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We study theoretically the Mott metal-insulator transition for a system of fermionic atoms confined in a

three-dimensional optical lattice and a harmonic trap. We describe an inhomogeneous system of several

thousand sites using an adaptation of dynamical mean-field theory solved efficiently with the numerical

renormalization group method. Above a critical value of the on-site interaction, a Mott-insulating phase

appears in the system. We investigate signatures of the Mott phase in the density profile and in time-of-

flight experiments.
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Introduction.—Ultracold atoms in optical lattices offer

exciting possibilities to investigate many-particle effects

and to realize and measure models of condensed matter

physics like the Hubbard model with unprecedented con-

trol of the band structure and interaction strength.

One of the most dramatic effects of strong correlations is

the Mott transition, where strong interactions drive a sys-

tem insulating. While for bosonic atoms [1] the Mott

transition in an optical lattice has been realized a few years

ago by Greiner et al. [2], the corresponding experiment for

fermionic systems turns out to be much more difficult,

partially due to problems with cooling and due to the

need to work with two hyperfine states, to model the spin

degree of freedom. However, due to the enormous experi-

mental progress, a realization of the Mott transition in

fermionic systems is expected in the near future. For

example, recently Köhl et al. [3] succeeded to capture

interacting fermions in an optical lattice and to observe

the Fermi surface.

For the interpretation of the experiments, it is essential

to investigate the effects of the smooth external confining

potential holding the atoms in the trap. The resulting

inhomogeneities can make it more difficult to interpret

the experiments, but induce also new interesting effects,

e.g., associated with the sharp surface between metallic

and insulating regions. A frequently used approximation

(e.g., in the present context by Ref. [4]) is to describe the

trapped atoms locally by a homogeneous system called

local density approximation (LDA). However, in the pres-

ence of sharp domain walls between two phases, such an

approximation is expected to fail and a more realistic

treatment of the inhomogeneous system is necessary.

For one-dimensional (1D) systems, powerful numerical

[5,6] and analytical [4] methods exists to study theoreti-

cally the Mott transition in fermionic systems. For ex-

ample, in Refs. [4–6], quantum Monte Carlo techniques

were used to investigate the signatures of Mott phases in

the presence of an external harmonic confinement potential

for a 1D system. Rigol et al. [5,6] argued, that in one

dimension the inhomogeneities resulting from the trapping

potential essentially destroy the main signatures of Mott

phases in time-of-flight experiments.

As exact numerical methods for fermions can only be

applied to very small systems, one has to resort to approxi-

mations to calculate the properties of three-dimensional

lattices of realistic size. Here, the method of choice is the

so-called dynamical mean-field theory (DMFT) [7,8].

Within DMFT, the only approximation is to neglect non-

local contributions to the self-energy. This allows us to

map the N site lattice problem to N single-impurity

Anderson models coupled by a self-consistency condition,

see discussion below. DMFT is, for example, frequently

used to describe complex bulk materials, e.g., by combin-

ing DMFT with band-structure calculations to obtain an

ab inito description of strongly correlated materials. In a

few cases, DMFT has been employed to describe inhomo-

geneous systems [9–12] like the surface of Mott insulators

[10] or disordered materials [13].

A main problem of DMFT is the need for a reliable and

efficient method to solve the effective impurity problems.

Previous applications of DMFT to inhomogeneous systems

were using impurity solvers like a two-site approximation

[10] or slave-boson mean-field theory [13], implying se-

vere further approximations, or started from simplified

fermionic models such as the Falicov-Kimball model

[12]. We will show that one can also use efficiently one

of the most accurate impurity solvers, the numerical renor-

malization group [14,15] (NRG), to obtain reliable results

for traps containing several thousand atoms modeling a

fermionic Hubbard model.

After introducing the model and our method (DMFT for

inhomogeneous systems� NRG), we will show the result-

ing spectral functions and discuss how the transition from a

metal to a Mott-insulating phase can be seen in real-space

and time-of-flight experiments. We investigate the role of

temperature, filling, and interaction strength.

Model and Method.—We consider the fermionic

Hubbard model on a 3D-cubic lattice,

PRL 100, 056403 (2008)
P H Y S I C A L R E V I E W L E T T E R S week ending

8 FEBRUARY 2008

0031-9007=08=100(5)=056403(4) 056403-1  2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.056403


 H � �J
X

hiji;�

cyi�cj� �U
X

i

ni"ni# � V0

X

i;�

r2i ni�; (1)

where cyi� creates a fermion at site i with spin �, ni� �

cyi�ci� is the local density, J the nearest-neighbor tunneling

matrix element, and U is the effective on-site interaction.

The lattice distance, is set to unity. We include 4224 sites

with a distance ri � R � 10 from the center of the trap,

located in the middle of 8 central sites. The strength of the

confining harmonic potential V0 � 0:276J is chosen such

that all sites with ri >R are unoccupied and can be ne-

glected. Using the symmetry of the cubic lattice, one has to

deal with only 118 inequivalent sites.

The basic idea of DMFT [7] is to pick a single site of the

lattice (the ‘‘impurity’’ i) and model the effect of all the

other sites by a noninteracting bath of fermions. The

resulting Anderson impurity model is defined by the local

interaction U and the hybridization of the impurity to the

bath. The latter is encoded in the U � 0 Green’s function,

G0
And;i�!�. For this model, one determines the local self-

energy �i�!� (see below). From the �i�!�, one can con-

struct the lattice Green’s function

 G�1
lat �!�ij � �i;j�!��� �i�!� � V0r

2
i � � Jij; (2)

where Jij � J if sites i and j are nearest neighbors and 0

otherwise. The bath of each impurity is then determined

from the requirement that at each site the lattice Green’s

function and the Green’s function of the impurity model

coincide, Glat�!�ii � �G0
And;i�!��1 ��i�!���1, thus es-

tablishing a self-consistency loop. The scheme described

above can be derived using as the only approximation that

the self-energy is a local quantity. Both the nonlocal single

particle quantum mechanics of fermions and all local

effects of strong interactions are correctly described within

DMFT.

A main difficulty of DMFT is, however, an accurate

calculation of the self-energy of the Anderson impurity

model. For this, we use the NRG [16], see Ref. [15] for a

description of the method. To obtain efficiently Glat from

an inversion of Eq. (2), it is essential to use the full

symmetry of the cubic lattice.

In this Letter, we restrict ourselves to paramagnetic

solutions which simplifies the rather challenging numerics

considerably. Also experimentally, it is very difficult to

reach the low temperatures below which magnetism is

expected. Furthermore, we do not expect that magnetic

order will change the density profiles or time-of-flight

pictures considerably.

Results.—Figure 1 shows how the number of fermions

per site evolves for increasing interactions U=J, which

push the fermions away from the center of the trap. For

the chosen parameters, we obtain for U=D � 0, 1, 2 (D �
6J is half the bandwidth) a band insulator in the center of

the trap and a metal further outside. For the homogeneous

system, the critical interaction is given by Uc=D � 2:52,

but already for U=D � 2, the compressibility close to half-

filling is strongly reduced as can be seen in a shoulder in

the curve for hnii 	 1. For U=D 
 3, the incompressibility

of the Mott-insulating state, @n=@� � 0, manifests itself

in a plateau. The thickness of this Mott-insulating ‘‘onion

shell’’ increases for increasing U eliminating the metallic

phase in the center for U=D � 4:5. The insets of Fig. 1

show how the Mott-insulating region at U=D � 4:5
shrinks again when the number of fermions in the trap is

reduced and how thermal excitations destroy the Mott

plateau.

Our method allows us to study the spatial dependence of

the spectral functions. While this quantity is difficult to

measure for atoms in a trap, it is a highly sensitive probe of

the metal-insulator transition. Figure 2 shows how the local

spectral function evolves when moving from the center to

the edge of the trap at U=D � 4:5. In the insulating regime,

the spectral function A�!� is characterized by the two

Hubbard bands with equal weight, and A�! � 0� becomes

very small (it never vanishes exactly as atoms from the

metallic regions can tunnel into the insulator). As a func-

tion of the distance from the center, the Hubbard bands

shift due to the harmonic potential. When the Fermi energy

starts to merge with one of the Hubbard bands, a sharp

quasiparticle peak emerges at ! � 0 for sufficiently low T
(see inset).

In a time-of-flight experiment, the two-dimensional pro-

jection, ntof
k

�
R
nkdkz=�2��, of the three-dimensional

momentum distribution
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FIG. 1 (color online). The number of fermions hnii per lattice

site, as a function of the distance r to the origin. The signature of

the Mott-insulating phase [7] is the presence of a plateau with

hnii � 1. Note that there are inequivalent sites with different

occupation but the same r. Main panel: Crossover from weak to

strong interactions for a fixed number of N � 2869 particles in

the trap at T � 0, U � 6J. Upper inset: Dependence on the

number of particles for U � 4:5D, T � 0. Lower inset: T
dependence for U � 4:5D, N � 2869 (the T � 0 and T �
0:13D curves lie on top of each other).
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 nk � �
1

N

X

i;j

Z d!

�
f�!�eik�ri�rj�ImGij�!� (3)

of the fermions can be measured [2,17]. Here, f�!� is the

Fermi function, and we have normalized nk such that
R

nk
d3k
�2��3

�
R

ntof
k

d2k
�2��2

� 1.

Figure 3 shows ntof
k

. For a quantitative analysis of the

results and for comparison to (future) experiments, we

suggest to plot ntof
k

as a function of the tight-binding

dispersion �2d
k

� �2J�coskx � cosky�, see Fig. 4. Surpris-

ingly, each curve collapses to good approximation to a

single line, despite the fact that for a given �2d
k

, a range

of ntof
k

exists (as is noticeable in the small scatter of the

curves for nk). Here, it is useful to remember that within

DMFT, nk is only a function of �k for the homogeneous

system. Therefore, if a LDA were exactly valid, the col-

lapse to a single curve would be perfect. Hence, our results

suggest, that LDA is a very good approximation for the

analysis of time-of-flight pictures (but not for other quan-

tities, see below).

It is an interesting but difficult question whether this

effect is partially an artifact of DMFT which neglects the

momentum dependence of the self-energy. While for the

experimentally relevant temperature range this is probably

a very good approximation, it is expected to fail very close

to the metal-insulator transitions at low T.

Qualitatively, the results of Fig. 4 reflect that localized

electrons in the band- or Mott-insulating phase are char-

acterized by a momentum-independent nk, while in the

homogeneous metallic phase, nk displays a jump at the

Fermi momentum with a height given by the quasiparticle

weight Z. As the effective local Fermi momentum varies

smoothly within the trap, all jumps are smeared out.

FIG. 3 (color online). Momentum distribution ntof
k

for U=D �
0, 2, 3, 4.5. Both in the predominantly band-insulating phase

(U=D � 0) and Mott-insulating phase (U=D � 4:5), the curves

are considerably flatter than for U=D � 2, 3 where most fermi-

ons are in the metallic phase.
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FIG. 4 (color online). nk (left panel) and ntof
k

(right panel)

plotted as a function of �k � �2J�coskx � cosky � coskz� and

�2d
k

� �2J�coskx � cosky�, respectively, for different values of

U, N, and T (upper, middle, and lower panels, respectively). We

have sampled discretized k-values of the entire first Brillouine

zone, k � �=10�nx; ny; nz�, nx;y;z � �10; . . . ; 10. For different

k with the same �k, a range of nk exists (visible, e.g., in the

scatter of the black dashed curves in the left panels). This spread

is, however, tiny; to a good approximation, the data collapse to

lines. Inset: �n � n0;0;0 � n�;�;� (and �ntof � ntof0;0 � ntof�;�) as a

function of U. �n and �ntof are largest for the predominantly

metallic phases and smallest for phases with a large band- (small

U) or Mott-insulating (large U) regions.
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FIG. 2 (color online). Local spectral functions in the Mott-

insulating phase (U � 4:5D, N � 2869) for two different T for

lattice points with coordinates (x, 1=2, 1=2). Left inset: The

coherence peak at the Fermi energy, characteristic for a strongly

correlated metal, vanishes with increasing T. Right inset: Close

to edge of the atomic cloud, where the potential becomes steep,

(almost) localized states are visible.
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However, the slope of n��k� or the difference �ntof �

ntof0;0 � ntof�;� is still a good measure of how metallic or

insulating the system is. The inset of Fig. 4 describes the

evolution from a mainly band-insulating via a dominately

metallic to a Mott-insulating regime when U=D is in-

creased. Similarly, the middle panel of Fig. 4 shows how

�ntof increases when at large U=D, the number of particles

and therefore the size of the Mott-insulating region is

reduced (compare with upper inset of Fig. 1). For increas-

ing temperature (lower panel of Fig. 4), the destruction of

quantum coherence leads to a flattening of ntof
k

. Note that

ntof
k

is more sensitive to changes of T compared to hnii, see

Fig. 1.

Conclusions.—In this Letter, we investigated the signa-

tures of the Mott transition of fermions in an optical trap

using a local approximation to the self-energy (space-

resolved DMFT� NRG) which allows us to treat several

thousand atoms. The clearest signature of a Mott phase is a

plateau in the density profile n�r� of the atoms, see Fig. 1.

These plateaus are, however, washed out if only the col-

umn density,
R
dzn�r�, which can be measured directly, is

considered (not shown). The Mott transition is more diffi-

cult to observe in a time-of-flight experiment. However, the

insets of Fig. 4 show that a characteristic flattening of ntof
k

can be seen when a large fraction of the trap becomes a

band or Mott insulator.

Our calculations did not rely on a LDA which allows us

to investigate whether this widely used approximation is

valid in the present context. It turns out that both density

profiles and TOF experiments are rather well described by

LDA. As discussed in the introduction, LDA is expected

not to be valid close to a sharp domain boundary. Indeed,

Fig. 5 shows that the LDA fails completely to describe the

low-energy excitation spectrum at the boundary of the

Mott-insulating region. The coherence peak at the Fermi

energy arises due to the penetration of the metallic phase

into the Mott insulator via the Kondo effect.

For the future, it will be interesting to investigate the

effects of magnetism. In systems with a population imbal-

ance, we expect that the majority spin will accumulate in

the Mott-insulating regions. These effects will be studied

in a forthcoming publication.
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FIG. 5 (color online). Local spectral function of two non-

equivalent lattice points at distance 7.794 from the origin at the

boundary of the Mott-insulating region (T � 0:0014D, U �
4:5D). Here, the LDA (dot-dashed line) fails completely to

describe the spectral function but still reproduces the occupation

with high accuracy (n1=2�9;9;9� � 0:481, n1=2�11;11;1� � 0:482,

nLDA � 0:496).
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