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Abstract

The main flaw of the well-known Brinkman–Rice description, obtained through the Gutzwiller 

approximation, of the paramagnetic Mott transition in the Hubbard model is in neglecting high-

energy virtual processes that generate for instance the antiferromagnetic exchange J ~ t2/U. Here 

we propose a way to capture those processes by combining the Brinkman–Rice approach with a 

variational Schrieffer-Wolff transformation, and apply this method to study the single-band metal-

to-insulator transition in a Bethe lattice with infinite coordination number, where the Gutzwiller 

approximation becomes exact. We indeed find for the Mott transition a description very close to 

the real one provided by dynamical mean-field theory; an encouraging result in view of possible 

applications to more involved models.

A metal to insulator transition driven by the electron-electron repulsion was envisioned by 

Mott more than fifty years ago [1]. Since then, the underlying physics of this phenomenon 

has been studied by large variety of quantum many-body tools in models for strongly 

correlated systems [2–5].

One of the earliest microscopic descriptions of the Mott localisation is owned to Brinkman 

and Rice [2], and obtained through the Gutzwiller approximation applied to the half-filled 

Hubbard model. In their scenario the transition to the insulating state occurs when the 

hopping is fully hampered by repulsion, i.e. its expectation value in the variational 

wavefunction strictly vanishes. This result is elegant in many ways. It is fully analytical and 

provides a very intuitive and physically transparent, almost classical, interpretation of the 

Mott phenomenon.

Nonetheless, this description, frequently called Brinkman–Rice transition, has a severe 

drawback: the expectation value of the hopping cannot be zero, and it is so in the Gutzwiller 

approximation only because there is a complete, static and dynamic, locking of charge 

degrees of freedom. In reality, dynamical charge fluctuations do play a role even deep in the 

Mott phase, and in particular they mediate the antiferromagnetic spin-exchange, as clear by 

the large U mapping onto the Heisenberg model that can be formally derived through the 

Schrieffer-Wolff transformation [6].
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Since the result of Brinkman and Rice, a variety of quantum many-body tools have been 

constructed that are generically able to sensibly capture those dynamical processes [3, 5, 7, 

8]. In particular, when applied to the Hubbard model, they provide satisfying descriptions of 

the Mott transition, though relying on heavy numerical computation. Nowadays, the scenario 

provided by dynamical mean-field theory (DMFT) [3], which becomes exact in infinite 

dimensions [9], has become an invaluable benchmark to compare with.

In the present work we revisit the problem of the Brinkman–Rice transition, and 

complement it with the inclusion of the dynamical processes in a semi-analytic manner. In 

order to achieve this goal, we construct a method that combines the Gutzwiller’s variational 

approach with a variational Schrieffer-Wolff transformation. As a case study, we apply our 

technique to the half-filled Hubbard model in the paramagnetic phase on the infinitely 

coordinated Bethe lattice. The energy functional to be minimised can be obtained fully 

analytically. Its minimisation leads to a significantly improved description of the Mott 

transition as compared to the standard Brinkman–Rice scenario, and much closer to the 

exact DMFT one [3]. The improvement is in particular highlighted in: (i) a sizeable lowering 

of the critical interaction strength for a transition; (ii) a lower value of the insulator energy 

that includes a non-zero expectation value of the hopping ~ −t2/U ; and (iii) a proper balance 

of kinetic and potential energies at the transition.

The starting point of our analysis is the half-filled single-band Hubbard model on the 

infinitely coordinated Bethe lattice,

(1)

where z → ∞ is the coordination number of the Bethe lattice. 

 is the hermitian hopping operator between neighbouring sites 

i and j, and  the local density of spin σ =↑, ↓ electrons. We rewrite the interaction, 

last term in Eq. (1), as

(2)

where Pi(n) is the projector at site i onto the subspace with n electrons.

In order to construct a partial Schrieffer-Wolff transformation [6] that accounts for not 

complete projection of double occupancies, we separately define components of the hopping 

operator, Tij projected on the right or on the left onto the configurations where both sites i 
and j are singly occupied,
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(3)

Their sum is gathered under the form of the new operator , while the 

remaining part of the hopping operator under  We construct the partial 

Schrieffer-Wolff transformation

(4)

through the anti-hermitian operator

(5)

The transformed Hamiltonian reads,

(6)

where  is variationally determined so as to minimise the energy. In the following, we 

shall assume that for any value of U the optimal  is small enough to safely neglect 

higher order terms, (ϵ4) in Eq. (6). A posteriori, we shall check the validity of such 

assumption. We rewrite the transformed Hamiltonian in a more useful form,
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(7)

where we made use of the following equality

(8)

The transformed low energy Hamiltonian (7) is then analysed by a variational approach. 

Specifically, the ground state of  is approximated by a variational Gutzwiller wave 

function  constructed from the uncorrelated Fermi sea  through

(9)

i is a linear operator that, in the presence of particle-hole symmetry, can be parametrised 

as

(10)

where θ is a variational parameter bounded by θ  {0, π/4}, where θ = π/4 corresponds 

to the uncorrelated (metallic) state, whereas θ = 0 projects out of  all configurations with 

doubly occupied and empty sites. In other words, the actual variational wavefunction for the 

ground state of original Hamiltonian H is
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(11)

and depends both on θ and . The variational energy functional per lattice site (where N 

is the total number of sites), ℱ( , θ) can be now obtained as the expectation value in the 

Gutzwiller wave function (9) of the Hamiltonian (7), which can be analytically computed in 

the infinitely coordinated Bethe lattice,

(12)

in reduced units of 8T0. Here −T0 is the hopping energy per site of , which in a Bethe 

lattice reads T0 = 8t/3π.

Already at this point, qualitative differences with respect to the standard Brinkman–Rice 

transition emerge clearly. In our approach θ = 0 providing vanishing double occupancies in 

 does not yield the same for the actual wavefunction . Explicitly, the density of 

doubly occupied sites, d, can be calculated as

(13)

which generically does not provide d = 0 even if θ = 0.

In order to evaluate (12) as well as (13) we apply Wick’s theorem. Each expectation value 

resulting from this procedure can be conveniently visualised by a diagram with nodes 

denoting sites and edges being averages of the inter-site single particle density matrix. Sum 

of diagrams with the same number x of nodes we shall shortly denote as an x-vertex. We 

checked that a satisfying accuracy is obtained by keeping all x-vertices up to x = 4.

The resulting energy functional reads

(14)

where interaction strength, U and hopping amplitude, t are rescaled as

(15)
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The first line in Eq. (14) includes the 2-vertex contribution, the second line is the 3-vertex 

one, and finally the third is the 4-vertex correction. Additionally, the expectation value of the 

double occupancy d reads

(16)

From (14) and (16) we can easily recover the results of the standard Gutzwiller 

approximation applied to the Hubbard model by setting  = 0. In this case the 

Brinkman–Rice transition takes place for uBR = 1 and the insulating state is characterised by 

d = 0.

We search for minima of the functional ℱ with increasing u by standard methods. Namely, 

for each u we look for the pair of variables { , θ} satisfying

(17)

under the condition that the Hessian is positive definite. We start observing that for u = 0, the 

minimum of the functional (14) is correctly determined by  = 0 and θ = π/4 that 

correspond to fully uncorrelated metal. For interaction strength roughly up to u ≃ 0.4, the 

optimised energy is almost coincident with that obtained either by Gutzwiller approximation 

or by DMFT.

For stronger correlations, u ≳ 0.4, the Gutzwiller approximation starts to deviate appreciably 

with respect to DMFT, while our variational energy remains quite close. In Fig. 1(a) we plot 

the total energy, as well as separately kinetic and potential energies, of the minimum of 

functional Eq. (14), as compared with DMFT [10], and with the sole Gutzwiller 

approximation, for which we just show the total energy.

Following Brinkman and Rice [2], we associate the Mott insulating state with θ = 0, which 

is always a saddle point of the functional (14). However, this saddle point becomes 

minimum only when metal becomes unstable; the metal to insulator transition is thus 

continuous and occurs at a critical interaction, uc ≃ 0.822, which is sizeably lower than the 

Brinkman-Rice value, uBR = 1, and quite close to DMFT, uc2;DMFT ≃ 0.854. In Fig. 1(b) we 

show the values of the variational parameters  and θ on the both sides of the transition. 

In the same figure, we also plot the average double occupancy d (from Eq. (16)), which is 

non-zero in the insulating phase and decreases almost linearly in the metallic state.

In the insulating phase, u ≳ uc when the optimal θ = 0, we can analytically calculate several 

quantities. For instance, the saddle point value of  can be obtained in power series of 

τ/u:
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(18)

whereas the energy per site is

(19)

Additionally, the average double occupancy in powers of τ/u reads

(20)

which is indeed finite.

Let us now compare more in detail the above results with the exact DMFT ones [3]. Alike 

DMFT, we find continuous metal-insulator transition for quite similar critical interaction U . 

However, in our case there is no co-existence region of the insulating and metallic solutions, 

which in DMFT spreads over significant region (uc1 and uc2 obtained by DMFT are marked 

in Fig. 1(b)). In spite of this deficiency, we do find an energy balance across the transition 

close to DMFT, and quite different from the Gutzwiller approximation. Indeed, hopping and 

potential energies have kinks at the transition, though the total energy is smooth, and the 

insulator energy at the leading order scales as ∼ −t2/2U (cf. Fig.1(a)).

In summary, we have analysed a very simple variational wavefunction for a correlated 

system that consists of a Gutzwiller wavefunction combined with a variational Schrieffer-

Wolff transformation. We have benchmarked this wavefunction against the exact DMFT 

results [3] for the paramagnetic Mott transition in the half-filled single-band Hubbard model 

on a Bethe lattice with infinite coordination number. Although there are obviously 

differences with exact results, nevertheless our variational wavefunction provides a 

description of the Mott transition much closer to reality than the Brinkman-Rice scenario. 

More importantly, our wavefunction is able to portray a Mott insulator where charge 

fluctuations are not completely suppressed as in the Brinkman-Rice scenario, and which 

therefore has a non-zero expectation value of the hopping. This variational technique might 

open new possibilities to access Mott physics or related phenomena in more realistic models 

with minimal computational effort.
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Fig. 1. 
(a) The equilibrium energy balance across the metal to insulator transition (MIT). For a 

comparison we have provided data points of the real energies from DMFT calculations [10]. 

Additionally for a reference we have also included the energy corresponding to the 

Brinkman-Rice result (EBR) [2]. The transition takes place for quite similar critical 

interaction as for DMFT (uc2;DMFT). Also, alike DMFT [3], potential and kinetic energies 

are characterized with the pronounced kinks while the total energy remains smooth. (b) The 

equilibrium values of θ,  and d vs u across metal to insulator transition. We marked the 
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critical values of interaction for a Brinkman–Rice transition (uBR) as well as those obtained 

by DMFT, in which case at uc1;DMFT both, metallic and insulating solutions begin to coexist. 

Alike DMFT predictions [3] we obtain non-vanishing double occupancy also in the 

insulating phase.
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