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The phase diagrams of isotropic and anisotropic triangular lattices with local Coulomb interactions are
evaluated within cluster dynamical mean-field theory. As a result of partial geometric frustration in the
anisotropic lattice, short-range correlations are shown to give rise to re-entrant behavior which is absent
in the fully frustrated isotropic limit. The qualitative features of the phase diagrams including the critical
temperatures are in good agreement with experimental data for the layered organic charge-transfer salts
�-�BEDT-TTF�2Cu�N�CN�2�Cl and �-�BEDT-TTF�2Cu2�CN�3.
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I. INTRODUCTION

The influence of spatial quantum fluctuations on the na-
ture of the Mott transition in strongly correlated systems is
currently of great interest. A class of materials in which these
effects can be studied in detail are the layered charge-transfer
salts of the �-�BEDT-TTF�2X family, where X denotes an
inorganic monovalent anion such as Cu�N�CN�2�Cl or
Cu2�CN�3. The electronic properties of these compounds
have been shown to be highly sensitive functions of hydro-
static pressure.1–8 As a result, the temperature versus pres-
sure phase diagram is remarkably rich, exhibiting Fermi-
liquid and bad-metallic behavior, superconductivity as well
as paramagnetic and antiferromagnetic �AF� insulating
phases. These observations suggest fascinating connections
to analogous phenomena in various transition-metal oxides.9

A feature of particular interest in the organic salts is mag-
netic frustration. Since the geometric structure corresponds
to an anisotropic triangular lattice with inequivalent
nearest-neighbor hopping interactions t and t�,10,11 long-
range magnetic ordering becomes increasingly frustrated if
the lattice is nearly isotropic, giving rise to an exotic spin-
liquid phase in the absence of symmetry breaking.12

Such a spin-liquid phase5,7,13 is realized in the organic insu-
lator �-�BEDT-TTF�2Cu2�CN�3 �denoted below as �-CN�
which corresponds to t��1.06t, whereas
�-�BEDT-TTF�2Cu�N�CN�2�Cl �denoted as �-Cl� with t�
�0.75t is an AF insulator.3,4 AF order is also found in those
Pd�dimt�2 salts for which 0.55� t� / t�0.85. In contrast,
C2H5�CH3�3P�Pd�dimt�2�2 with t�=1.05t is a valence-bond
solid insulator at ambient pressure.14 Experiments on these
kinds of two-dimensional frustrated systems have greatly
stimulated theoretical investigations of the electronic and
magnetic properties of triangular lattices.15–28

The focus of the present study is the bandwidth-controlled
finite-temperature phase diagram of the Hubbard model for
isotropic and anisotropic triangular lattices. The key result is
that small changes in the ratio t� / t can give rise to funda-
mental changes of the phase diagram. Thus, partial and full
magnetic frustration reveal strikingly different metal-
insulator coexistence regions in qualitative agreement with
the experimental phase diagrams for �-Cl �Ref. 4� and
�-CN.7

The anisotropic triangular lattice has recently been stud-
ied also by Ohashi et al.26 who used dynamical mean-field
theory �DMFT� �Ref. 29� with a cluster extension to account
for spatial fluctuations. Although at t��0.8t re-entrant be-
havior was found as observed for �-Cl, the calculated Tc was
much larger than the measured value. Moreover, only the
lower boundary of the metal-insulator coexistence region
was determined. Here, we investigate both the isotropic and
anisotropic triangular lattices and use exact diagonalization
�ED� �Ref. 30� combined with cluster DMFT �Ref. 31� to
evaluate the upper and lower phase boundaries, Uc1�T� and
Uc2�T�, of the coexistence region. As shown below, the shape
of these boundaries as well as the critical temperatures are
consistent with the experimental data for �-Cl and �-CN.

II. THEORY AND RESULTS

The minimal model Hamiltonian that captures the inter-
play between geometrical frustration and strong Coulomb
interaction present in the conducting layers of organic salts
such as �-Cl and �-CN is

H = − �
ij�

tij�ci�
+ cj� + H.c.� + U�

i

ni↑ni↓ − ��
i�

ci�
+ ci�, �1�

where the sum in the first term is limited to nearest-neighbor
sites. The hopping integrals in a unit cell consisting of three
sites are t13= t23= t and t12= t�. The bandwidth is W=9t for
t�= t and W=8.5t for t�=0.8t. The chemical potential � is
fixed to give half filling. Within cluster DMFT the interacting
lattice Green’s function in the cluster site basis is defined as

Gij�i�n� = �
k�

�i�n + � − t�k�� − ��i�n��ij
−1, �2�

where k� extends over the reduced Brillouin zone and �n

= �2n+1��T are the Matsubara frequencies. t�k�� denotes the
hopping matrix for the superlattice and ��i�n� represents the
nondiagonal cluster self-energy matrix. This self energy is
calculated within ED where the environment of the three-site
cluster is replaced via a bath consisting of six or nine levels,
i.e., for a total cluster size ns=9 or ns=12. The calculations
are carried out on a site basis and on a mixed site/molecular-
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orbital basis. Due to ED finite-size effects, these treatments
give results that differ quantitatively. Nevertheless, the quali-
tative features of the phase diagrams are consistently repro-
duced by these ED versions. Details of the cluster ED/DMFT
formalism can be found in Ref. 32.

Figure 1�a� shows the calculated phase diagram for the
anisotropic lattice in the region below the critical tempera-
ture. To facilitate the comparison with the experimental data
for �-Cl,4 the hopping matrix elements are chosen as t
=0.04 eV and t�=0.8t to reproduce the single-particle band-
width, W=0.34 eV.33 A similar value was used in the nu-
merical renormalization group �NRG� DMFT analysis of the
high-T data in Ref. 4. Since the data were plotted in a T / P
phase diagram, we show the transition temperatures as func-
tions of the inverse Coulomb energy. Increasing pressure P
implies increasing electronic bandwidth so that this measure-
ment is equivalent to keeping W fixed and reducing U in the
calculation. The phase boundaries of the coexistence region
are obtained by carefully increasing or decreasing U from the
metallic or insulating domains, respectively. Figure 1�b�
shows the phase diagram for the isotropic case correspond-
ing to �-CN.

The critical temperatures for t�=0.8t and t�= t, Tc
�50 K�0.11t, are consistent with the measured values Tc
�40 K for �-Cl �Ref. 4� and Tc�50 K for �-CN.7 Tc
�0.1t was recently obtained also for the fully unfrustrated
square lattice.34 On the other hand, within quantum Monte
Carlo �QMC� DMFT at temperatures T=0.1t–1.0t, Ohashi et
al.26 found a much larger value Tc�0.3t�140 K. The ex-
perimental data and the present ED/DMFT results suggest
that the metal-insulator coexistence region is located at tem-
peratures below those considered in Ref. 26.

For t�=0.8t, the first-order phase boundaries separating
the Fermi liquid from the Mott insulator in Fig. 1�a� show
the same kind of re-entrant behavior as measured for �-Cl.
For instance, at U= 1

3 eV and T�50 K the system is a Mott
insulator which turns into a Fermi liquid if T is lowered to
about 20 K. Further reduction in T reverts the system to a
Mott insulator, just as seen in the data �we do not consider
here the antiferromagnetic insulating phase which is detected
at even lower temperature�. Ohashi et al.26 found re-entrant
behavior at considerably higher temperatures.

At present the origin of differences between the phase
diagram for t�=0.8t shown in Fig. 1 and the one found by
Ohashi et al. is not clear. One reason might be that we con-
sider a triangular lattice �three sites per cluster� while in Ref.
26 a square lattice with one diagonal was used �four sites per
cluster�. However, since the experimentally observed critical
temperature is much lower than the range treated in Ref. 26,
it would be interesting to apply continuous-time QMC to this
problem in order to reach lower temperatures.

The re-entrant behavior for t�=0.8t is in striking contrast
to the phase diagram obtained for the isotropic triangular
lattice shown in Fig. 1�b�. This limit resembles more closely
the phase diagram derived within single-site DMFT.29 The
main effect of short-range fluctuations in the isotropic case is
a significant lowering of the critical Coulomb energy. Here,
Uc2�1 /2.63 eV�9.5t, whereas Uc2�12t–15t in local
DMFT for the triangular lattice.35,36 Comparing Figs. 1�a�
and 1�b�, it is evident that anisotropy causes a further lower-
ing of the critical Coulomb energies. This trend is consistent
with Uc�6t for the fully unfrustrated square lattice34,37

which is topologically equivalent to the triangular lattice in
the limit t�=0.

It is interesting also to analyze the width of the metal-
insulator coexistence region obtained by increasing vs
decreasing pressure. For �-Cl, it is observed at P
�200–400 bar, which according to the high-T NRG analy-
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FIG. 1. �Color online� Phase diagrams of Hubbard model for anisotropic triangular lattice �t�=0.8t� and isotropic triangular lattice
�t�= t�, evaluated within ED cluster DMFT for t=0.04 eV. Plotted are the first-order metal-insulator phase boundaries as functions of inverse
local Coulomb energy U. In the experimental setup increasing hydrostatic pressure P implies increasing bandwidth W or decreasing U. The
re-entrant behavior found for t�=0.8t is absent in the isotropic limit t�= t.
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FIG. 2. �Color online� Nearest-neighbor spin correlations in iso-
tropic and anisotropic triangular lattices for T=0.05t, t�= t12, and
t= t13= t23. Strong enhancement of spin correlations occurs for mod-
erate deviations from the isotropic limit.
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sis corresponds to bandwidth changes of about 2%.4 The
calculated coexistence region shown in Fig. 1�a� is only
slightly wider than this experimental range.

The qualitative change in the phase diagram caused by
reduced geometrical frustration can be understood by analyz-
ing the magnetic properties of the frustrated lattice. In the
U→� limit, the Hubbard model can be mapped onto the
anisotropic Heisenberg model with J� /J=0.64 and J� /J=1
for t�=0.8t and t�= t, respectively. At T=0, t�= t yields long-
range AF order of the 120° type whereas t�=0.8t gives rise to
row-wise AF Néel order.38 However, in the Heisenberg
model the temperature scale for AF order in the isotropic
triangular lattice is expected to be strongly suppressed rela-
tive to the square lattice. For the Hubbard model, the cluster
DMFT provides information on how the magnetic correla-
tions �SizSjz� vary across the Mott transition in the isotropic
case compared with t�=0.8t. The results shown in Fig. 2
demonstrate that spin correlations are strongly enhanced as
the geometrical frustration is suppressed. The isotropic lat-
tice displays weak AF coupling for any U. This is in contrast
to t�=0.8t, for which the weaker hopping amplitude displays
ferromagnetic correlations whereas spins with the larger hop-
ping amplitude are antiferromagnetically coupled, indicating
a row-wise AF Neel arrangement of spins. Thus, t�=0.8t
induces a much stronger tendency toward magnetic order
than t�= t, which explains why the re-entrant behavior occurs
for t�=0.8t but not for t�= t �see Fig. 1�. At low T, the elec-
tron entropy is suppressed for t�=0.8t as compared to t�= t.
As T is increased for t�=0.8t, the system lowers its free
energy by transforming to a metal since the entropy of the

metal exceeds that of the ordered insulator. At even higher
temperatures the system gains entropy of log �2� by trans-
forming back into a paramagnetic insulator. This result is
analogous to the one found for the unfrustrated square
lattice.34 In the isotropic lattice magnetic ordering is sup-
pressed and the re-entrant behavior disappears.

To illustrate the first-order nature of the metal-insulator
transition we show in the left panel of Fig. 3 the spectral
weights of the cluster sites at EF=0 as functions of U. The
right panel shows the average double occupancy docc
=�i�ni↑ni↓� /3. Both quantities exhibit hysteresis for increas-
ing and decreasing U, indicating coexistence of metallic and
insulating solutions.

Finally, Fig. 4 shows the spectral densities at Coulomb
energies below and above the Mott transition for T=0.02t
and t�=0.8t. Plotted is the average over the three inequiva-
lent sites within the unit cell. Since we are here concerned
with the metal-insulator transition we give the ED cluster
spectra which can be evaluated without requiring extrapola-
tion from the Matsubara to real frequencies. In the metallic
phase the spectra reveal large quasiparticle weight at low
frequencies as well as upper and lower Hubbard bands at
high frequencies. The insulating phase exhibits a Mott gap as
well as pronounced spectral weight in the region of the Hub-
bard bands. Qualitatively similar features are also seen for
the unfrustrated square lattice.34,39

III. CONCLUSION

In conclusion, the phase diagrams of the Hubbard model
for the isotropic and anisotropic triangular lattices have been
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FIG. 3. �Color online� Hysteresis behavior of spectral weights Ai�0� at EF=0 and average double occupancy docc as functions of Coulomb
energy for anisotropic triangular lattice �t=1, t�=0.8t, and T=0.05t�. Red solid �blue dashed� curves: increasing �decreasing� U.
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FIG. 4. �Color online� Average spectral distributions of cluster sites below and above the Mott transition for the anisotropic triangular
lattice �t=1, t�=0.8t, and T=0.02t� for Coulomb energies U=7.5t and U=8.2t. The bare density of states is shown by the dashed blue curve.
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determined within cluster DMFT and exact diagonalization.
For moderate frustration, t�=0.8t, re-entrant behavior is
found and the phase boundaries of the metal-insulator coex-
istence region are in qualitative agreement with the T / P
phase diagram observed experimentally for the anisotropic
organic salt �-Cl. The re-entrant behavior disappears in the
fully frustrated limit, t�= t, in agreement with measurements
on the nearly isotropic compound �-CN. The phase diagram
then bears overall resemblance to the one obtained within
local DMFT, i.e., in the absence of intersite correlations. The
critical temperatures, Tc�50 K for the isotropic and aniso-

tropic lattices, are consistent with the data for �-CN and
�-Cl. These results should also be relevant for the phase
diagram of �Pd�dimt�2�2 salts exhibiting small deviations
from the isotropic lattice.40
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