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Without any loss of generality, we can assume a real local wave-function in Eq. (A.15). When

t11 = t22 = t, the average value of the effective two sites Hamiltonian is equal to

H
R,R′
e f f =

t2 + t2
12

U

[(
cR (1)2 − cR (3)2

)(
cR′ (1)2 − cR′ (3)2

)
−1
]
+

t2 − t2
12

U

(
cR (4)2 − cR (6)2

)(
cR′ (4)2 − cR′ (6)2

)
+

2
(
t2 + t2

12

)

U
cR (2)(cR (1)+ cR (3))cR′ (2)(cR′ (1)+ cR′ (3))+

2
(
t2 − t2

12

)

U
cR (5)(cR (1)− cR (3))cR′ (5)(cR′ (1)− cR′ (3))+

4
(
t2 − t2

12

)

U
cR (2)cR (5)cR′ (2)cR′ (5)+

2
√

2t t12

U
[
(

cR (1)2 − cR (3)2
)

cR′ (2)(cR′ (4)− cR′ (6))+
(

cR′ (1)2 − cR′ (3)2
)

cR (2)(cR (4)− cR (6))+

cR (2)(cR (1)+ cR (3))(cR′ (1)− cR′ (3))(cR′ (4)− cR′ (6))+

cR′ (2)(cR′ (1)+ cR′ (3))(cR (1)− cR (3))(cR (4)− cR (6))]+

2t2

U
[cR (5)(cR (4)+ cR (6))cR′ (5)(cR′ (4)+ cR′ (6))+

cR (2)(cR (4)− cR (6))cR′ (2)(cR′ (4)− cR′ (6))+

(cR (4)cR (1)+ cR (6)cR (3))(cR′ (4)cR′ (1)+ cR′ (6)cR′ (3))+

(cR (4)cR (3)+ cR (6)cR (1))(cR′ (4)cR′ (3)+ cR′ (6)cR′ (1))]+

2t2
12

U
[cR (5)(cR (4)+ cR (6))cR′ (5)(cR′ (4)+ cR′ (6))+

cR (2)(cR (4)− cR (6))cR′ (2)(cR′ (4)− cR′ (6))−
(cR (4)cR (1)+ cR (6)cR (3))(cR′ (4)cR′ (1)+ cR′ (6)cR′ (3))−
(cR (4)cR (3)+ cR (6)cR (1))(cR′ (4)cR′ (3)+ cR′ (6)cR′ (1))]+

2U −2∆

(
cR (4)2 − cR (6)2 + cR′ (4)2 − cR′ (6)2

)
− 4

3
J+

2J
(

cR (5)2 + cR′ (5)2
)
+ J
(

cR (4)2 + cR (6)2 + cR′ (4)2 + cR′ (6)2
)
.

(A.16)

In order to find the ground state of the Hamiltonian we have to minimize this expression with

respect to all the cR (n) parameters.





Appendix B

Useful out of equilibrium relations

Green’s function on the Keldysh contour

In order to avoid an abuse of terminology, we will refer, in the following, to the Kostantinov-

Perel contour in Fig. B.1 as to the Keldysh contour. As shown in Fig. B.1 we can divide

the contour in three branches C1 =
(
t−0 , t̃

)
, C2 =

(
t̃, t+0

)
and C3 =

(
t+0 , t0 − iβ

)
. We can also

introduce the generic Green’s function:

G
(
t, t ′
)
=−i⟨TCc(t)c† (t ′

)
⟩ ,

where we omitted the indexes of the operators to simplify the notation. We can introduce the

3×3 matrix Gα,β (t, t
′) with t ∈Cα and t ′ ∈Cβ , α,β = 1,2,3.

Let’s now assume that t ≤ t ′ and take into account G11 (t, t
′) (Fig. B.2) and G12 (t, t

′)

(Fig. B.3). By comparing Fig. B.2 with Fig. B.3 we realize that the part of the Keldysh

contour that is included in Fig. B.3 and not in Fig. B.2 cancels out. From this consideration

t−0

C1

t+0
C2

t̃

C3

t0 − iβ

Re [z]

Im [z]

0

Figure B.1: Kostantinov-Perel contour C =C1 ∪C2 ∪C3 in the complex plane.
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t−0

t+0

t̃

t0 − iβ

t− t ′−

Re [z]

Im [z]

0

Figure B.2: Kostantinov-Perel contour C in the complex plane. Case in which both t and t ′ belong to the
branch C1.

t−0

t+0

t̃

t0 − iβ

t−

t ′+
Re [z]

Im [z]

0

Figure B.3: Kostantinov-Perel contour C in the complex plane. Case in which t belongs to the branch C1 and
t ′ belongs to C2.
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follows that:

G11
(
t, t ′
)
= G12

(
t, t ′
)
, t ≤ t ′ .

In the same way we can show that:

G11
(
t, t ′
)
= G21

(
t, t ′
)
, t > t ′ ,

G22
(
t, t ′
)
= G21

(
t, t ′
)
, t < t ′ ,

G22
(
t, t ′
)
= G12

(
t, t ′
)
, t ≥ t ′ ,

G13
(
t,τ ′
)
= G23

(
t,τ ′
)
,

G31
(
τ, t ′
)
= G32

(
τ, t ′
)
.

By summing some of those relations, we get:

G11
(
t, t ′
)
+G22

(
t, t ′
)
= G12

(
t, t ′
)
+G21

(
t, t ′
)
.

Due to the presence of three constrains

G11
(
t, t ′
)
+G22

(
t, t ′
)
= G12

(
t, t ′
)
+G21

(
t, t ′
)
,

G13
(
t,τ ′
)
= G23

(
t,τ ′
)
,

G31
(
τ, t ′
)
= G32

(
τ, t ′
)
,

just six of the nine components Gα,β (t, t
′) are independent. Now we want to establish a

connection among the Keldysh components of the Green’s function and the real time ones.

We start by considering the lesser component, defined as

G<
(
t, t ′
)
= i⟨c† (t ′

)
c(t)⟩ .

This expression does not change if we are in the regime of t > t ′ or t ′ > t, where t and t ′ are

defined on the real axis. If we want to pass on the Keldysh contour, we have to compare the

previous expression with:

G12
(
t, t ′
)
=−i⟨TCc

(
t−
)

c† (t ′+
)
⟩= i⟨c† (t ′

)
c(t)⟩ ,

so that:

G<
(
t, t ′
)
= G12

(
t, t ′
)
.
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In the same way we can write all the other components, which are the greater, the retarded,

the Matsubara, the left and the right mixing Green’s functions:

G>
(
t, t ′
)
=−i⟨c(t)c† (t ′

)
⟩= G21

(
t, t ′
)
,

GR
(
t, t ′
)
=−iθ

(
t − t ′

)
⟨{c(t) ,c† (t ′

)
}⟩= 1

2

[
G11

(
t, t ′
)
+G21

(
t, t ′
)
−G22

(
t, t ′
)
−G12

(
t, t ′
)]

,

GM
(
τ,τ ′

)
=−⟨Tτc(τ)c† (τ ′

)
⟩=−iG33

(
τ,τ ′

)
,

G¬ (t,τ ′
)
= i⟨c† (τ ′

)
c(t)⟩= 1

2

[
G13

(
t,τ ′
)
+G23

(
t,τ ′
)]

,

G ¬(τ, t ′
)
=−i⟨c(τ)c† (t ′

)
⟩= 1

2

[
G31

(
τ, t ′
)
+G32

(
τ, t ′
)]

.

In principle we have defined six linearly independent functions, so we do not have to compute

any other. Anyway it can be useful to write down also the remaining components in order to

have all of them, so that we can choose which ones are more suitable for the implementation.

For this reason we consider also the advanced and the Keldysh Green’s functions

GA
(
t, t ′
)
= iθ

(
t ′− t

)
⟨{c(t) ,c† (t ′

)
}⟩= 1

2

[
G11

(
t, t ′
)
−G21

(
t, t ′
)
−G22

(
t, t ′
)
+G12

(
t, t ′
)]

,

GK
(
t, t ′
)
=−i⟨

[
c(t) ,c† (t ′

)]
⟩= 1

2

[
G11

(
t, t ′
)
+G21

(
t, t ′
)
+G22

(
t, t ′
)
+G12

(
t, t ′
)]

.

There are some non linear operators that connect the different components. We write:

[
G<
(
t, t ′
)]∗

=−G<
(
t ′, t
)
,

[
G>
(
t, t ′
)]∗

=−G>
(
t ′, t
)
,

[
GR
(
t, t ′
)]∗

= GA
(
t ′, t
)
,

[
G¬ (t,τ ′

)]∗
= G ¬(β − τ ′, t

)
,

GM
(
τ,τ ′

)
= GM

(
τ − τ ′

)
,

[
GM (τ)

]∗
= GM (τ) ,

so the Matsubara Green’s function is real. The boundary conditions for the Green’s function

on C are given by:

G
(
0−, t

)
=−G(−iβ , t) ,

G
(
t,0−

)
=−G(t,−iβ ) .
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Different components of the hybridization function

The hybridization function on the Keldysh contour is defined as:

∆̄ab

(
t, t ′
)
=

i

Ns
∑
p

(
V a∗

p,↑ 0

0 V a
−p,↓

)
⟨TCψp (t)⊗ψ†

p

(
t ′
)
⟩
(

V b
p,↑ 0

0 V b∗
−p,↓

)
=

=
i

Ns
∑
p

(
V a∗

p,↑ 0

0 V a
−p,↓

)(
⟨TCcp,↑ (t)c

†
p,↑ (t

′)⟩ ⟨TCcp,↑ (t)c−p,↓ (t ′)⟩
⟨TCc

†
−p,↓ (t)c

†
p,↑ (t

′)⟩ ⟨TCc
†
−p,↓ (t)c−p,↓ (t ′)⟩

)(
V b

p,↑ 0

0 V b∗
−p,↓

)
,

and by reminding that the expression of the Nambu spinor of the bath in terms of its

eigenoperators is:

ψp =

(
eiφ
[
cos(θp)γ2,p + sin(θp)γ1,p

]

e−iφ
[
−sin(θp)γ2,p + cos(θp)γ1,p

]
)

,

we can compute all the components of the hybridization function. We can start by considering

the lesser one:

K<
(
t, t ′
)
= i⟨ψ†

p

(
t ′
)
⊗ψp (t)⟩= i

(
⟨c†

p,↑ (t
′)cp,↑ (t)⟩ ⟨c†

p,↑ (t
′)c

†
−p,↓ (t)⟩

⟨c−p,↓ (t ′)cp,↑ (t)⟩ ⟨c−p,↓ (t ′)c
†
−p,↓ (t)⟩

)
=

=

(
G<

p,↑ (t, t
′) F̄< (t, t ′)

F< (t, t ′) G<
−p,↓ (t, t

′)

)
,

that of course is related to:

∆̄<
ab

(
t, t ′
)
=

i

Ns
∑
p

(
V a∗

p,↑ 0

0 V a
−p,↓

)
K<
(
t, t ′
)
(

V b
p,↑ 0

0 V b∗
−p,↓

)
.

An analogous definition can be applied for all of them. We can explicitly write all the 11 and

the 21 components in the Nambu space:

G<
p,↑
(
t, t ′
)
=

i

1+ eβEp

[
cos2 (θp)e−i(t−t ′)Ep + sin2 (θp)e[β+i(t−t ′)]Ep

]
,

G>
p,↑
(
t, t ′
)
=− i

1+ eβEp

[
cos2 (θp)e[β−i(t−t ′)]Ep + sin2 (θp)ei(t−t ′)Ep

]
,

GR
p,↑
(
t, t ′
)
=−iθ

(
t − t ′

)[
cos2 (θp)e−i(t−t ′)Ep + sin2 (θp)ei(t−t ′)Ep

]
,

G¬
p,↑
(
t,τ ′
)
=

i

1+ eβEp

[
cos2 (θp)e−(it−τ ′)Ep + sin2 (θp)e(β+it−τ ′)Ep

]
,

G ¬
p,↑
(
τ, t ′
)
=− i

1+ eβEp

[
cos2 (θp)e(β+it ′−τ)Ep + sin2 (θp)e(τ−it ′)Ep

]
,
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GM
p,↑ (τ) =− θ (τ)

1+ eβEp

[
cos2 (θp)e(β−τ)Ep + sin2 (θp)eτEp

]
+

+
θ (−τ)

1+ eβEp

[
cos2 (θp)e−τEp + sin2 (θp)e(β+τ)Ep

]
,

F<
(
t, t ′
)
= i

e2iφ sin(θp)cos(θp)

1+ eβEp

[
e[β+i(t−t ′)]Ep − e−i(t−t ′)Ep

]
,

F>
(
t, t ′
)
= i

e−2iφ sin(θp)cos(θp)

1+ eβEp

[
e[β−i(t−t ′)]Ep − ei(t−t ′)Ep

]
,

FR
(
t, t ′
)
= θ

(
t − t ′

)
e2iφ sin(2θp)sin

((
t − t ′

)
Ep

)

F¬ (t,τ ′
)
= i

e2iφ sin(θp)cos(θp)

1+ eβEp

[
e(β+it−τ ′)Ep − e−(it−τ ′)Ep

]
,

F ¬(τ, t ′
)
= i

e−2iφ sin(θp)cos(θp)

1+ eβEp

[
e(τ−it ′)Ep − e(it

′−τ+β )Ep

]
,

FM (τ) =−sin(θp)cos(θp)

1+ eβEp

(
e−τEp − e(τ+β )Ep

)(
θ (τ)e−2iφ +θ (−τ)e2iφ

)
.

From those expressions we can obtain the complete matrix, since the following relations

hold:

G<
−p,↓

(
t, t ′
)
=−G>

p,↑
(
t ′, t
)
=
[
G>

p,↑
(
t, t ′
)]∗

=




−G<

p,↑ (t
′, t)−GR

p,↑ (t
′, t) , t ′ > t[

G<
p,↑ (t, t

′)
]∗

+
[
GR

p,↑ (t, t
′)
]∗
, t > t ′

F̄<
(
t, t ′
)
=−

[
F<
(
t ′, t
)]∗

,

G>
−p,↓

(
t, t ′
)
=−G<

p,↑
(
t ′, t
)
=
[
G<

p,↑
(
t, t ′
)]∗

=




−G<

p,↑ (t
′, t)−GR

p,↑ (t
′, t) , t ′ < t[

G<
p,↑ (t, t

′)
]∗

+
[
GR

p,↑ (t, t
′)
]∗
, t < t ′

F̄>
(
t, t ′
)
=−

[
F>
(
t ′, t
)]∗

,

GR
−p,↓

(
t, t ′
)
=−

[
GR

p,↑
(
t, t ′
)]∗

,

F̄R
(
t, t ′
)
=
[
FR
(
t, t ′
)]∗

,

G¬
−p,↓

(
t,τ ′
)
=−G ¬

p,↑
(
τ ′, t
)
=−

[
G¬

p,↑
(
t,β − τ ′

)]∗
,

F̄¬ (t,τ ′
)
=
[
F¬ (t,β − τ ′

)]∗
,

G ¬
−p,↓

(
τ, t ′
)
=−G¬

p,↑
(
t ′,τ
)
=−

[
G ¬

p,↑
(
β − τ, t ′

)]∗
,

F̄ ¬(τ, t ′
)
=
[
F ¬(β − τ, t ′

)]∗
,

GM
−p,↓ (τ) = GM

p,↑ (β − τ)

F̄M (τ) =
[
FM (τ)

]∗
.
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Langreth rules

We want to consider the real time components of Eq. (6.36). The only part that is not

straightforward to be projected is

Ĉ
(
z,z′
)
=
∫

C
dz1ŜNCA (z,z1) R̂

(
z1,z

′) .

By taking the greater component and by reminding that t̃ was defined in Fig. B.1 we obtain:

Ĉ>
(
t, t ′
)
= Ĉ

(
t+, t ′−

)
=
∫ t+

t ′−
dz1ŜNCA

(
t+,z1

)
R̂
(
z1, t

′−)=

=
∫ t̃

t ′−
dz1ŜNCA

(
t+,z1

)
R̂
(
z1, t

′−)+
∫ t+

t̃
dz1ŜNCA

(
t+,z1

)
R̂
(
z1, t

′−)=

=
∫ t̃

t ′−
dt−1 ŜNCA

(
t+, t−1

)
R̂
(
t−1 , t ′−

)
+
∫ t+

t̃
dt+1 ŜNCA

(
t+, t+1

)
R̂
(
t+1 , t ′−

)
=

=
∫ t̃

t ′
dt1
(
ŜNCA (t, t1)

)
21

(
R̂
(
t1, t

′))
11 +

∫ t

t̃
dt1
(
ŜNCA (t, t1)

)
22

(
R̂
(
t1, t

′))
21 .

Since we know that, for the generic function of two times A(t, t ′):

(
Â
(
t, t ′
))

11 = θ
(
t − t ′

)(
Â
(
t, t ′
))

21 +θ
(
t ′− t

)(
Â
(
t, t ′
))

12 ,
(
Â
(
t, t ′
))

22 = θ
(
t − t ′

)(
Â
(
t, t ′
))

12 +θ
(
t ′− t

)(
Â
(
t, t ′
))

21 ,

we arrive at the expression

Ĉ>
(
t, t ′
)
=
∫ t̃

t ′
dt1
(
ŜNCA (t, t1)

)
21

(
R̂
(
t1, t

′))
21 +

∫ t

t̃
dt1
(
ŜNCA (t, t1)

)
21

(
R̂
(
t1, t

′))
21 =

=
∫ t

t ′
dt1
(
ŜNCA (t, t1)

)
21

(
R̂
(
t1, t

′))
21 =

∫ t

t ′
dt1Ŝ>NCA (t, t1) R̂>

(
t1, t

′) ,

where:

Ŝ>NCA (t, t1) = ŜNCA

(
t+, t−1

)
=

= i∑
a,b

[
Ψ̂t

a

(
12×2 ⊗ R̂> (t, t1)

)(
∆̄t

b,a (t1, t)
)<(

Ψ̂
†
b

)t

− Ψ̂†
a

(
12×2 ⊗ R̂> (t, t1)

)
∆̄>

a,b (t, t1)Ψ̂b

]
.

At the end we can write

i∂t R̂
>
(
t, t ′
)
= Ĥimp (t) R̂>

(
t, t ′
)
+
∫ t

t ′
dt1Ŝ>NCA (t, t1) R̂>

(
t1, t

′) .
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In the same way we write the other components of the dynamical equations. By considering

firstly the self energy, we obtain:

Ŝ<NCA (t, t1) = i∑
a,b

[Ψ̂t
a

(
12×2 ⊗ R̂< (t, t1)

)(
∆̄t

b,a (t1, t)
)>(

Ψ̂
†
b

)t

− Ψ̂†
a

(
12×2 ⊗ R̂< (t, t1)

)
∆̄<

a,b (t, t1)Ψ̂b] ,

ŜR
NCA (t, t1) = θ (t − t1)

[
Ŝ>NCA (t, t1)− Ŝ<NCA (t, t1)

]
,

Ŝ¬NCA (t,τ1) = i∑
a,b

[Ψ̂t
a

(
12×2 ⊗ R̂¬ (t,τ1)

)(
∆̄t

b,a (τ1, t)
) ¬(

Ψ̂
†
b

)t

− Ψ̂†
a

(
12×2 ⊗ R̂¬ (t,τ1)

)
∆̄¬

a,b (t,τ1)Ψ̂b] ,

Ŝ ¬
NCA (τ, t1) = i∑

a,b

[Ψ̂t
a

(
12×2 ⊗ R̂ ¬(τ, t1)

)(
∆̄t

b,a (t1,τ)
)¬(

Ψ̂
†
b

)t

− Ψ̂†
a

(
12×2 ⊗ R̂ ¬(τ, t1)

)
∆̄ ¬

a,b (τ, t1)Ψ̂b] ,

ŜM
NCA (τ) = ∑

a,b

[Ψ̂t
a

(
12×2 ⊗RM (τ)

)(
∆̄t

b,a (−τ)
)M (

Ψ̂
†
b

)t

− Ψ̂†
a

(
12×2 ⊗RM (τ)

)
∆̄M

a,b (τ)Ψ̂b] ,

so that:

i∂t R̂
<
(
t, t ′
)
= Ĥimp (t) R̂<

(
t, t ′
)
+
∫ t

t0

dt1Ŝ>NCA (t, t1) R̂<
(
t1, t

′)+

−
∫ t ′

t0

dt1Ŝ<NCA (t, t1) R̂>
(
t1, t

′)− i

∫ it0+β

it0

dτ1Ŝ¬NCA (t,τ1) R̂ ¬(τ1, t
′) ,

i∂t R̂
R
(
t, t ′
)
= Ĥimp (t) R̂R

(
t, t ′
)
+θ

(
t − t ′

)
[
∫ t

t0

dt1Ŝ>NCA (t, t1)
(
R̂>
(
t1, t

′)− R̂<
(
t1, t

′))+

+
∫ t ′

t0

dt1
(
Ŝ<NCA (t, t1)− Ŝ>NCA (t, t1)

)
R̂>
(
t1, t

′)+ i

∫ it0+β

it0

dτ1Ŝ¬NCA (t,τ1) R̂ ¬(τ1, t
′)] ,

i∂t R̂
¬ (t,τ ′

)
= Ĥimp (t) R̂¬ (t,τ ′

)
+
∫ t

t0

dt1Ŝ<NCA (t, t1) R̂¬ (t1,τ ′
)
+

+
∫ it0+β

it0+τ ′
dτ1Ŝ¬NCA (t,τ1) R̂M

(
τ1 − τ ′

)
,

∂τ R̂ ¬(τ, t ′
)
= Ĥimp (τ) R̂ ¬(τ, t ′

)
−
∫ t ′

t0

dt1Ŝ ¬
NCA (τ, t1) R̂>

(
t1, t

′)+

+
∫ it0+τ

it0

dτ1ŜM
NCA (τ − τ1) R̂ ¬(τ1, t

′) ,

∂τ R̂M (τ) = Ĥimp (τ) R̂M (τ)+
∫ τ

0
dτ1ŜM

NCA (τ − τ1) R̂M (τ1) .
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In order to properly define those differential equations, we have to specify the initial condi-

tions for the unknown functions. Particularly, we can start by solving the equations for the

Matsubara or the greater components, since they do not involve any other components of the

local propagator. We can write:

R̂M (0) =−1

R̂>
(
t0, t

−
0

)
=−i1

R̂<
(
t0, t

−
0

)
= iR̂M (β )

R̂R
(
t0, t

−
0

)
=−i

[
1+ R̂M (β )

]

R̂¬ (t0,τ) = iR̂M (β − τ)

R̂ ¬(τ, t0) = iR̂M (τ)

where 1 is a representation of the identity over the local Hilbert space of the problem.
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