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We consider the Bose-Hubbard model on a two-leg ladder under an artificial magnetic field and investigate

the superfluid–to–Mott insulator transition in this setting. Recently, this system has been experimentally realized

[M. Atala et al., Nature Phys. 10, 588 (2014)], albeit in a parameter regime that is far from the Mott transition

boundary. Depending on the strength of the magnetic field, the single-particle spectrum has either a single ground

state or two degenerate ground states. The transition between these two phases is reflected in the many-particle

properties. We first investigate these phases through the Bogoliubov approximation in the superfluid regime and

calculate the transition boundary for weak interactions. For stronger interactions the system is expected to form a

Mott insulator. We calculate the Mott transition boundary as a function of the magnetic field and interleg coupling

with mean-field theory, strong-coupling expansion, and density matrix renormalization group (DMRG). Finally,

using the DMRG, we investigate the particle-hole excitation gaps of this system at different filling factors and

find peaks at simple fractions, indicating the possibility of correlated phases.

DOI: 10.1103/PhysRevA.91.013629 PACS number(s): 03.75.Lm, 05.30.Jp, 05.70.Fh, 67.25.dj

I. INTRODUCTION

Cold-atom experiments can realize the fundamental models

of many-particle physics which are not accessible with tradi-

tional condensed matter techniques. One recent advance has

been the demonstration of artificial magnetic fields in optical

lattice systems, as well as in continuums [1–3]. The optical

lattice experiments control the phase of the hopping between

lattice sites to create a Hamiltonian with an artificial magnetic

field. This effective magnetic feld is orders of magnitude larger

than what is attainable in a solid-state experiment. For the

typical lattice constants in solids, the magnetic flux through

a unit cell is comparable to the flux quantum h/e only for

magnetic fields in excess of thousands of teslas. The first

experiments demonstrating effective magnetic fields in optical

lattices have proven that this extremely high magnetic field

regime is accessible with cold atoms [2,3].

Most investigations of magnetic-field effects in many

particle systems rely on a separation of length scales, assuming

that the magnetic length is much larger than the lattice

scale. However, if these two length scales are comparable,

the magnetic field can no longer be treated semiclassically

and has to be directly taken into account in the microscopic

Hamiltonian. The profound effect of such strong magnetic

fields can be observed even for noninteracting particles.

The single-particle spectrum is sensitively dependent on the

external field, forming a self-similar structure known as the

Hofstadter butterfly [4]. Recent experiments hold the promise

of investigation of many-particle physics for systems with such

complicated single-particle dispersions. The interplay between

interactions and the complicated single-particle spectrum is

expected to result in novel phases [5,6].

The first experiments which implemented an artificial

magnetic field for lattice systems demonstrated the existence

*ahmetkeles99@gmail.com
†oktel@fen.bilkent.edu.tr

of the artificial magnetic field by measuring the effect of this

field on excited states of the system [2,3]. Thus they did not

probe the ground state of the Hofstadter-Hubbard Hamiltonian.

The recent experiment by the Munich group has, for the first

time, demonstrated the effects of an artificial magnetic field

on the ground state of a lattice system.

The experiment in Ref. [7] realizes a model which is

essentially one-dimensional. In general, the orbital coupling

of the magnetic field to a one-dimensional system does not

create any change, as such a field can be set to 0 by a

gauge transformation. However, by using a two-leg ladder,

the experiment creates a situation in which the magnetic field

has nontrivial effects on the system without generating a com-

plicated single-particle spectrum or a sensitive dependence

on the rationality of the applied field. Thus, experimental

realization of this system provides the first opportunity to study

the behavior of lattice bosons in an extremely high magnetic

field regime.

In this paper, we investigate this model system theoretically,

particularly focusing on the effect of the artificial magnetic

field on the Mott insulator–to–superfluid transition. We have

previously conducted a theoretical study of the two-leg Bose-

Hubbard ladder [8]. In this paper our unpublished results are

summarized and extended to cover the regime investigated by

the experiment.

We find that the transition between the Meissner and the

vortex phases moves to a higher magnetic field for weak

interactions. For strong interactions the system goes into the

Mott insulator state. We find consistent results from the strong-

coupling expansion and density matrix renormalization group

(DMRG) for the Mott insulator boundary. A magnetic field

stabilizes the Mott state and makes it accessible at a lower inter-

action strength. We also find that there is a re-entrant Mott tran-

sition as a function of the hopping strength at fixed chemical

potential. Finally, we investigate the gap between the ground

and the first excited states through the DMRG and find that

there are distinct peaks at simple filling fractions, providing

evidence for the existence of correlated states in this system.
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The paper is organized as follows: We introduce the

Hamiltonian in Sec. II and review the properties of the

single-particle spectrum in Sec. III. In Sec. IV, we investigate

the system with weak interactions using the Gross-Pitaevskii

mean-field approximation and also discuss the excitations

of the system above the mean-field solution. The remaining

sections focus on the strongly interacting regime. In Sec. V,

we calculate the phase diagram of the system using a real-space

Gutzwiller ansatz. This approximation is particularly poor

for one-dimensional systems, thus in Sec. VI we calculate

the phase diagram using strong-coupling perturbation theory.

Section VII contains a discussion of the Mott transition using

the DMRG. In Sec. VIII, we investigate the gap between the

ground and the first excited state of the system at half-filling

in the infinite interaction limit as well as the gaps in the

particle-hole excitations of the system for various fillings using

the DMRG and discuss the possibility of correlated states.

Finally, we summarize our results and their consequences for

experiments in Sec. IX.

II. MODEL

We consider an infinite ladder composed of square pla-

quettes extending in the x̂ direction, with nearest-neighbor

hopping. The tight-binding Hamiltonian for this two-leg ladder

is given by

H = −
∑

i

[Je−iαa
†
i ai+1 + Jeiαb

†
i bi+1 + Ka

†
i bi + H.c.]

+ U

2

∑

i

na
i

(

na
i − 1

)

+ nb
i

(

nb
i − 1

)

− μ
∑

i

na
i + nb

i ,

(1)

where ai , bi (a
†
i , b

†
i ) are bosonic annihilation (creation)

operators for the ith site in the upper and lower legs,

respectively. na
i = a

†
i ai and nb

i = b
†
i bi are the corresponding

number operators, J (K) is the intraleg (interleg) hopping

strength, U is the on-site interaction strength, and μ is the

chemical potential. We assume a homogeneous system that has

“up-down” symmetry for zero magnetic field, so that on-site

interactions and chemical potentials are identical for each leg.

The phase α accumulated by hopping from ri to rj is

α = e

�

∫ rj

ri

dr · A(r), (2)

where A is the vector potential satisfying ∇ × A = B and B is

the magnetic field perpendicular to the two-leg plane. We use

the Landau gauge A = −Byx̂ for B = Bẑ and choose y = 0

to be at the center of two legs so that the upper and lower

legs will be at positions y = c/2 and y = −c/2, respectively.

Thus, the exponent in Eq. (1) can be calculated from Eq. (2)

as α = πφ/φ0, where φ is the magnetic flux passing through

each plaquette and φ0 = h/e is the flux quantum.

The main advantage of considering a two-leg ladder as

opposed to a two-dimensional extended system is immediately

obvious. For two-dimensional systems, periodicity under

translations can only be obtained when φ/φ0 is taken to be

a rational number p/q. Only then can the symmetry broken

by the specific gauge choice be restored in a q-fold enlarged
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FIG. 1. (Color online) Single-particle spectrum of a two-leg lad-

der with varying magnetic flux α and interleg-to-intraleg hopping

ratio K . Lower bands are shown by solid lines, whereas upper bands

are shown by dashed lines. The bottom (red) solid line is for K = 2,

the middle (green) solid line is for K = 1, and the top (blue) solid line

is for K = 0.5. The gap between lower and higher bands that appears

for α/π = 0.5 is further shown for the case K = 1 as a function of

the magnetic field in Fig. 2. It is also observed that the gap around

k = 0 for α/π = 0.5 closes for very small K ≪ 1, giving rise to a

linear dispersion around k = 0.

unit cell. The two-leg ladder system does not require such a

constraint so that calculations can be carried out for any real

number α/π between 0 and 1. As such, the two-leg system

presents an opportunity to observe the nontrivial effects of an

external field in a lattice system without the added theoretical

complication. The profound effect of the magnetic field is

evident even at the single-particle level, which is presented in

the next section.

III. SINGLE-PARTICLE SOLUTION

We first give solutions for noninteracting particles; U = 0.

Using the translational invariance along the x direction, the

Fourier components of the field operators can be written as

aj = 1√
L

∑

k

ake
ikj , bj = 1√

L

∑

k

bke
ikj , (3)

where the Fourier components satisfy the commutation

[ak,a
†
k′ ] = δkk′ and [bk,b

†
k′ ] = δkk′ , all other commutators being

0. For simplicity, we have taken c = 1 above so that all lengths

are measured in units of the lattice constant. Using these

transformations in Eq. (1), the following Hamiltonian can be

obtained in the momentum space

Hsp = −
∑

k

[ξaka
†
kak + ξbkb

†
kbk + Ka

†
kbk + Kb

†
kak], (4)

where ξak and ξbk are 2J cos (k − α) and 2J cos (k + α),

respectively. Diagonalization is achieved by the Bogoliubov

transformation Ak = cos θak + sin θbk , Bk = − sin θak +
cos θbk , where θ = 1

2
arctan ( 2K

ξak−ξbk
). The energy eigenvalues

ǫ1,2 can be found as

ǫ1,2 = −2 cos(k) cos(α) ∓
√

K̃2 + 4 sin2 k sin2 α, (5)

where K̃ = K/J and we normalize the energy with the interleg

hopping J . In Fig. 1, we show the dispersion relation in the

first Brillouin zone, for zero and nonzero magnetic fields. It

can be seen that, as the strength of the field increases, the band

minimum in the dispersion shifts from k = 0 to two nonzero

013629-2
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FIG. 2. (Color online) Left: Minima and maxima for the two

bands as a function of the magnetic field. Lower solid and lower

dashed (blue) lines are the minimum and maximum of the lower band,

respectively. Similarly, upper solid and upper dashed (red) lines are

the minimum and maximum of the the higher band. The band gap

is evident between α/π = 1/3 and α/π = 2/3, which attains its

maximum value at α/π = 1/2. Right: Value of the reciprocal lattice

vector at the minimum energy as a function of the magnetic field and

the hopping parameter K/J .

k values that are degenerate and symmetric around the origin.

The critical field for this bifurcation depends on the parameter

K̃ as

αc = cos−1

⎛

⎝− K̃

4
±

√

K̃2

16
+ 1

⎞

⎠ . (6)

Above this critical field, the ground state of the system will no

longer be spatially uniform but will be a superposition of the

plane waves corresponding to the two minima, which can be

found from the dispersion as

kmin = ± sin−1

√

sin2 α − K̃2

4 tan2 α
. (7)

In the Munich experiment [7], these two ground states were

observed for weakly interacting bosons and have been named

the Meissner and vortex phases, respectively.

As shown in Fig. 1, for small values of the magnetic field,

there is no gap between the lower band and the upper band,

whereas for α/π = 0.5 there is a finite band gap between these

two and it decreases as K/J is reduced. We observe that this

gap closes as K/J → 0 and a singular point emerges at k = 0

in this limit. To show more detailed behavior of the band gap,

we plot the minimum and the maximum of the two bands as a

function of the magnetic field for K = J in Fig. 2. This plot can

be regarded as the “Hofstadter butterfly” of the two-leg ladder

system. We see that a diamond-shaped gapped region starts at

α/π = 1/3, takes its maximum value 2J at α/π = 1/2, and

ends at α/π = 2/3. In Fig. 2, we also provide the value of

the reciprocal lattice vector kmin as given in Eq. (7) at the band

minimum as a function of the magnetic field and the parameter

K/J , which is in agreement with [7].

IV. GROSS-PITAEVSKII APPROXIMATION

Our picture of the transition between the Meissner and

the vortex phases in the previous section depended only on

the noninteracting single-particle spectrum of the two-leg

ladder. Before we discuss the effects of strong interactions and

the resulting insulating phase we concentrate on the weakly

interacting limit and calculate how the Meissner-to-vortex

transition is affected by the presence of interactions.

For small values of the interaction strength and the magnetic

field, the system will essentially be in the superfluid state,

mostly dominated by the hopping term in the Hamiltonian.

Thus, assuming that the condensate fluctuations are negligible,

we make the following approximation:

ai → 〈ai〉 = ψi, bi → 〈bi〉 = φi . (8)

Both the amplitude and the phase of those classical fields are

time and position dependent. Clearly, approximation with a

uniform condensate will fail above the critical field.

Making substitution (8) in Eq. (1), the following energy

functional is obtained (here we take J = 1 so that U , μ, and

K are in units of J ):

E = −
∑

j

[e−iαψ∗
j ψj+1 + eiαφ∗

j φj+1 + Kψ∗
j φj + c.c.]

+ U

2

∑

j

[ψ∗
j ψj (ψ∗

j ψj − 1) + φ∗
j φj (φ∗

j φj − 1)]

− μ
∑

j

|ψi |2 + |φi |2. (9)

Variation of the energy functional around the minimal solu-

tions i∂ψi/∂t = δE/δψi
∗ and i∂φi/∂t = δE/δφ∗

i gives the

following coupled Gross-Pitaevskii equations:

i
∂ψj

∂t
= −[e−iαψj+1 + Kφj + eiαψj−1]

+U |ψj |2ψj −
(

U

2
+ μ

)

ψj , (10)

i
∂φj

∂t
= −[eiαφj+1 + Kψj + e−iαφj−1]

+U |φj |2φj −
(

U

2
+ μ

)

φj . (11)

Zeroth-order terms ψj = φj = √
n give the chemical po-

tential as μ = −(2 cos α + K̃) + 0.5U (2n − 1). For a higher

order approximation, the fluctuations in the condensate are

taken into account as [9]:

ψj = √
n + Aei(kxj −ωt) + B∗e−i(kxj −ωt),

(12)
φj = √

n + Cei(kxj −ωt) + D∗e−i(kxj −ωt),

where A, B, C, and D are small complex parameters, xj is the

position of the lattice site, and k is the reciprocal lattice vector.

Inserting these wave functions into Eq. (11), the equation of

motion can be reduced to an algebraic equation of the form

Hgp
�� = ω �� where �� = (A,B,C,D) and Hgp has the form

Hgp =

⎡

⎢

⎣

−ξ ′
ak Un −K 0

−Un ξ ′
bk 0 K

−K 0 −ξ ′
bk Un

0 K −Un ξ ′
ak

⎤

⎥

⎦
, (13)
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FIG. 3. (Color online) Band diagrams for a two-leg ladder with

on-site interactions calculated within the Gross-Pitaevskii approxi-

mation for U = 2. Left: α/π = 0.1. Right: α/π = 0.3.

where ξ ′
ak = 2 cos(k − α) − 2 cos(α) − Un − K and ξ ′

bk =
2 cos(k + α) − 2 cos(α) − Un − K . The resulting change in

the spectrum can be obtained by calculating the eigenvalue of

Hgp, which is shown in Fig. 3.

Competition between the magnetic field and the interactions

can be seen by considering the band minima around k = 0 in

Fig. (3). Here the interactions sharpen the band and provide

a cusp-like shape, whereas the increase in the magnetic field

makes it smoother.

The expansion of the wave function in Eq. (12) fails above

the critical magnetic field, as the ground state is no longer

spatially uniform, and the eigenvalues of Hgp start having

imaginary parts. We have used this property to determine the

change in the critical field with the interaction strength. In

Fig. 4, the critical magnetic field as a function of the strength of

the interaction is shown. It can be seen that the U − αc relation

is almost linear for low interaction strengths but saturates for

strong interactions. It must be noted that for strong interactions

Gross-Pitaevskii approximation is not reliable.

1 2 3

0.1

0.2

0.3

0.4

0.5

U

α
c
/π

 

 

K

0.5 1 1.5 2 2.5 3

0 10 20 30
0

0.5

FIG. 4. (Color online) Critical magnetic field plotted as a func-

tion of the interaction strength U and the intraleg hopping K . Inset:

The same plot zoomed out to span large interactions. Note that the

Gross-Pitaevskii approximation is not expected to be reliable for

strong interactions.

V. VARIATIONAL MEAN-FIELD APPROACH

In this section, we consider the transition from the super-

fluid state to the Mott insulating state as a function of J , K ,

μ, and α. Here, it is convenient to scale the Hamiltonian in

Eq. (1) with U = 1. In the perfect Mott insulator phase, each

site has a localized wave function with exactly n0 particles

such that the wave function in each site is |n0〉i in the Fock

basis. Allowing small variations around this equilibrium, we

write the Gutzwiller ansatz for local sites,

|G〉ak = ak|n0 − 1〉ak + |n0〉ak + ′
ak|n0 + 1〉ak,

(14)
|G〉bk = bk|n0 − 1〉bk + |n0〉bk + ′

bk|n0 + 1〉bk,

where  and ′ are small complex variational parameters.

The wave function for a rung is |G〉rk = |G〉ak|G〉bk so that

the total wave function of the system can be written as

|�〉 = ∏

k |G〉ak|G〉bk . The variational energy of the system

is calculated from ε = 〈�|H |�〉/〈�|�〉 up to second order in

 and ′ as follows:

ε =
N

∑

i=1

{−Je−iα[n0a,i
∗
a,i+1 + (n0 + 1)′∗

a,i
′
a,i+1

+
√

n0(n0 + 1)a,i
′
a,i+1 +

√

n0(n0 + 1)′∗
a,i

∗
a,i+1]

− Jeiα[a → b] − K[n0a,i
∗
b,i + (n0 + 1)′∗

a,i
′
b,i

+
√

n0(n0 + 1)(a,i
′
b,i + ′∗

a,i
∗
b,i)]

+ [(1 − n0 + μ)(|a,i |2 + |b,i |2) + n0(n0 − 1 − 2μ)

+ (n0 − μ)(|′
a,i |2 + |′

b,i |2)]}. (15)

We minimize the energy with respect to ai , bi , 
′
ai , and ′

bi .

The Jacobian matrix of the second derivatives is calculated as

J = −
(

n0F
√

n0(n0 + 1)F√
n0(n0 + 1)F (n0 + 1)F

)

+
(

(1 − n0 + μ)I 0

0 (n0 − μ)I

)

, (16)

where I is a 2N × 2N identity matrix and F is written as

F =

⎡

⎢

⎢

⎢

⎢

⎣

A B . . . B†

B† A
. . . 0

...
. . .

. . . B

B 0 B† A

⎤

⎥

⎥

⎥

⎥

⎦

. (17)

Here sub-blocks are defined in terms of Pauli matrices in the

upper leg–lower leg basis as

A = Kσx, B = Jeiασz . (18)

To find the eigenvalues, we use the same method presented in

Ref. [6]: let λF and �u be the eigenvalues and the eigenvectors of

F, respectively; then one can apply an ansatz of the form �v =
(a�u,b�u) and solve the eigenvalue equation J�v = λ�v, which is

013629-4
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found to be

λ1,2 = 1 − λF(2n0 + 1) ±
√

(1 − λF(2n0 + 1))2 + 4λF(μ + 1) − 4(n0 − μ)(1 − n0 + μ). (19)

Equating the minimum eigenvalue of the Jacobian matrix in

Eq. (19) to 0 yields the phase boundary of the Mott insulating

region. Solving the corresponding equation for K and J , the

following simple relation can be found for the boundary of the

Mott phase:

λF(Kc,Jc) = (n0 − μ)(1 − n0 + μ)

(μ + 1)
. (20)

Here λF is the minimum value of ǫ1 in Eq. (5) so that we obtain

the Mott phase boundary for each value of the magnetic field

α. In Fig. 5, Eq. (20) is plotted for n0 = 1, which shows the

shape of the Mott insulation region.

Note that this result is exact within the mean-field theory.

However, the mean-field theory in a quasi-one-dimensional

system is not expected to be accurate. The decoupling of

the hopping term in Eq. (1) upon introducing a mean field

is questionable in a low-dimensional system, where the

effect of fluctuations is necessarily important. The mean-field

calculation can only describe the system at a qualitative level.

It provides a general idea about the topology of the Mott region

and an estimate of the phase boundary for small values of the

hopping strength where site-site correlations are diminished.

For a better determination of the Mott insulating region, we

turn to more accurate methods in the following sections.

VI. STRONG-COUPLING EXPANSION

A better description of the transition is obtained by treating

the hopping term as a perturbation in the perfect Mott state.

While this is, in spirit, close to the mean-field approach given

in the previous section, correlations between the sites are built

in as higher orders in perturbation theory are developed. The

resulting “strong-coupling expansion” has been successfully

applied to the Bose-Hubbard model in low dimensions and has

been shown to be in perfect agreement with accurate numerical

methods [10,11].

In the strong-coupling expansion, the hopping amplitude

is considered as a small parameter. The Mott insulator state

is characterized by a finite gap for particle-hole excitations,

whereas this gap vanishes for the superfluid phase [12]. We

calculate the energy of a system with exactly n0 particles per

site (Mott state EM ) and the energy of a system with one

additional defect (particle EP or hole EH ) perturbatively. The

energy difference between the defect states and the perfect

Mott state vanishes at the phase boundary. This method has

been used for systems with different dimensions [13,14] and

for a two-dimensional system under a magnetic field [15].

For calculations under perturbation theory, it is convenient

to write the Hamiltonian in the generalized form,

H = −
∑

ij

Fij ã
†
i ãj + 1

2

∑

i

ñi(ñi − 1) − μ
∑

i

ñi, (21)

where F is given in Eq. (17) for our model and the correspon-

dence between the operators ãi and ñi and the operators in

Eq. (1) is obvious.

We perform strong-coupling perturbation up to second

order in our calculations. The energies of the Mott state EM ,

the additional particle state EP , and the additional hole state

EH are found to be

EM = E0
M − Nn0(n0 + 1)(2J 2 + K2), (22)

EP = E0
P − (n0 + 1)λF − Nn0(n0 + 1)(2J 2 + K2)

− n0(n0 + 1)λ2
F + 1

2
n0(5n0 + 4)(2J 2 + K2), (23)

EH = E0
H − n0λF − Nn0(n0 + 1)(2J 2 + K2)

− n0(n0 + 1)λ2
F + 1

2
(n0 + 1)(5n0 + 1)(2J 2 + K2),

(24)

FIG. 5. (Color online) Mott insulating phase boundary calculated within the variational mean-field approach as a function of the magnetic-

field strength and the chemical potential for the parameters K = 0.5J , K = J , K = 2J . The region below (above) the plotted surface is the

insulating (superfluid) state.
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FIG. 6. (Color online) Phase diagram of a two-leg ladder from

the strong-coupling expansion up to second order for different

magnetic fields and interleg-to-intraleg hopping ratios.

where λF is the lowest eigenvalue of hopping matrix F and

N is the number of lattice sites in one leg. Zeroth-order

energies are E0
M = 2N (n0(n0 − 1)/2 − μn0), E0

P = E0
M +

n0 − μ, and E0
H = E0

M − (n0 − 1) + μ. Solving the equations

EP − EM = 0 and EM − EH = 0 for the chemical potential

μ separately, the phase boundary of the particle sector and

hole sector is obtained as

μP = n0 + (n0 + 1)λF − n0(n0 + 1)λ2
F

+ 1
2
n0(5n0 + 4)(2J 2 + K2), (25)

μH = (n0 − 1) − n0λF − n0(n0 + 1)λ2
F

− 1
2
(n0 + 1)(5n0 + 1)(2J 2 + K2). (26)

Here the magnetic-field dependence comes indirectly from

the eigenvalue λF, but higher order terms in the perturbation

will depend on the magnetic field explicitly. An interesting

observation is that our results to this order are similar to the

results in Ref. [15] for a number of nearest neighbors equal to

3. However, this is not guaranteed for higher order expansions

since the flux attained through hopping is different due to the

difference in the topology of this constrained problem. The

eigenvalue spectrum of the F matrix is shown in Fig. 2.

In Fig. 6 we show the results of this calculation. An increase

in the magnetic field enlarges the Mott insulating region of the

phase diagram. This is expected as the magnetic field localizes

the single-particle trajectories even for the noninteracting

problem, thus a transition to an insulator state is easier. The

Mott lobe grows in size until α = 0.5 and then reduces to

satisfy periodicity at α = 1. The shape of the lobe is not

concave as predicted by the mean field, but convex with a

cusp at the tip. This shape is generic in one dimension, as

obtained by strong-coupling, Monte Carlo, and DMRG results

in one dimension. Comparing Figs. 5 and 6, it can be observed

that the mean-field results underestimate the Mott boundary

by a considerable amount.

A new feature of the phase diagram emerges after α = 0.3.

The Mott phase has a re-entrance as a function of the hopping

strength at fixed chemical potential. (Beyond α = 0.3 for

K = 2, curves of the particle and the hole sector intersect

at such a large value of the hopping amplitude that the

second-order perturbation theory fails to capture this region.)

The behavior of the phase diagram here can be explained

as follows. At a fixed chemical potential, if we start from

the pure Mott state, one expects the excitations above this

state to be mobile, as they move on a constant background

of filled sites. If the kinetic energy gained by this mobility

compensates the interaction energy with the background, these

excitations become energetically favorable and cause the Mott

insulator–to–superfluid transition. The magnetic field modifies

this usual transition mainly by limiting the mobility of the

excitations; this is why, in higher dimensional Bose-Hubbard

models, the magnetic field increases the size of the Mott lobes

in the phase diagram. In the two-leg ladder this confining effect

takes an interesting form: starting from the pure Mott state,

introduction of a small hopping causes the system to become

superfluid, however, further increase in the hopping strength

localizes the excitations and causes the system to go back

to the Mott insulating state. Thus, for small J the excitation

energies are not affected by the magnetic field, but as hopping

is increased this term becomes dominant and causes a phase

transition back to the insulator phase. As J is increased further

the system is once again dominated by kinetic energy and

reaches the superfluid state.

The re-entrant phase behavior found in one-dimensional

systems appears in the two-leg ladder with an increase in

the magnetic field. This re-entrant behavior was not observed

in the results for strong-coupling perturbation in one, two,

or three dimensions or in a two-dimensional lattice under a

magnetic field (in [13]–[15] perturbation was carried out up

to third order). The existence of this re-entrant phase is also

supported by our DMRG results, which is the subject of the

next section.

VII. DMRG CALCULATIONS

DMRG theory have been proven to provide numerically

exact solutions of one-dimensional lattice systems [16,17].

This method has been extensively applied to the Bose-Hubbard

model [10,11,18] and shown to be one of the most reliable

approaches for quasi-one-dimensional systems. Thus, in this

section, we use the DMRG to calculate the Mott transition

boundary for a two-leg Bose-Hubbard ladder under a magnetic

field.

We use a method similar to that in [19], namely, rung-by-

rung enlargement, but employ single-rung enlargement [20]

in the construction of the superblock Hamiltonian. We use

the finite-system DMRG algorithm for a ladder of 60 rungs

and for each site we set the maximum occupancy nmax = 4.

Particle number conservation is used to diagonalize only

the Nparticle = Nsites sector of the superblock Hamiltonian or

Nparticle = Nsites ± 1 as additional target states. Further details

about the projection to the space with different fillings are

given in the next section.

Calculation of the Mott phase boundary via DMRG is very

similar to the strong-coupling perturbation method. One needs

the energies of the Mott phase together with the additional

particle and hole states to find the phase boundary. The energies

of particle and hole states are calculated as additional target

states in the DMRG implementation [10]. In Fig. 7, one can

see the good agreement between the strong-coupling result

and the DMRG. For larger values of hopping, the strong-

coupling method deviates from the DMRG, as expected for a

perturbative method. Another point is that the existence of re-

entrance is also validated by DMRG results. We show a similar
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FIG. 7. (Color online) Phase diagram of a two-leg Bose-Hubbard

ladder from the mean-field, strong-coupling expansion and DMRG

at α = 0 (top) and at α/π = 0.45 (bottom). The thin solid (red) line

is the spline interpolation to DMRG data points.

phase for α = 0.45 in Fig. 7. It is seen that strong-coupling

calculations give relatively poor results above J ≈ 0.2.

Finally, we note that the tip of the Mott insulator region

requires a special treatment with the DMRG. The two branches

coming from the particle and hole sector intersect only in the

thermodynamic limit, whereas our system is composed of only

60 rungs. There are several approaches (like consideration of

the correlation length and extrapolation to the Luttinger liquid

correlation function in [10]) to remedying this situation. As

the critical behavior of the tip is not our main concern in this

paper, we do not perform a similar analysis.

VIII. EVIDENCE OF STRONGLY CORRELATED PHASES

In the previous sections, we have performed various calcu-

lations that can only work close to the Mott insulator phase.

Theoretical approaches are limited for the two-dimensional

Bose-Hubbard model under a magnetic field, particularly for

strong fields. This is due to the complicated single-particle

spectrum as well as the interplay between strong correlations

and the high number of degeneracies. Both the strong-coupling

and the mean-field approaches work in the region where such

correlations are weak. On the other hand, this is exactly the

region where novel phases are expected. For this reason,

characterization of the two-dimensional Bose-Hubbard model

exposed to a strong magnetic field is attracting close attention.

There have been several proposals that try to connect these

strongly correlated states with the formation of a vortex lattice

or with the incompressible quantum liquids found in quantum

Hall effects [5]. The absence of an encompassing theoretical

model makes it difficult to identify the physics of this regime.

Both the strong-coupling expansion and the mean-field

theory as discussed in the previous sections use the Mott

insulator state as their starting point. As a result, their range

of validity is limited to densities close to integer filling. In

the other limit, the Gross-Pitaevskii approximation assumes

a uniform gas spread over the lattice to reveal the dynamics

of the system. Compared to these theoretical approaches, the

DMRG has a very wide range of applicability regardless of the

particle number, strength of the field, or interaction. One can

calculate the ground state of the system for a finite lattice with

any number of particles for all values of the magnetic field

and the interaction strength. In this section, we use the DMRG

method to study the two-leg Bose-Hubbard model under a

magnetic field outside the Mott insulator region and look for

evidence of strongly correlated behavior.

Here, we limit DMRG calculations to hard-core bosons

in the infinite-U limit, providing an easier implementation

of the algorithm as the Hilbert space is drastically reduced

by excluding multiple occupation of each site. This limit is

particularly important for correlated states, as the gaps in

the spectrum are expected to be more prominent with strong

interactions. Within this constraint, each site is allowed to be

empty or have only one boson so that the maximum occupation

number nmax = 1 and the terms with the on-site interaction in

the Hamiltonian become only a constraint in the Hilbert space.

The Bose-Hubbard model in this limit can be mapped to a

spin-XXZ model, where the ground state is at half-filling. We

find that our system has a ground state at half-filling not only

for α = 0 but also for nonzero α. In the two limits, all sites

empty and all sites filled, the ground-state energy is 0 and the

minimum of the energy is always at half-filling, which is in

the middle of these two limits.

The energy gap between the ground state and the first two

excited states is shown in Fig. 9 for half-filling. The figure

shows that the spectrum of the three lowest lying states changes

abruptly at αc/π ≈ 0.21. This plot is symmetric around α/π =
0.5 so we only display the half. The critical value found here

is consistent with the one found in the single-particle solution,

which is equal to 0.2148 or 0.7852.

To get the energies at different fillings the DMRG code

must be restricted to a different particle-number-conserving

subspace. We use the route proposed by Ramanan et al. [18], in

which the plateaus in the chemical potential versus the density

plots and the corresponding compressibility are obtained

successfully. We again have a system length L = 60 and

2 × L = 120 sites. Beginning from L = 4 and a total number

of particles N = 4, we increase both the lattice length and the

number of particles up to where the number of particles is

N = 10. After that, the lattice length is increased while the

total number of particles is held fixed at 10. Whenever the

lattice length reaches L = 60, finite system sweeps are used to

decrease the energy. Next, we increase the total particle number

by 1, keeping the system size fixed, and perform five sweeps

to get the energy for this new filling. Repeating this procedure,

we get energies where the particle number is increased up to

N = 110. In the end, energies of systems from N = 10 to

N = 110 particles placed at 2 × L = 120 sites are obtained.

013629-7
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FIG. 8. (Color online) Particle-hole energy gap defined in Eq. (27) as a function of the particle density for α/π = 1/3 (left panel),

α/π = 2/5 (center panel), and α/π = 1/2 (right panel). Depending on the value of α, different peaks are seen in the energy gap that are

symmetric around half-filling. Apart from the dominant peak at half-filling, n = 1/2, we observe additional peaks at n = 1/6 and 5/6 for

α/π = 1/3, n = 1/5 and 4/5 for α/π = 2/5, and n = 1/4 and 3/4 for α/π = 1/2.

After that, the gap formula defined by Cooper et al. [21],

 = N

[

E(N + 1)

N + 1
+ E(N − 1)

N − 1
− 2

E(N )

N

]

, (27)

is used, which minimizes finite-size effects.

We show this gap for various values of magnetic field in

Fig. 8. It is shown that the gap oscillates between zero and

nonzero values for low densities and becomes negative towards

integer filling. Apart from that there are three dominant peaks;

one is always at 1/2 and the other two depend on α. The

magnitudes of these changing peaks are also shown to get

smaller and smaller as the field approaches 1/2. It is interesting

to compare these peaks by defining the filling factor [22],

ν = n

f
, (28)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

α/π

∆

FIG. 9. (Color online) Gap between the ground state and two

excited states as a function of the magnetic field at half-filling for

hard-core interaction. The gap between the first excited state and the

ground state (E1 − E0) is shown by (green) crosses, whereas the gap

between the second excited state and the ground state (E2 − E0) is

shown by (blue) circles. Thin solid lines are spline interpolations to

data points. The spectrum shows a jump at αc/π = 0.21, which is very

close to the critical magnetic field calculated from the single-particle

spectrum.

where n is the particle density and f is the vortex density

defined as the phase attained around a unit cell divided by

2π , which means f = α/π in our model. We see that the

corresponding distinct values of the filling factors for the peaks

in Fig. 8 are obtained as ν = 1/4, 3/4, 5/4 for α/π = 1/3;

ν = 1/4, 5/8, 1 for α/π = 2/5; and ν = 1/4, 1/2, 3/4 for

α/π = 1/2.

The dependence of the gap on the filling fraction is clear

evidence of the role played by the interactions. However,

our simple finite-size DMRG calculations cannot reveal the

character of correlations within these states. Future studies of

the system in this limit must include larger system sizes, finite

on-site interactions, and careful consideration of finite-size

effects to reveal the physics of possible correlated states in the

two-leg Bose-Hubbard ladder.

IX. CONCLUSION

Our calculations lead to a number of conclusions related

to the recent experiment in Ref. [7]. The experiment probed

only the limit where the number of particles per site is high,

which can mostly be described by the Gross-Pitaevskii level

approximations. The reported phase transition between the

two phases is driven by the change in the character of the

single-particle spectrum rather than interactions. In this limit,

the effect of interactions is expected to be quantitative rather

than qualitative. Our calculations indicate that the interactions

will shift the boundary between the Meissner and the vortex

phases, however, observation of this shift is complicated by the

uncertainty due to the finite temperature in the experiments. A

recent paper [23] argues that another effect of the interactions

would be the spontaneous breaking of the symmetry between

the two legs. As our calculations have this symmetry built in,

we cannot investigate such a transition.

While the current experiment operates in the superfluid

regime, it is natural to expect further experiments in this system

to probe the region with only a few particles per site where

the insulating state is likely. We expect our strong-coupling

and DMRG results to be quantitatively correct for the Mott

transition boundary. While the effect of the external confining

potential is weak in the experiment, a wedding-cake structure
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would be a clear indication of the Mott transition. Such a

wedding-cake structure not only can be observed by looking

at the density but also can be deduced from the link currents

investigated by the method used in the present experiment.

Finally, our DMRG results for noninteger filling factors

provide some evidence for the possibility of correlated phases

in this system. However, we cannot confidently assert the

presence of these phases due to the finite-size limitations of

our calculation. To judge the viability of the experimental

observation of these phases a better characterization of their

gaps and correlation properties must be made. Nonetheless,

our results indicate that this regime should be interesting to

investigate experimentally.

In conclusion, we have worked on the two-leg Bose-

Hubbard ladder exposed to a magnetic field within various

theoretical approaches and implemented the DMRG to study

the behavior of the system. We have found that the system

has two distinctively different regimes, in agreement with the

recent experiment. The shape of the Mott insulator region

is obtained by three methods: variational mean-field theory,

strong-coupling perturbation theory, and DMRG. We found

that the shape of the lobe is consistent within the DMRG and

strong-coupling approximation, while the results of the mean-

field theory are relatively poor. Apart from the determination

of the Mott lobes, the system is found to display novel

physical properties as a result of the single-particle spectrum.

We believe that this model serves as an important tool for

understanding the general properties of optical lattices coupled

to a gauge field. In the latter part of the paper, we have

calculated the excitation gap for noninteger filling and found

distinct peaks at simple fractions of particle number to flux

quanta. This regime will be investigated further in subsequent

work.

Note added in proof. Recently, the same system was

investigated theoretically in [24] and [25]. We believe that

our results and these theoretical papers are complementary.
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