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We discuss the electronic, magnetic, and related structural transitions in the iron based Mott
insulators under high pressures relevant to the Earth’s lower mantle conditions. The paper
focuses on the above-mentioned topics based primarily on our theoretical analysis and various
experimental studies employing synchrotron X-ray diffraction, °"Fe Mossbauer spectroscopy,
and electrical transport measurements. We review the main theoretical tools employed for
the analysis of the properties of materials with strongly interacting electrons and discuss
the problems of theoretical description of such systems. In particular, we discuss a state-
of-the-art method for calculating the electronic structure of strongly correlated materials,
the DFT+DMFT method, which merges standard band-structure techniques (DFT) with
dynamical mean-field theory of correlated electrons (DMFT). We employ this method to
study the pressure-induced magnetic collapse in Mott insulators, such as wiustite (FeO),
magnesiowistite (Fe1—>Mgz)O (x = 0.25 and 0.75) and goethite (FeOOH), and explore the
consequences of the magnetic collapse for the electronic structure and phase stability of
these materials. We show that the paramagnetic cubic Bl-structured FeO and (Fe,Mg)O and
distorted orthorhombic (Pnma) FeOOH exhibit upon compression a high- to low-spin (HS-
LS) transition, which is accompanied by a simultaneous collapse of local moments. However,
the HS-LS transition is found to have different consequences for the electronic properties of
these compounds. For FeO and (Feo.75Mgo.25)O, the transition is found to be accompanied
by a Mott insulator to metal phase transition. In contrast to that, both (Feg.25Mgo.75)O and
FeOOH remain insulating up to the highest studied pressures, indicating that a Mott insulator
to band insulator phase transition takes place. Our combined theoretical and experimental
studies indicate a crossover between localized to itinerant moment behavior to accompany
magnetic collapse of Fe ions.

Keywords: Strong correlations, high-pressure, Mott metal-insulator transition, spin-state
transition, transition metal oxides

1. Introduction

During the past two decades, the strongly correlated transition metal (TM) oxides have
attracted much attention because of their intriguing electronic, magnetic, and lattice
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properties [1, 2]. These compounds often exhibit rich physics originating from the com-
plex interplay between electronic and lattice degrees of freedom on the microscopic level.
As a result, such materials often exhibit complex phase diagrams, which makes them
particularly interesting in view of possible technological applications. Indeed, the great
sensitivity of many correlated materials with respect to changes of external parameters
such as temperature, pressure, magnetic and/or electric field, doping, etc., can be em-
ployed for the development of a new generation of elements for modern microelectronic
devices and circuits.

The electronic properties of correlated oxide systems are strongly susceptible to applied
pressure and /or electron/hole doping, often resulting in a Mott insulator-metal transition
(IMT) caused by the mutual interplay between the Coulomb interaction between the d
or f electrons and their kinetic energy [1, 2]. During the past decades, much progress
has been achieved from both theoretical and experimental sides in understanding such
systems. On the theory side, it has been understood that applications of state-of-the-art
methods for the calculation of the electronic structure, which often provide a quanti-
tatively correct description of the electronic, magnetic, and lattice properties of weakly
correlated materials, do not lead to satisfactory results [3, 4]. These techniques cannot
capture all the generic aspects of a Mott transition, such as a formation of the lower- and
upper-Hubbard bands, coherent quasiparticle behavior and strong renormalization of the
electron masses in the metallic phases near the Mott insulator-metal transition (IMT),
etc., because of the neglect of the effect of strong correlations of localized d or f elec-
trons [1, 2]. Therefore applications of standard band-structure methods cannot provide
a quantitative description of the electronic and lattice properties of correlated materials.
In particular, at ambient pressure, such techniques notoriously predict a metallic be-
havior for many Mott insulators, e.g., FeO and CoO, which are, in fact, wide-gap Mott
insulators.

In the past decades, a significant progress in theoretical understanding of strongly cor-
related systems has been achieved due in part to development of dynamical mean-field
theory (DMFT) of strongly correlated electrons [5, 6]. Its combination with standard
band-structure methods allows one to compute the electronic, magnetic, and structural
properties of correlated electron materials [7, 8]. The DFT+DMFT approach combines
the ability of density functional theory (DFT) to compute the electronic structure from
first principles with the systematic non-perturbative treatment of the electron correla-
tion effects provided by using the DMFT. It allows one for a detailed quantum mechan-
ical description of the electronic structure of strongly correlated materials. Indeed, in
contrast to standard band-structure methods, which fail to describe the correct elec-
tronic properties of correlated materials, the DFT4+DMEFT technique allows one to treat
the electron correlation effects of localized d or f electrons exactly, by neglecting only
the effect of non-local correlations in a standard, single-impurity implementation of the
DFT+DMEFT. Hence, using this advanced theory it becomes possible to determine the
electronic structure of paramagnetic correlated materials at finite temperatures, e.g.,
near a Mott insulator-metal transition [1, 2]. Moreover, the DEFT+DMFT approach is
able to determine correlation-induced structural transformations in both paramagnetic
solids and long-range ordered solids, i.e., it overcomes the limitations of conventional
band-structure methods and opens the way for fully microscopic investigations of the
structural properties of strongly correlated systems.

So far, applications of DFT+DMFT have been successfully used for the interpreta-
tion and prediction of, e.g., photoemission, x-ray absorption, Mdssbauer spectroscopy,
angle-resolved photoemission experiments, etc. For instance, the DFT+DMFT method
has been widely employed in recent studies of the electronic and magnetic properties of
d and f transition metals and their oxides, superconducting materials, etc [9-31]. Very
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Figure 1. A schematic picture showing the ability of the present theoretical methods to determine the properties
of strongly correlated materials w.r.t their correlation strength (relation between the Coulomb interaction U and
the bandwidth W). LS/UH is the lower/upper Hubbard band. QP: quasiparticle peak.
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recently the DFT+DMFT computational scheme has been shown to be able to treat both
the electronic properties and the structural stability of strongly correlated materials on
the same footing, employing a novel implementation of DFT+DMFT in combination
with plane-wave pseudopotentials [13, 32-34]. It becomes possible to determine atomic
displacements and hence structural transformations caused by electronic correlations
using the total-energy calculations [32-37]. This method allows us to compute the evolu-
tion of the electronic properties, magnetic state, and structural transformations near the
pressure-induced Mott IMT in TM oxides [13, 14], a problem posing a great theoretical
and experimental challenge.

In the present work, we demonstrate a few examples of the successful use of such a
theoretical approach in the case of the Fe-based Mott insulators. We discuss a num-
ber of archetype ferrous and ferric Mott insulating compounds, namely, wiistite (FeO),
magnesiowiistite (Fe;_,Mg,)O (z = 0.25 and 0.75), and iron oxyhydroxide (FeOOH) at
pressure conditions relevant to the Earth’s lower mantle. We review a recent progress in
theoretical description of strongly correlated materials, such as Mott insulators, and the
ability of DFT4+DMFT to describe the electronic structure, magnetic state, and phase
stability of such systems near a Mott transition. The paper is organized as follows. In
Section 2 we review the DFT+DMFT computational method. We present a detailed
formulation of the fully charge self-consistent DFT+DMFT scheme implemented with
plane-wave pseudopotentials. This method allows us to compute structural transforma-
tions, e.g., structural phase stability, caused by electronic correlations. Furthermore, we
present a series of applications of the DFT4+DMFT to compute the properties of wiistite
(Fe?*0), magnesiowiistite (Fe7™ Mg,)O (z = 0.25 and 0.75), and iron oxyhydroxide
(Fe3*OOH). These applications are summarized in Section 3. In particular, we discuss
the pressure-induced changes in the electronic and magnetic state, and explore the conse-
quences of the magnetic collapse for the electronic structure and phase stability of these
materials. Finally, the results of our paper are summarized in Section 4.

2. DFT+DMFT method

We start by presenting a formulation of the DE'T+DMFT method which provides a robust
computational tool to study the properties of strongly correlated electron systems [7, 8].
Employing this approach, it becomes possible to determine the electronic properties
and structural transformations caused by electronic correlations of strongly correlated
materials in their paramagnetic and long-range magnetically ordered state.

The DFT+DMFT method provides a systematic many-body treatment of the effect
of strong electron correlations. This allows us to compute the properties of systems with
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arbitrary correlation strength and electron filling. Thereby, the DFT4+DMFT method
makes it possible to interpolate two previously distinct limits (as schematically shown
in Fig. 1): the limit of weakly correlated materials, which properties are often well de-
scribed by DFT, and the limit of strong (nearly static) correlations as in the case of
the long-range magnetically ordered wide-gap Mott insulators. For the latter case, the
static mean-field techniques, such as the so-called DFT+U [3, 38], can often give reli-
able results. Most importantly, using the DFT+DMFT techniques it becomes possible
to investigate the Mott insulator-metal transition, as well as the electronic and struc-
tural properties of materials near the Mott transition. Furthermore, with DFT4+DMFT
it becomes possible to treat quantum paramagnets since the method includes all local
spin/charge fluctuation effects. The latter is important step forward w.r.t. the disordered
local moments DFT/DFT+U techniques [39] in the realistic modeling of paramagnetic
correlated materials. In fact, even in the limit of weakly correlated metals the DMFT
gives more reliable description of the electronic structure, in comparison to standard
DFT calculations, as has been demonstrated for the hcp Fe [40] and Os [41].

As a starting point, in this work we compute the band structure of a material of interest
by using, e.g., a plane-wave pseudopotential technique [42, 43]. The results of DFT
calculations, namely, the electron wave-functions and dispersion relations are further
employed to construct a basis set of atomic-centered symmetry-constrained Wannier
functions [44-47]. This method allows us to build up an effective low-energy Hamiltonian
Hppr for the correlated orbitals of interest, e.g., d or f orbitals of transition-metal ions.
The Hamiltonian Hppr, which provides a realistic description of the low-energy band
structure of an investigated material, is further supplemented by the on-site Coulomb
interactions for the correlated orbitals, resulting in a multi-orbital Hubbard Hamiltonian
of the form (written here for simplicity within the density-density approximation)

N N 1 ;o ~ N
H=Hppr+ 5 Z Urggn/nmanm’a’ — Hpc, (1)
{mo}

where 7,,, = éingémg is the local density operator for the orbital m and spin o. Ug{%/
is the reduced interaction matrix for the spin (0,0’) and orbital (m,m’) indices. It is
expressed in terms of the Slater integrals F°,F2?, and F* [38, 48]. The latter in the
case of 3d electrons are related to the local Coulomb and Hund’s rule coupling as
U=FJ=(F?+ F%/14, and F2/F* = 0.625. Hpc is a double-counting correc-
tion which accounts for the electronic interactions already described by DFT. The values
of Coulomb repulsion U and Hunds coupling J can be evaluated using constrained DFT
[49-51] and /or constrained random phase approximation (RPA) methods [52, 53] within
a Wannier-functions formalism.

The many-electron Hubbard Hamiltonian (1) is then solved self-consistently by using
DMEFT [7, 8] with the effective impurity model treated, e.g., by the numerically exact
hybridization-expansion continuous-time quantum Monte Carlo method [54]. Employing
this technique, it becomes possible to describe the quantum dynamics of the many-
electron problem exactly, only neglecting (in the simplest single-site approximation) by
the non-local correlation effects. We note that the choice of the method for solving the
effective impurity model can drastically affect final results. In particular, for the case of
correlated electron materials, such as Mott insulators or strongly renormalized uncon-
ventional metals, one has to ensure that the method used provides a non-perturbative
treatment of the electron correlation effects. Using perturbative approaches in this case
can lead to unpredictable errors. As a result, by applying a maximum entropy method
to analyze Monte Carlo data, one obtains the real-frequency spectral functions, which
can be further compared to physically observable spectra.
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To determine the phase stability of correlated materials, we evaluate total energy using
the following expression [7, 20, 32, 33]

E = Epprn(r)] + (Hprr) = Y ebk” + (Hy) — Epc, (2)

m,k

where Eppr[n(r)] is the DFT total energy obtained for the self-consistent charge density
n(r); the third term on the right-hand side of Eq. (2) is the sum of the DFT valence-state
eigenvalues which is evaluated as the thermal average of the DF'T Hamiltonian with the
non-interacting DFT Greens function G2 (iwy,). (Hppr) is evaluated in the same way
but using the interacting Greens function which includes corelation effects described by
the self-energy. To calculate these two contributions, the summation is performed over
the Matsubara frequencies iw,,, taking into account an analytically evaluated asymptotic
corrections:

DR =T 3" TrlHppr ()GET (i) 0", (3)

m,k iwn,k

The interaction energy (I:I v) is evaluated using the double occupancy matrix computed
within a quantum Monte Carlo method. The double-counting correction Ep¢ is evaluated
as the average Coulomb repulsion between the N; correlated electrons in the Wannier
orbitals Epc = UN(N — 1)/2. All the presented equations are solved self-consistently
in charge density, in order to include the charge redistribute effects caused by electron
correlations. Further details on particular implementations can be found in Refs. |7, 20,
32, 33, 55-58].

Using this technique, we can determine structural transformations caused by electron
correlation effects, as well as to evaluate the corresponding change in the atomic posi-
tions and of the unit-cell shape. The obtained result can be further employed to explain
the experimentally observed structural data and to predict structural properties of real
correlated materials. We apply this advanced theory to compute the electronic structure,
magnetic state, and phase stability of a series of Fe bearing Mott insulating oxides at
extreme conditions.

3. Magnetic collapse and Mott transition in Mott insulators under
extreme conditions

The theoretical studies of the pressure-induced Mott insulator-metal transition is one of
the most challenging areas of current research in solid state physics. In this chapter, we
discuss the electronic, magnetic, and structural transitions in Mott insulators under high
pressures relevant to the Earth’s lower mantle conditions. As an example, we consider
the archetype Fe-based Mott insulators, such as wiistite (FeO) [34, 36], magnesiowiistite
(Fei—_zMg,)O (z = 0.25, 0.75), and iron oxyhydroxide (FeOOH) [59]. The main focus is
given to the pressure-induced changes in their electronic structure and magnetic state,
in order to explore the consequences of the magnetic collapse for the electronic structure
and phase stability of these materials.

We show that the paramagnetic cubic Bl-structured FeO and (Fe,Mg)O and distorted
orthorhombic (Pnma) FeOOH exhibit (upon compression) a high- to low-spin (HS-LS)
transition, which is accompanied by a simultaneous collapse of local moments. However,
the HS-LS transition is found to have different consequences for the electronic properties
of these compounds. For FeO and (Feg75Mgp.25)0, the transition is associated with a
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Figure 2. Phase diagram of FeO [69]. Stability of rB1, insulating B1, and metallic B1 phases are represented by
solid, gray solid and open symbols, respectively. Circles, squares and triangles indicate each set of experiments. A
metal-insulator transition boundary shown as bold line is determined from present data, and linearly extrapolated
to the melting condition (broken bold line). The estimated uncertainty in location of the transition is shown by
gray band.

Mott IMT. In contrast to that, both (Feg2sMgo.75)O and FeOOH remain insulating up
to the highest studied pressures, indicating that a Mott insulator to band insulator phase
transition takes place. Our results also indicate a crossover between localized to itinerant
moment behavior to accompany magnetic collapse of Fe ions.

3.1. FeO

The high-pressure behavior of wiistite, FeO, has attracted much recent attention from
both experimental and theoretical point of views [60-63]. It is one the basic oxide com-
ponents of the Earth’s interior. Therefore the electronic properties and phase stability
of FeO is of fundamental importance for understanding the properties and evolution
of the Earth’s lower mantle. FeO has a relatively complex pressure-temperature phase
diagram (see Fig. 2) [64—68] originating from complex interplay between the effect of elec-
tron correlations and lattice [34, 69, 70]. Under ambient conditions, it is a paramagnetic
Mott insulator with a rock-salt cubic B1 crystal structure. It is antiferromagnetic below
the Neel temperature Ty ~ 198 K. The Neel transition is accompanied by a structural
transition from the B1 to the rhombohedral R3¢ phase (rB1).

Shock-wave compression and electrical conductivity measurements showed a possible
appearance of a high-pressure metallic phase of FeO above ~ 70 GPa [71]. On the basis
of high-pressure Mossbauer spectroscopy measurements [63, 72-74], the transition to a
metallic state was assigned to a high- to low-spin transition (HS-LS), which has been
proposed by band-structure calculations to occur above ~ 100-200 GPa [75]. On the other
hand, x-ray emission spectroscopy reveals the HS state of Fe up to ~ 140 GPa (at room
temperature), while it is found to transform to the LS state upon further heating [76, 77].
On the basis of these measurements, the insulator-to-metal HS-LS transition has long
been considered to be due to a structural transformation from the B1 to B8 structure.
In contrast to that, recent experiments have shown that the Bl-type FeO undergoes a
high-temperature insulator-to-metal transition at about 70 GPa, retaining the same B1
lattice structure [69]. Moreover, the Bl-type structure has been shown to remain stable
at high pressure and temperature, being the stable phase along the geotherm through
the Earth’s mantle and outer core [69].

To explore the high-pressure behavior of FeO, we compute its electronic structure, mag-
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Figure 3. DFT+DMFT total energy (blue line) and local moment /(m?2) (red line) of paramagnetic Bl-type
FeO calculated by DFT+DMFT for different volumes (top). PI: HS paramagnetic insulating phase. PM: LS metal.
The calculated equation of state is depicted by solid blue line. The metastable solutions are shown by dotted blue
lines. The HS-LS state transition is depicted by a vertical black dashed line. Bottom: Fe 3d and partial t24 and
eg occupations as a function of volume.

netic state, and phase stability employing the fully charge self-consistent DFT+DMFT
method [34, 69]. In these calculations, we neglect the structural complexity of FeO un-
der pressure [64-69] and study the properties of the Bl-structured phase of FeO which
was shown to be the stable phase along the geotherm through the Earth’s lower mantle.
Below we denote the compressed phase by the relative volume w.r.t. the calculated equi-
librium lattice volume as ~ V/Vq. The details of these calculations are summarized in
Refs. [34, 36]. The calculations are performed for the paramagnetic state at an electronic
temperature T=1160 K, relevant for the Earth’s lower mantle conditions. We use the
average Coulomb interaction U = 7 eV and Hund’s exchange J = 0.89 eV for the Fe
3d shell, in accordance with previous estimates [4, 36, 69]. These values are assumed to
remain constant (for simplicity) upon variation of the lattice volume.

Our results for the evolution of the total energy and (instantaneous) local magnetic
moments of paramagnetic FeO as a function of lattice volume are presented in Fig. 3
(top). Using these results, we evaluate equation of states by fitting the calculated total
energy to the third-order Birch-Murnaghan equations of state separately for the HS and
LS regions. Our results are in overall good agreement with available experimental data
[67-69]. In particular, at ambient pressure we obtain a Mott insulator with a large d-d
energy gap of ~ 2 eV, in accordance with optical and photoemission experiments [78].
The energy gap of about 0.8 eV lies between the top of the valence band originating
from the mixed Fe 3d and O 2p states and the empty Fe 4s states (in the I'-point
of the Brillouin zone as seen from our k-resolved spectral function calculations [34]).
Our result for the equilibrium lattice constant a = 8.36 a.u. is less than 1-2 % off the
experimental value (shown in Table 1). The calculated bulk modulus B = 140 GPa and
the local magnetic moment of 3.7up, agree well with experiment. Fe t5, and e, orbital
occupancies are 0.68 and 0.55, respectively. All this clearly indicates that at ambient
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Figure 4. Left: DFT+DMFT spectral function of paramagnetic FeO for three different lattice volumes (Vg, 0.82
Vo, and 0.59 Vg). Fe ta4/eg and O p orbital contributions are shown. Right: Local magnetic susceptibility x(7) =
(i (1) (0)) calculated by DFT+DMFT for paramagnetic Bl-type FeO as a function of volume. The intra-orbital
t24 and ey contributions are shown. The insulator-metal transition associated with the HS-LS transformation takes
place at V/Vo ~ 0.72, at pressure ~ 73 GPa. The calculated equilibrium volume Vp = 144 a.u.?.

pressure Fe?" ion is in a high-spin state (S = 2). In fact, in a cubic crystal field, the Fe?*
ions with Fe 3dS configuration, i.e., four electrons in the tag and two in the e, orbitals,
have an atomic magnetic moment of 4p5. We also point out the crucial importance of
the electron correlation effects to determine the correct electronic and lattice properties
of FeO. Thus, in contrast to the experiment, standard band-structure methods give a
metallic solution for FeO.

Our results indicate that upon compression FeO undergoes a high-spin (HS) to low-spin
(LS) transition [63], with a collapse of the local moment to a LS state, with local magnetic

moment (evaluated as M, = \/T fol/T dr(m;(17)m;(0)), where T is the temperature)
below ~ 0.7 up at pressure above 160 GPa, i.e., V/Vy < 0.6. Upon the transition, we
observe a substantial redistribution of charge between the Fe t5, and e, orbitals within
the Fe 3d shell [shown in Fig. 3 (bottom)]. It results in a (almost) completely occupied
state with the t9, occupation of about 0.95 at high pressures, whereas the e, orbitals are
strongly depopulated (their occupation is only 0.25). The spin-state transition is found
to be accompanied by a collapse of lattice volume. The structural change takes place
upon a compression of the lattice volume to ~ 0.72, i.e., at pressure 73 GPa, in good
agreement with recent experimental high-temperature data [69]. It results in a collapse
of the lattice volume by ~ 8.5 %. In addition, we note a substantial change of the bulk
modulus, which increases by ~ 30 %, implying a remarkable change of the compressibility
at the phase transition.

Overall, the electronic structure, the equilibrium lattice constant, and the structural
phase stability of paramagnetic Bl-type FeO obtained by employing the fully charge
self-consistent DFT+DMFT approach are in remarkably good agreement with the re-
cent experimental data [67-69], clearly indicating the crucial importance of electronic
correlations. Moreover, the Fe 3d electrons are found to exhibit a crossover from a lo-
calized to itinerant magnetic behavior under pressure, implying delocalization of the 3d
electrons at high pressures [36]. Our results reveal [34, 36] that within the B1 structure
of FeO the HS-LS transition is accompanied by a Mott insulator-metal transition (see
Fig. 4 (left)) [67, 69, 71], which results in a collapse of the lattice volume by ~ 8.5 %.
Moreover, our results for the local spin susceptibility x(7) for different pressures [see Fig.
4 (right)] show that the HS-LS transition is accompanied a crossover from a localized to
itinerant magnetic moment behavior for the Fe 3d electrons.




February 2, 2017

High Pressure Research draft

Lower mantle P, b

1000

Spin Transitian

Temperature (K)

Figure 5. Summary of high-pressure 57"Fe Mossbauer spectroscopy results, at 6-300 K, on (Mg,Fe)O magne-
siowlistite [72], which along with silicate perovskite is thought to make up the bulk of the Earth’s lower mantle. At
high pressures and low temperatures, magnesiowiistite is antiferromagnetic (blue lines), with a site magnetization
that increases under pressure. A new signal indicative of a nonmagnetic (diamagnetic, black lines) site appears
abruptly at pressures above 30-90 GPa, depending on composition, and is interpreted as the onset of the high- to
low-spin transition (gray surface). For mantle compositions, with bulk Mg/(Mg+Fe) ratio as high as x = 0.9, the
spin transition occurs at pressures as low as 30-40 GPa, corresponding to the shallowest part of the lower mantle.
This figure illustrates only a subset of pressure-temperature paths explored for various compositions, with spectra
also being collected as a function of temperature at constant pressure (see also Ref. [63]).

3.2. (Fei_oMg,;)O magnesiowiistite with x = 0.25 and 0.75

To proceed further, we discuss the electronic structure, magnetic state, and lattice prop-
erties of the Bl-structured (Fe;_,Mg,)O, with z = 0.25 and 0.75. This material is
known to exist at ambient conditions as a solid solution between MgO periclase and FeO
wiistite. It is the second most abundant mineral in the Earth’s lower mantle. Because of
this understanding the high-pressure properties of (Fe,Mg)O is important for modeling
of mineralogical composition of the Earth’s lower mantle, as well as for interpreting of
the (indirect) geophysical observations, e.g., in seismology [61, 67, 72, 77, 79, 80].

Our results presented in the previous chapter show that the paramagnetic Bl-type
structured FeO undergoes a corroborating HS-LS and Mott IMT at ~ 73 GPa which is
accompanied by a a substantial drop of the volume by ~ 85 %. One can expect that
similar behavior associated with the magnetic collapse of Fe ions occurs in (Fe,Mg)O
under pressure. Indeed, recent experimental studies (which are summarized in Fig. 5)
indicate that the HS-LS transition in (Fe,Mg)O occurs at a pressure range relevant for
the Earth’s lower mantle [72, 74]. While there is a substantial scattering in the results
for the spin-state transition pressure, it was found that the transition pressure decreases
upon increase of Mg content. This can be understood that due to the smaller size of Mg,
Mg content acts as an effective chemical pressure on the HS Fe?T. In addition, x-ray
diffraction studies show that addition of Mg tends to stabilize the rock-salt B1 structure
to high pressures and temperatures, indicating that magnesiowstite is presumably stable
in the Bl-type structure in the Earth’s lower mantle.

We now explore the high-pressure behavior of Bl-type (Fe;_,Mg,)O for two particular
compositions x = 0.25 and 0.75, and compute the electronic state and phase stability
using the fully charge self-consistent DFT4+DMFT method. These calculations are per-
formed in the paramagnetic state at an electronic temperature T=1160 K, relevant for
the Earth’s lower mantle conditions. To model the chemical disorder, we employ super-
cell calculations containing eight formula units of the host material in which two Mg/Fe
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Figure 6. DFT+DMFT total energy and local moment /(m?) (top) and Fe 3d and partial t24 and ey occupations
(bottom) calculated by DFT+DMFT for paramagnetic Bl-type (Feg.75,Mgo.25)O as a function of lattice volume.
The HS-LS state transition is depicted by a vertical black dashed line.

atoms were replaced by two Fe/Mg atoms. The positions of the impurity atoms were
chosen to maximize a distance from each other (Fe/Mg atoms are uniformly distributed
over the unit cell, i.e, we neglect possible formation of the Fe/Mg clusters under pressure
[73]). For simplicity, we neglect the local relaxation effects around the impurity Mg/Fe
atoms. In accord with the previous studies of FeO, we use the same average Coulomb
interaction U = 7 eV and Hund’s exchange J = 0.89 eV for the Fe 3d shell, which (for
simplicity) are fixed upon variation of the lattice volume.

In Figs. 6 and 7 we display the evolution of the total energy and (instantaneous) local
magnetic moments of paramagnetic Bl-structured (Fe,Mg)O for different volumes. The
corresponding equation of states are constructed by fitting the calculated total energy
to the third-order Birch-Murnaghan equation of states separately for the HS and LS
volume regions. Our findings are in overall good agreement with available experimental
data [72, 74, 77, 79, 81]. In particular, at ambient pressure we obtain a Mott insulating
solution for both x = 0.25 and 0.75 with a large d-d energy gap of ~ 2 eV, in accordance
with transport measurements [70]. Our results for the equilibrium lattice constant, bulk
modulus, and (instantaneous) local magnetic moment agree well with experiments and
are summarized in Table 1. For both compositions of (Fe,Mg)O, at ambient pressure, the
Fe ty4 and ey orbital occupancies are large 0.68 and 0.55, respectively, implying the HS (S
= 2) state of Fe?t ions. Indeed, the calculated (instantaneous) magnetic moment is about
3.7 up (corresponding to the fluctuating (local) magnetic moment of about 3.6 up). We
also point out the crucial importance of the electron correlation effects to determine
the correct electronic and lattice properties of (Fe,Mg)O. Similarly to the case of FeO,
in contrast to experimental data, band-structure techniques give a metallic solution for
both discussed compositions of (Fe,Mg)O at ambient pressure.

Furthermore, our calculations show that highly pressurized (Fe,Mg)O undergoes a
high-spin (HS) to low-spin (LS) transition, with a collapse of the local moment to a LS
state, with fluctuating (local) magnetic moment < 0.2-0.4 pp at pressures above 100

10
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(bottom) calculated by DET+DMFT for paramagnetic Bl-structured (Feg.25,Mgo.75)0 for different volumes. MI:
paramagnetic Mott insulating phase. BI: LS band insulator.
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Figure 8. DFT+DMFT spectral function of paramagnetic Bl-type (Feg.75,Mgo.25)O as a function of lattice
volume. Fe tgg/eg and O p orbital contributions are shown. The insulator-metal transition associated with the
HS-LS transformation takes place at V/Vg ~ 0.72, at pressure ~ 72 GPa. The calculated equilibrium volume
Vo = 141 a.u.3.

GPa, i.e., V/Vj < 0.6-0.65. Upon transition, similarly to FeO, we observe a substantial
redistribution of charge between the Fe t5, and e, orbitals within the Fe 3d shell (shown
in the bottom of Figs. 8 and 9). It results in a (almost) completely occupied to, states
at high pressures, whereas the e, orbitals are strongly depopulated (their occupation is
only 0.2). The HS-LS spin-state transition is found to be accompanied by a volume drop.
The structural change takes place upon a compression of the lattice volume to V/Vy ~
0.7-0.8. The calculated transition pressures are 72 and 45 GPa for Mg content x = 0.25
and 0.75, respectively, in agreement with experiments. These results imply that the HS-
LS transition pressure in magnesiowtistite is very sensitive to the Mg content. While for
the Fe-rich magnesiowtistite, the transition pressure exhibits a rather weak variation (our
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Figure 9. DFT+DMFT spectral function of paramagnetic Bl-type (Feq.25,Mgo.75)O as a function of lattice
volume. Fe tgg/eg and O p orbital contributions are shown. No insulator-metal transition detected at the HS-LS
transformation at V/Vo ~ 0.8, at pressure ~ 45 GPa. The equilibrium volume Vj = 134 a.u.3.

results for pure FeO and 25 % of Mg essentially coincide), for the Fe-poor compounds
it drops by ~ 40 %. At the transition point, we obtain a substantial drop of the lattice
volume by ~ 5 and 3 % for the Fe-rich and poor compounds, respectively. We note
however that these values should be considered as an upper-bound estimate because
we neglect multiple intermediate-phase transitions when fit the total-energy result to
the third order Birch-Murnaghan equation of states. Interestingly, the equilibrium bulk
modulus in the Fe-poor (Fe,Mg)O (about 150 GPa) is higher than that in the Fe-rich
compound (140 GPa). This also correlates with a substantial decrease of the equilibrium
lattice volume of (Fe,Mg)O by ~ 6-7 % upon addition of Mg.

Overall, the electronic structure, the equilibrium lattice constant, and the structural
phase stability of paramagnetic (Fe,Mg)O obtained by employing the fully charge self-
consistent DFT4+DMFT approach are in remarkably good agreement with the experimen-
tal data, clearly indicating the crucial importance of electronic correlations. Moreover,
our results indicate a substantial change in the behavior of the Fe 3d electrons, which
are found to exhibit a crossover from a localized to itinerant magnetic behavior under
pressure, implying delocalization of the 3d electrons at high pressures. Overall, these
results are consistent with those obtained for pure FeO.

Our results for the electronic structure of paramagnetic (Fe,Mg)O reveal that the Fe-
rich and poor (Fe,Mg)O, while both exhibit a HS-LS transition, behave quite differently
at high pressures. In particular, for the Fe-rich (Fe,Mg)O the HS-LS transition in the B1
structure is found to be accompanied by a Mott insulator to metal phase transition, i.e.,
the paramagnetic (Fep75Mgp.25)O0 shows a (bad) metallic behavior at high pressures. In
contrast to that, the Fe-poor (Fep.25Mgp.75)O remains insulating at the HS-LS transition,
even more, its energy gap tends to increase upon further compression above the HS-
LS transition. Our analysis of the high-pressure behavior of self-energy of the Fe-poor
(Fep.25Mgp.75)O compound indicates that magnetic collapse is accompanied by a Mott
insulator to band insulator phase transition. In both compounds, the HS-LS transition
results in a substantial drop of the lattice volume by ~ 3-5 %. Moreover, the magnetic
properties of (Fe,Mg)O under high-pressures are characterized by a localized to itinerant
magnetic moment behavior transition of the Fe 3d electrons.

We note that our results qualitatively agree well with those proposed by J. Kunes
and V. Krapek [82] for the generic phase diagram of a HS-LS transition in a two-orbital
Hubbard model. In particular, addition of Mg can be understood as an effective chemical
pressure on the HS Fe?*, which renormalizes the effective Coulomb interaction strength
to bandwidth ratio. This effect leads to a direct HS Mott insulator to LS band insulator
phase transition (without an intermediate metallic state) upon increase of the crystal field
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Vo (auw?) Ko (GPa) P, (GPa) AV/V (%)

FeO 144 142 72.8 9
(Fe0.75Mg0_25)O 141 137 72.5 5}
(Fe0.25Mg0_75)O 134 151 45.5 3

Table 1. Calculated structural parameters for the paramagnetic Bl-structured (Fej_;Mgg)O oxides. P, is
calculated transition pressure; V is ambient pressure volume; K, bulk modulus for the equilibrium phase;
K'=dK/dP = 4.1.

splitting caused by applied pressures. Our results for the paramagnetic Bl-structured
(Fe,Mg)O provide a unified picture of a HS-LS transition in these compounds. While
the Fe-rich (Fe,Mg)O exhibit a rather weak variation of the electronic structure and
lattice properties, the properties of the Fe-poor compounds are quite different. This
appears due to a more local nature of magnetic interactions of Fe ion in the Fe-poor
compounds. Indeed, the contribution of the Fe-Fe exchange interaction which tends to
stabilize the HS state to much higher pressure is much weaker or even absent in the Fe-
poor (Fe,Mg)O, indicating the importance of percolation effects for understanding the
properties of (Fe,Mg)O.

3.3. FeOOH

We now turn to the mineral goethite, FeOOH, which has a distorted orthorhombic
(Pnma) crystal structure and exists ubiquitously as rust on the Earth’s surface and
in its interior [83]. We note that in contrast to previously studied (Fe,Mg)O materials,
in FeOOH iron has a higher oxidation state Fe3T. High-pressure theoretical studies on
FeOOH revealed that the Fe3t ions undergo a HS-LS transition in the range of ~ 8-56
GPa [84, 85]. The HS-LS transition has been shown to be concurrent with a structural
transformation from the low-pressure « to the high-pressure e-polymorph of FeOOH. The
latter is found to occur above 5 GPa and 300 °C [86]. This remarkable discrepancy of the
calculated transition pressures has led us to reinvestigate the evolution of the electronic,
magnetic, and lattice properties of FeOOH under pressure.

To resolve this uncertainty, a collaborative experimental and theoretical study of the
high-pressure properties of FeOOH has been performed [59]. To this end, single crystal
and powder XRD, Mossbauer and Raman spectroscopy, and resistance measurements
have been combined with the state-of-the-art theoretical computations of the electronic
structure and phase stability of FeOOH. The Mdossbauer spectroscopy results are shown
in Fig. 10. On the theory side, a static mean-field variant of the DFT4+DMFT method,
the so-called DFT+U approach, has been employed [3, 38]. This technique provides a
static mean-field treatment of the effect of strong correlations for long-range magnetically
ordered solids. This simplified variant of DFT4+DMFT makes it possible to investigate
a subtle structural changes associated with the relative positions of H and O atoms,
performing complete relaxation of the unit cell and all the atomic positions of FeOOH
in the antiferromagnetic, ferromagnetic, and non-magnetic state. It becomes possible
to relate the shift of positions of the non-correlated ions, such as hydrogen, with the
electronic phase transitions in a correlated material.

The experimental studies reveal a gradual decrease of the lattice parameters and unit
cell volume of FeOOH upon compression to ~ 44 GPa (see Fig. 11). A closer exam-
ination shows a clear trend for symmetrization of the distorted FeOg octahedra upon
compression, which is indicative of the H-bond symmetrization effects. At ~ 45 GPa an
isostructural phase transformation takes place, which is found to be accompanied by a
collapse of lattice volume by about 11 % and vanishing of the Raman modes [59]. This
behavior is associated with a transition from the HS (S=5/2) to LS (S=1/2) configura-
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Figure 10. Mdssbauer spectra of FeOOH as function of pressure at 6 K (a) and at different temperatures at 75
GPa (b) [59]. At 45 GPa the spectrum (a) can still be well fitted with a single sextet. At 55 GPa appears a new
component (red dotted line), which is characterized by the significantly reduced Hhf of ~ 7.2 T. This component
becomes the only remaining component above 65 GPa. Upon cooling at 75 GPa a slight broadening of the doublet
takes place at 50 K, followed by the onset of a magnetic splitting clearly observed at 6 K. This means a considerable
drop of Neel temperature (T ) as compared to T v above 300 K of the low-pressure phase. Thus, the high pressure
phase is characterized by the significantly reduced isomer shift and hyperfine field, lower T 5 values as compared
to the low pressure phase: all these changes are features of the low-spin state of Fe3+.

tion in the antiferromagnetic FeOOH. Indeed, 5" Mdssbauer spectroscopy measurements
indicate the LS Fe?* magnetic component appears at about 50 GPa and is character-
ized by smaller value of the Neel temperature. In addition to that, our resistivity data
exhibit a sharp drop of 5 orders of magnitude to a non-metallic state with a significantly
smaller activation energy. Therefore we conclude that the HS-LS transition in FeOOH
is accompanied by an isostructural transformation, leading to a substantial drop of the
lattice volume by 11 %.

The spin-state transition results in the H-bonds symmetrization, which has been con-
firmed by our theoretical ground-state calculations. Indeed, employing the Coulomb in-
teraction parameter U = 5 eV and Hunds rule coupling J = 1 eV for the Fe 3d orbitals
from the previous estimates, the DFT+U calculations [59] predict a HS-LS transition to
occur at about 57 GPa in the antiferromagnetic phase of FeOOH. In Fig. 12 we display re-
sults of the total-energy calculations of antiferromagnetic FeOOH [59]. In agreement with
experiment, FeOOH undergoes a HS (with magnetic moment of 4.2up) to LS (1.1upg)
phase transition. The HS-LS transition is isostructural, resulting in a substantial drop
of the lattice volume. Moreover, it is accompanied by a remarkable symmetrization of
the H-bonds. Thus, the LS phase has nearly symmetric H-bonds. On the basis of re-
sistivity measurements and band-structure calculations, we conclude that in contrast to
the previously studied Fe-rich (Fe,Mg)O, FeOOH exhibits the HS-LS transition which is
accompanied by a Mott to band-insulator phase transition. We argue the importance of
further theoretical investigations based on the advanced DFT+DMEFT approach to clar-
ify the electronic structure and structural properties of FeOOH at high-pressures and
temperatures for a better understanding of the Earth’s interior. Our present studies sug-
gest that the electronic transition of Fe in the Fe-bearing oxides at the Earth’s interior
conditions may affect water balance and dynamics.
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Figure 11. Pressure dependence of the lattice volume (a) and interatomic distances (b) as revealed by in situ
x-ray diffraction measuremets [59]. Inset: pressure dependence of the isomer shift (IS) obtained from Mdssbauer
spectroscopy. Above ~ 50 GPa an onset of the LS state is observed characterized by an abrupt drop in the IS
value, signaling the sharp decrease of the average Fe-O distances.

4. Conclusions

In this paper, we review combined theoretical and experimental studies of the elec-
tronic structure, magnetic state, and structural transitions in a series of the Fe-based
Mott insulating materials at extreme conditions relevant to the Earth’s lower mantle
conditions. We provided a detailed description of a modern theoretical technique, the
DFT+DMEFT approach, to calculate the electronic structure of strongly correlated ma-
terials. We employ this method to compute the pressure-induced magnetic collapse in
Mott insulators wiistite (FeO), magnesiowiistite (Fe;_;Mg;)O (z = 0.25 and 0.75) and
goethite (FeOOH). In particular, we explore the consequences of the magnetic collapse
for the electronic structure and phase stability of these materials in the context of their
relevance for understanding the Earth’s interior. Our calculations reveal that the para-
magnetic cubic B1 structured FeO and (Fe,Mg)O and distorted orthorhombic (Pnma)
FeOOH exhibit upon compression a HS-LS transition. The transition is accompanied by
a simultaneous collapse of magnetic properties, resulting in a substantial drop of the
lattice volume. However, the electronic transitions have different consequences for the
spectral properties of these compounds. For FeO and (Feg75Mgp.25)0, the transition is
found to be accompanied by a Mott insulator to metal phase transition. In contrast to
that, both (Feg 25Mgp.75)O and FeOOH remain insulating up to the highest studied pres-
sures, indicating that a Mott insulator to band insulator phase transition takes place.
Our corroborative theoretical and experimental research reveals the importance of strong
correlations effects to determine the properties of the Fe-bearing oxides. In particular,
our results reveal a crossover between a localized to itinerant magnetic moment behavior
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Figure 12. Dependence of the DFT+U total energies of the orthorhombic FeOOH as a function of the unit cell
volume [59]. The inset shows the difference between enthalpies of the antiferromagnetic LS and HS states as a
function of pressure.

which is found to accompany magnetic collapse of Fe ions. We note however that further
investigations of the high-pressure properties of FeO and (Fe,Mg)O, e.g., study of their
structural complexity near a HS-LS transition, are highly desirable for a better under-
standing of the Earth’s lower mantle and outer core. We show that the DFT+DMFT
approach provides a qualitative and quantitative description of the electronic properties
and phase stability of all these materials, in spite of their chemical, structural, and elec-
tronic differences. The scheme is robust and makes it possible to address, on the same
footing, electronic, magnetic, and structural properties of correlated materials.
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