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Mott transition and heavy-fermion state in the pyrochlore Hubbard model
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~Received 7 March 2001; revised manuscript received 26 April 2001; published 1 August 2001!

We investigate the interplay between geometrical frustration and strong electron correlation based upon the

pyrochlore Hubbard model. In the half-filling case, using the perturbative expansion in terms of electron

correlation, we show that the self-energy shows a divergent behavior leading the system into the Mott insu-

lating state, in which a quantum disordered spin liquid without magnetic long-range order is realized. In the

hole-doped case, we obtain heavy-fermion-like Fermi-liquid state. We also calculate the neutron cross section,

which is very consistent with recent neutron scattering experiments for itinerant pyrochlore systems.

DOI: 10.1103/PhysRevB.64.085102 PACS number~s!: 71.27.1a, 71.30.1h, 75.10.2b, 75.40.Gb

I. INTRODUCTION

Recently, the role played by geometrical frustration in

strongly correlated electron systems has attracted renewed

interests.1–6 The pyrochlore lattice, namely, corner-sharing

tetrahedra ~Fig. 1!, is one of the typical system in which the

geometrical frustration is crucial to determine its properties.

Here we investigate effects of geometrical frustration on itin-

erant electron systems based upon the pyrochlore Hubbard

model. One of the purpose of this paper is to investigate the

Mott transition in the absence of magnetic long-range order.

According to the study of the Heisenberg model on the py-

rochlore lattice, it has been pointed out that the ground state

of the insulating state is a quantum disordered spin
liquid.7–15 The critical character of the Mott transition with-
out magnetic order is quite different from that accompanying
the antiferromagnetic one. Moreover, the character of the
quantum spin liquid has not yet been revealed sufficiently. It
is expected that the study from electron systems will shed
new light on this subject.

Another purpose of this paper is to reveal how the geo-

metrical frustration affects strong electron correlation effects
in the metallic state. Some recent experiments on the pyro-
chlore itinerant electron systems have reported that remark-
able heavy-fermion-like behaviors manifest in these systems
implying the crucial role of the geometrical frustration.1,2

Here we show that the heavy-fermion state is realized in the
pyrochlore Hubbard model in the vicinity of the half-filling.
We also show that the dynamical spin susceptibility obtained
from our model away from the half-filling is consistent with
recent neutron scattering experiments for itinerant pyro-
chlore systems.16

The organization of this paper is as follows. The model
and the basic method are given in Sec. II. In Sec. III, we
discuss about the Mott transition and the realization of the
quantum disordered spin liquid in the half-filling case. In
Sec. IV, we consider the hole-doped case focusing on the
heavy-fermion state and its magnetic properties.

II. MODEL HAMILTONIAN AND METHOD

The Hamiltonian of the model is given by

H522(
k ,s

cks
† S 0 cos~kx1ky! cos~ky2kz! cos~kx2kz!

cos~kx1ky! 0 cos~kx1kz! cos~ky1kz!

cos~ky2kz! cos~kx1kz! 0 cos~kx2ky!

cos~kx2kz! cos~ky1kz! cos~kx2ky! 0

D cks1U(
i

(
n51

4

c in↑
† c in↑c in↓

† c in↓ . ~1!

Here c ins (c ins
† ) is an annihilation ~creation! operator of

electrons with spin s on the nth site of the ith tetrahedron.

cks
†

5(ck ,1s
† ,ck ,2s

† ,ck ,3s
† ,ck ,4s

† ). The kinetic term is diagonal-

ized as, Hkin5(ks(n51
4 Eknakns

† akns , where Ek15Ek251,

Ek35211A11tk, Ek45212A11tk with tk

5cos(2kx)cos(2ky)1cos(2ky)cos(2kz)1cos(2kz)cos(2kx). The
basis in the diagonalized space is obtained from the canoni-

cal transformation, cks
†

5(n51
4 sWn(k)akns

† . Using the abbre-

viation, s(x6y)[sin(kx6ky) etc., we write down sW1,2~k!,

sW1~k !5„s~x1z !,s~y2z !,2s~x1y !,0…/n1 , ~2!

where n65As(x6z)2
1s(y7z)2

1s(x1y)2, and

sW2~k !5„s~x1z !s~x2z !s~y2z !2s~y1z !@s~y2z !2
1s~x

1y !2# ,

s~x1z !s~y1z !s~y2z !2s~x2z !@s~x1z !2
1s~x1y !2# ,

2s~x1y !@s~x1z !s~y1z !1s~x2z !s~y2z !# ,

s~x1y !n
1

2 …/n2 , ~3!

for kx1kyÞ0, where n25n1$n
1

2 n
2

2
2@s(x1z)s(y1z)

1s(x2z)s(y2z)#2%1/2, and,
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sW2~k !5„2s~2x !,2s~2x !,2s~x2z !,2s~x1z !…

31/A2s~2x !2
14s~x2z !2

14s~x1z !2 ~4!

for kx1ky50. The expressions of sW3(k) and sW4(k) are very

complicated. However, in the following, we need only sW3(k)
for small k, which is given by

sW3~k !5~2kx2ky1kz ,kx1ky1kz ,

2kx1ky2kz ,kx2ky2kz)/2uku. ~5!

At the half-filling, in the absence of electron-electron in-
teraction, Ek3 and Ek4 are filled completely, and the two
degenerate flat bands are empty. Ek3 touches with the two
flat bands at the G point of the Brillouin zone. This state is a
gapless band insulator. We now consider the effect of elec-
tron interactions on this state. Since, in the case of the half-
filling or in the vicinity of the half-filling, the band Ek4 is
sufficiently far from the Fermi level, it does not affect low-
energy properties and is negligible in the following argu-
ment. Then, the single-particle Green’s functions of akns

electron are determined by the following equation:

(
l51

3

@~«1m2Ekl!dml2Sk
(ml)~« !#Gk

(ln)~« !5dmn . ~6!

We put the chemical potential m51. In general, the off-
diagonal self-energy S (mn)(mÞn) is not negligible. How-
ever, in the vicinity of the G point, at which the most impor-
tant scattering processes occur, the off-diagonal terms vanish

because of the momentum dependence of sWn(k). Thus in the
following argument, we neglect the off-diagonal self-energy.

III. THE HALF-FILLING CASE

A. Self-energy

To investigate the electronic state at the half-filling, we
calculate the self-energy. Recently, Isoda and Mori obtained
the diagonal self-energy of this model up to the second order

in U,17 which is given by ReS(«);A2« for «,0. How-
ever, as will be shown here, the higher-order corrections to
the self-energy give rise to more singular contributions and a
drastic change of the electronic state, namely, the Mott
transition.

At the half-filling, the Ek3 band is completely filled, while
the flat bands are empty. Hence, at zero temperature, the
particle-particle channel between an a3 electron and a1 or a2

electron vanishes. On the other hand, particle-hole channel
gives nonvanishing contributions only for the pair of an a3

electron and a1 or a2 electron. Then the most singular dia-
grams up to the forth order in U are those shown in Fig. 2.
Since the Fermi level is at the position between the two flat
bands and Ek3 band, we shift the chemical potential infini-
tesimally, m→12d . After integrating over energy and mo-
mentum, we take the limit d→0. This procedure is required
in this singular perturbative calculation to fix the density of
electrons n51. Neglecting the momentum dependence of

sWn(k) does not affect the leading singular behaviors. Then,
we can carry out the calculation analytically.18 For «,0, we
obtain

ReS~« !;const2cU2Au«u2c
U3

2Au«u
1c

U4

4u«u3/2
, ~7!

where c is a positive constant of order unity. The real part of
the self-energy for holelike excitations is divergent. The
same divergent behavior appears in the imaginary part, how-
ever, for particlelike excitations. Higher-order corrections
also show stronger divergence. This divergent behavior
means that the unperturbed state is unstable in the presence
of electron correlation and that the single-particle energy gap
is generated. To see this, we take only up to the third-order
term of the self-energy. Holelike excitations are possible
only for the Ek3 band in the half-filling case at zero tempera-
ture. Thus the single-particle energy of this band measured
from the Fermi level is changed to «k;2U2[2D for k

50. The Ek3 band is pushed down to the lower energy, and
the energy gap opens between the flat bands and Ek3 band.
This gap generation due to electron correlation signifies that
the systems is in the Mott insulating state. Although the exact
magnitude of the gap should be determined by taking into
account higher-order corrections in U, the gapful state is the
self-consistent solution for nonvanishing U. Thus an infini-
tesimally small U drives the system into the Mott insulator at
the half-filling. In the ground state, the two bands below the
gap, Ek3 , Ek4, are filled with up and down spins. Hence the
system is in the spin singlet state. It should be stressed that,
after the mass gap generation, the singularities of the pertur-
bative expansion are eliminated, and as a result, the gap state
is stabilized even if one takes into account higher-order cor-
rections, which just renormalize the magnitude of the gap.

FIG. 1. Pyrochlore lattice.

FIG. 2. The most singular diagrams of the self-energy up to the

fourth order in U. a denotes an a3 electron. b denotes an a1 or a2

electron. The dotted line denotes the interaction U.
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B. Quantum spin liquid state

To see the magnetic property of the Mott insulating state
obtained in the preceding section, we compute spin-spin cor-

relation functions, xmn(q ,v)5^Sm
1(q ,v)Sn

2(2q ,2v)&,

where Sn
1

5(kck1qn↑
† ckn↓ . We carry out perturbative expan-

sion in terms of U using the Green’s function of the gap
state, G (33)(«);@«2Ek31D#21, as the unperturbed propa-
gator. Calculating the diagrams up to the third order in U, we

have Im x(q ,v);Av2DQ(v2D) with Q(x) a step func-
tion. The spin gap exists between the spin singlet ground
state and the triplet state. Thus the system is in the quantum
disordered spin liquid state without magnetic long-range or-
der. The result may not be changed qualitatively by higher-
order corrections. These results are consistent with the pre-
vious studies for the pyrochlore Heisenberg model.8,12–15 The
singularity of the self-energy ~7! is deeply related with the
accidental degeneracy at the G point in the momentum space,
which may cause an instability of lattice structure. This prop-
erty may be relevant to the metal-insulator transition of
Tl2Ru2O7, that accompanies a structure change.3,19

IV. THE HOLE-DOPED CASE

A. Heavy-fermion state

In the hole-doped case, the singularities appeared in the
half-filling case are eliminated by the presence of the cutoff
which is the chemical potential m measured from the half-
filling level. Then the Fermi-liquid metallic state is realized.
However, in the vicinity of the half-filling, the effective mass
is much enhanced by electron correlation. Up to the third
order in U, the leading term of the mass enhancement factor
zk is

zk
21[12

] Re S~« !

]«
U

«→0

;
U2

Aumu
1

U3

umu3/2
. ~8!

As the electron filling approaches the half-filling value umu
→0, the mass enhancement factor shows the divergent be-
havior indicating the precursor of the Mott transition. Such a
large mass enhancement is actually observed in the specific
heat measurement for some pyrochlore itinerant systems
such as Y(Sc)Mn2.

1

B. Magnetic properties and the neutron cross section

The largely enhanced effective mass obtained in the pre-
ceding section is a remarkable property of geometrically
frustrated electron systems in which several modes of spin
fluctuations compete with each other, and magnetic long-
range order is suppressed. The spin fluctuation is almost lo-
calized in real space as in the case of f-electron-based heavy-
fermion systems. This property is seen more clearly in the
momentum dependence of the spin-spin correlation function.
We calculate it by the perturbative calculation. Since the
magnetic frustration is so strong, any approximations that
neglect the coupling between several modes of spin fluctua-
tion such as random phase approximation ~RPA! or fluctua-
tion exchange approximation ~FLEX! are invalid for this sys-
tem. Actually the most singular contributions up to the order

of O(U3) comes from the diagrams shown in Fig. 3. To
simplify the calculation we exploit the following approxima-
tion. Near the half-filling, the momenta running in the G (33)

line take small values in the vicinity of the Fermi surface.

Moreover, for small k, sW3(k) does not depend on uku. Thus
we can separate the integral over uku and the angle for the
momenta running in G (33) line. Then, the spin-spin correla-
tion function is decomposed into the momentum part and the
energy part, xmn(q ,v)5 f (v)gmn(q). Such a factorization of
the spin-spin correlation function is indeed observed in an
inelastic neutron scattering experiment for Y(Sc)Mn2.16 The
energy part is given by

f ~v !;2a1U2ln
uv12mu

Ec

2a2U3
1

v12m
1••• ~9!

for small v . Here a1 and a2 are constants. Thus in the vicin-
ity of the half-filling, spin fluctuation is much enhanced. The
presence of the giant spin fluctuation is also consistent with
several experiments for itinerant pyrochlore systems.1,16 It is
noted that such a large enhancement of xmn(q ,v) is not ob-
tained by RPA or FLEX approximations for the appropriate
value of U. We calculate the structure factor gmn(q) numeri-
cally. In Fig. 4~a!, we plot the intensity of g12(q) in the
@110#-@001# plane of the reciprocal lattice. g12(q) is almost
constant in the @001# direction, indicating that the spin fluc-
tuation is strongly localized in this direction. It also has a
small peak on the qx5qy50 line showing the presence of
small fluctuation toward a collinear magnetic order, as was
pointed out in the study of the Heisenberg model.8 However
this mode competes with the other modes that exist in
g13(q), g23(q), g14(q), g24(q), and thus such a magnetic
order is suppressed.

In Fig. 4~b!, we show the calculated result of the neutron
cross section, (m ,ne2iG(Rm2Rn)xmn(q ,v), in the @110#-@001#
plane. Here G is a reciprocal lattice vector. The positions of
the maximum are almost consistent with the neutron scatter-
ing experiment for Y(Sc)Mn2.16 Note that this structure is
very similar to that found for the Heisenberg model.8 Thus
the itineracy of electron affects little the structure in the mo-
mentum space, though the dynamical properties between the
Mott insulating state and the metallic state are quite differ-
ent; namely, the former has gaps and the latter is gapless.
The momentum dependence of xmn(q ,v) implies that the
spin fluctuation is localized in a tetrahedron forming collec-
tive four-spin singlet.10,8 Such a localized character of spin
fluctuation is very similar to magnetic properties of
f-electron-based heavy-fermion systems. However, in the lat-
ter systems, magnetic long-range order is suppressed by the

FIG. 3. The most singular diagrams of spin-spin correlation

functions up to the third order in U.
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presence of Kondo temperature higher than magnetic order-
ing temperature. In our system, the geometrical frustration is
crucial.

C. Compressibility

Here we discuss the charge response of the heavy-fermion
state near half-filling. In general, the charge susceptibility xc

in the vicinity of the Mott metal-insulator transition point
shows quite different behaviors depending on the density of
states near the Fermi level.20 In our systems, the bare density
of states in the hole-doped case is nonsingular, though four-
point vertices are much enhanced by electron correlation.
The perturbative calculation of the charge susceptibility
gives singular terms in the limit of m→0, namely, xc

;C1U2lnumu1C2U
3/umu1•••. Thus it is highly nontrivial

how the charge susceptibility behaves, as the electron filling
approaches the half-filling value. To see this we reiterate the
most singular terms of the perturbative expansion in U. As
was done before, we neglect the momentum dependence of

sWn . We first consider the terms that contain only one irreduc-
ible four-point vertex. The most singular terms of this type
are diagrammatically expressed as Fig. 5~a!. These terms are
calculated as

xc
irr

5C2U2lnumu1C3U3/umu1C4U4/umu2
1••• . ~10!

Here C2 , C3, and C4 are positive constants. On the
other hand, the term that contains n irreducible four-point
vertices shown in Fig. 5~b! gives the contribution

;@2cxc
irr#n/umu(n21)/2 with c a positive constant. Summing

up all most singular terms, we have,

xc5aAumu2
xc

irr

11~c/Aumu!xc
irr

. ~11!

Thus as the electron filling approaches the half-filling value
m→0, the charge susceptibility decreases toward zero, xc

→0, indicating that the system becomes incompressible.

V. SUMMARY

In this paper, we investigate the Mott transition, strong
correlation effects and spin dynamics of the pyrochlore Hub-
bard model. We show that, at the half-filling, electron-
electron interaction leads the system into the Mott insulator
in which the quantum disordered spin liquid state realizes. In
the hole-doped case, we show that the effective mass is
anomalously enhanced in the vicinity of the half-filling sig-
nifying the heavy-fermion state. We have also calculated the
neutron cross section of this state, which is consistent with
the recent experiment for some itinerant pyrochlore systems
like Y(Sc)Mn2.

Although we carried out the perturbative calculation up to
the fourth order in U, the singular divergent behavior of the
self-energy shown in Sec. III implies that we need to count
all order singular diagrams. Since the most singular diagrams
have the specific structure as discussed in Sec. III, we can
carry out this program in principle. We would like to address
this issue in the near future.
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FIG. 4. ~a!The structure factor g12(q) plotted in the @001#-@110#
plane. The black line denotes the zone boundary. The brighter re-

gions have the stronger intensity. ~b! The neutron cross section.

FIG. 5. Diagrams of the charge susceptibility. G irr is the irreduc-

ible 4-point vertex.
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