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Mott transition, spin-orbit effects, and magnetism in Ca2RuO4
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In this work, we study the effects of spin-orbit and Coulomb anisotropy on the electronic and magnetic
properties of the Mott insulator Ca2RuO4. We use the local-density approximation + dynamical mean-field
approach and spin-wave theory. We show that, contrary to a recent proposal, the Mott metal-insulator transition is
not induced by the spin-orbit interaction. We confirm that, instead, it is mainly driven by the change in structure
from long to short c-axis layered perovskite. We show that the magnetic ordering and the anisotropic Coulomb
interactions play a small role in determining the the size of the gap. The spin-orbit interaction turns out to
be essential for describing the magnetic properties. It not only results in a spin-wave gap, but it also enlarges
significantly the magnon bandwidth.
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I. INTRODUCTION

The 4d4 layered perovskite Ca2RuO4 (Fig. 1) is made of
planes of corner-sharing RuO6 octahedra. It belongs to the
Ca2−xSrxRuO4 family, well known for its exotic electronic
properties, including, among others, spin-triplet superconduc-
tivity [1], Hund’s coupling physics [2,3], heavy-fermion [4]
and spin-glass behavior [5], as well as a series of structural,
magnetic, and electronic phase transitions [6,7]. Ca2RuO4

itself exhibits a peculiar paramagnetic metal-insulator tran-
sition [6] (MIT) at TMIT = 360 K, basically concurrent with
the change from L-Pbca (long c axis) to S-Pbca (short c axis)
structure [8,9] at TS = 356 K. Similar transitions have been
reported when Ca is partially replaced by Sr (x � 0.2) or under
pressure [10,11]. The origin of the MIT has been intensively
investigated, both experimentally [5–15] and theoretically
[16–26]. Electronically, Ca2RuO4 is characterized by 2/3-
filled t2g bands (t4

2ge
0
g electronic configuration). Because of

the layered structure, the ratio between the xz/yz and xy

bandwidth, R = Wxz/yz/Wxy , takes the value R ∼ 0.5. There
is a general agreement that the MIT is caused by strong corre-
lations, i.e., by the screened Coulomb interaction tensor part
of the Hamiltonian. Its actual nature has been hotly debated,
however. Early on, an orbital-selective Mott transition (OSMT)
scenario [24] was proposed in which the orbital polarization
p = nxy − (nxz + nyz)/2 changes from the value p = 1 below
the transition (xy orbital order, nxy = 2,nxz + nyz = 2) to
p = −1/2 (nxy = 1,nxz + nyz = 3) in the metallic phase.
An alternative proposal was a single Mott transition [17],
assisted, however, by the tetragonal crystal-field splitting [27],
εCF = εxz/yz − εxy > 0. From angle-resolved photoemission
(ARPES) data, for x = 0.2 a new type of OSMT (p =
1/4,nxy = 1.5) was inferred [13]; other ARPES experiments
reported, however, three metallic bands [14] and no OSMT.
Later, accurate local-density approximation + dynamical
mean-field theory (LDA+DMFT) calculations [23] showed
that the change in crystal structure from L-Pbca to S-Pbca is
a decisive factor, leading to a reduction of the bandwidth ratio
R and to an enhancement of the crystal-field splitting εCF; in
the metallic L-Pbca phase, the orbital polarization is p ∼ 0
(no orbital order) and three metallic bands are obtained, in line
with ARPES results from Ref. [14]. Very recent ARPES data

for the insulating phase of Ca2RuO4 appear also in line with
LDA+DMFT calculations [3].

Recently, however, these conclusions were challenged by
a LDA+U study, which proposes a different scenario [22]. In
the latter, it is the Coulomb-enhanced spin-orbit interaction,
neglected in LDA+DMFT studies of the MIT so far, to
actually induce the transition. Indeed, several works point to
a relevant role of the spin-orbit coupling for the electronic
structure of layered ruthenates [28–32]. To further complicate
the picture, it was shown recently that, surprisingly, the effects
of anisotropic Coulomb interactions—i.e., the terms with
symmetry lower than O(3)—are crucial to reproduce the ex-
perimental Fermi surface of Sr2RuO4 [30]. This suggests that
they could also play an important role in the metal-insulator
transition of Ca2RuO4, perhaps changing the actual form of the
ground state. It becomes necessary, therefore, to systematically
reanalyze the metal-insulator transition, explicitly accounting
for the effects of both spin-orbit interaction and Coulomb
anisotropy.

Remarkably, even for the magnetic phase the role of
the spin-orbit interaction is unclear [33–36]. Once more,
competing scenarios have been proposed. In the first, the spin-
orbit interaction can be treated as a perturbation modifying
the spin Hamiltonian for the Hund’s rule S = 1 ground
multiplet [33,34]; in this picture, the magnetic interactions are
described via an S = 1 Heisenberg-like magnetic-exchange
model—both an isotropic [33] and a strongly anisotropic
Heisenberg Hamiltonian [34] have been put forward—plus a
spin-orbit-induced single-ion anisotropy term, described via a
tensor D. In the second scenario, the spin-orbit interaction
leads to the formation of a zero total angular momentum
state [35,36] (jt = 0), and magnetism is therefore of the Van
Vleck type.

In this work, we analyze the problem by using the
LDA+DMFT approach including explicitly the spin-orbit
interaction and the anisotropic Coulomb interaction. The paper
is organized as follows. In Sec. I, we describe the model
and method used. In Sec. II, we present and analyze the
results in the paramagnetic phase. We show that the spin-orbit
interaction reduces the gap, contrary to the conclusions from
static mean-field theory. We also show that the effect is small,
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FIG. 1. The S-Pbca structure [8,9] of Ca2RuO4. The pseudote-
tragonal axes are x ∼ (a + b)/2, y ∼ (b − a)/2, and z = c. Ru sites
i = 2,3,4 transform into the equivalent site i = 1 via the symmetry
operations a → −a (i = 2), b → −b (i = 3), and c → −c (i = 4).

and we confirm that the MIT is indeed mostly driven by
the L-Pbca → S-Pbca change in structure. In Sec. III, we
discuss the magnetic interaction, and we calculate, using
spin-wave theory, the magnon spectrum. We show that the
insulating ground state is not the jt = 0 state. We show that the
spin-orbit-induced single-ion anisotropy is essential to explain
the spin-wave spectrum. Finally, we give our conclusion in
Sec. IV.

II. MODEL AND METHOD

We use the local-density-approximation+dynamical mean-
field theory approach augmented with spin-wave theory. We
first perform LDA calculations [37] with and without spin-
orbit coupling using the full-potential linearized augmented
plane-wave method, as implemented in WIEN2K code [38].
Next we construct t2g Wannier functions via projectors and
a maximal localization procedure [39]. Finally, we build the
Hubbard model for the low-lying t2g states,

H = −
∑
ii ′

∑
mm′

∑
σσ ′

t
i,i ′
mσ,m′σ ′c

†
imσ ci ′m′σ ′

+ 1

2

∑
i

∑
mm′pp′

∑
σσ ′

Umm′pp′c
†
imσ c

†
im′σ ′cip′σ ′cipσ

− Hdc. (1)
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FIG. 2. Total LDA+DMFT spectral function at T = 200 K for
the S-Pbca structure. Light lines (cRPA): U = 2.3 eV and J = 0.4 eV.
Dark lines (cLDA): U = 3.1 eV and J = 0.7 eV.

Here, c†imσ (cimσ ) is the creation (annihilation) operator for the
Wannier state with orbital quantum number m = xy,yz,xz and
spin σ at site i, and nimσ = c

†
imσ cimσ . The terms t

i,i ′
mσ,m′σ ′ yield

for i = i ′ the on-site energies εmσ,m′σ ′ = −t
i,i
mσ,m′σ ′ and for i �=

i ′ the hopping integrals. The parameters Umm′nn′ are elements
of the screened Coulomb interaction tensor. For t2g states in
a free atom, the essential terms are [40] the direct Coulomb
interaction, Umm′mm′ = Um,m′ = U − 2J (1 − δm,m′ ), the
exchange Coulomb interaction, Umm′m′m = J , the pair-
hopping term, Ummm′m′ = J , and the spin-flip term, Umm′m′m =
J . For Ca2RuO4, the site symmetry of Ru sites is only Ci .
The main anisotropy effects are given by the two tetragonal
terms �U = Uxz,xz − Uxy,xy and �U ′ = Uxz,yz − Uxy,yz; we
therefore study the effects of those terms in particular.

We perform calculations with two sets of screened pa-
rameters. The first, U = 3.1 eV and J = 0.7 eV, has been
obtained for Sr2RuO4, the sister compound of Ca2RuO4,
via the constrained local-density approximation (cLDA) [41].
These parameters have been already successfully used [23] to
describe the metal-insulator transition in Ca2RuO4 with the
LDA+DMFT approach. The second set of parameters are the
constrained random-phase approximation (cRPA) values [42],
U = 2.3 eV and J = 0.4 eV. Remarkably, both sets yield an
insulating solution with xy-like orbital order for the S-Pbca
structure. The comparison between LDA+DMFT spectra for
the cLDA and the cRPA parameter sets is shown in Fig. 2.
The main differences between the two results are (i) the size
of the gap (slightly smaller for the cRPA values) and (ii) the
shape of the lower Hubbard band. Both spectral functions
exhibit Hubbard bands more or less in line with the spectra
measured in photoemission, x-ray fluorescence emission, and
x-ray absorption spectroscopy experiments [41,43–45], thus it
is difficult, based on experiments available so far, to decide
conclusively in favor of one set or the other. For this reason
we will present, when necessary, results for both the cLDA
and cRPA parameter sets. Finally, Hdc is the double-counting
correction [46]. For what concerns the spin-orbit interaction,
which is by construction included in the Hamiltonian in
LDA+SO calculations, the on-site term can be written as

HSO =
∑
iμ

H
iμ

SO =
∑
iμ

∑
mσm′σ ′

λi
μξ

iμ

mσm′σ ′c
†
imσ cim′σ ′ ,
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TABLE I. Phase transformation for the different crystal-field
orbitals used in LDA+SO+DMFT calculations, with φL = π/2,
φS = −π/4, and θi↓ = −θi↑.

eiθ1↑ eiθ2↑ eiθ3↑

L-Pbca (400 K) eiφL eiφL−i0.239π eiφL+i0.262π

S-Pbca (180 K) eiφS eiφS−i0.664π eiφS+i0.824π

where ξ
iμ

mσm′σ ′ = 〈mσ |si
μliμ|m′σ ′〉 and μ labels the pseudocu-

bic axes. We extract the coupling λi
μ = λμ by comparing

the LDA and LDA+SO Hamiltonian and find the value
λz ∼ λxy = λ ∼ 106 meV for both the L-Pbca and S-Pbca
structures. This value is similar to the one we previously
obtained [30] for Sr2RuO4. The LDA tetragonal splitting
δλ = λxy − λz is negligible. The effect of the spin-orbit on
the hopping integrals is also small.

To deal with many-body Hamiltonians of arbitrary
symmetry, we have developed generalized LDA+DMFT
solvers [23,30,47] based on the continuous-time (CT) quantum
Monte Carlo (QMC) [48] technique. Here, we use the
interaction-expansion [49] flavor (CT-INT) of this solver [23],
which we recently extended to include the spin-orbit interac-
tion as well [30]. In the calculation with spin-orbit coupling,
we work with a full 6×6 self-energy matrix �mσ,m′σ ′ in
spin-orbital space; furthermore, in order to reduce the sign
problem, we change the basis via a unitary transformation
|mc〉σ = Û |m〉σ that minimizes the imaginary part of the G(τ )
Green-function matrix, where τ is the imaginary time. For
Ca2RuO4 the matrix Û can be written as Û = eiθ̂ B̂, where B̂

is the real, spin-independent, matrix that diagonalizes the LDA
on-site energy matrix εmσ,m′σ , yielding the LDA crystal-field
energies εmc

, and θ̂ is a matrix of phases, diagonal in spin
and orbitals. The elements of the matrix θ̂ can be read
in Table I. After this transformation, the local Hamiltonian
becomes real apart from small imaginary corrections <2 meV;
the imaginary part of G(τ ) is also tiny and can be neglected
in the calculation. Finally, we have previously shown that
spin-flip and pair-hopping terms have only small effects on
the LDA+DMFT spectral function for Ca2RuO4 [23]; thus,
in most calculations presented here, we neglect these terms to
speed up the calculations. In representative cases, we explicitly
check that this approximation does not affect the conclusions.
Finally, for the analytic continuation of imaginary-time data
to the real frequency axis, we adopt the maximum-entropy
approach [50].

III. RESULTS AND DISCUSSION

A. Metal-insulator transition

In this section, we discuss the effects of spin-orbit interac-
tion and Coulomb anisotropy on the metal-insulator transition.

1. Spin-orbit effects

Let us call |mc〉σ = B̂|m〉σ the crystal-field states in the
absence of spin-orbit interaction. For the L-Pbca structure
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FIG. 3. LDA+DMFT (upper panels) and LDA+SO+DMFT
(lower panels) t2g spectral-function matrix. Solid lines: A1,1. Dashed
and dotted lines: A2,2 and A3,3. Left: L-Pbca, T = 580 K. Right:
S-Pbca, T = 290 K. Calculations performed with cLDA Coulomb
parameters.

(400 K), the B̂ matrix is given by

⎛
⎜⎝

|1〉
|2〉
|3〉

⎞
⎟⎠ =

⎛
⎜⎝

0.972 0.224 −0.075

0.171 −0.886 −0.432

0.163 −0.407 0.899

⎞
⎟⎠

⎛
⎜⎝

|xy〉
|yz〉
|xz〉

⎞
⎟⎠,

while for the S-Pbca structure (180 K) it is given by

⎛
⎜⎝

|1〉
|2〉
|3〉

⎞
⎟⎠ =

⎛
⎜⎝

0.972 0.195 −0.130

−0.161 0.959 0.233

0.170 −0.205 0.964

⎞
⎟⎠

⎛
⎜⎝

|xy〉
|yz〉
|xz〉

⎞
⎟⎠.

The crystal-field splittings �1,mc
= εmc

− ε1 take the values
�1,2 ∼ 105 meV and �1,3 ∼ 116 meV for the L-Pbca structure
and �1,2 ∼ 309 meV and �1,3 ∼ 320 meV for the S-Pbca
structure. The differences in crystal-field splittings and states
between 11 and 180 K S-Pbca structure are negligible. Here
and in the following, matrices and states are given for site 1 in
Fig. 1. For both structures, the ground state |1〉 has a dominant
xy component, while |2〉 and |3〉 are mostly yz- and xz-like.

Let us now analyze the LDA+DMFT results. In line
with previous LDA+DMFT calculations [23], we find that
the L-Pbca structure yields a metallic solution with orbital
polarization p ∼ 0 and the S-Pbca insulating with p ∼ 1
and xy-like orbital order [20,23]. This is shown in Fig. 3.
Indeed, the fully occupied natural orbital for cLDA Coulomb
parameters is

|α1〉σ = 0.993|xy〉σ + 0.118|yz〉σ − 0.023|xz〉σ (2)

with spin degeneracy 2 and nα1 = nα1↑ + nα1↓ ∼ 1.95 at T =
290 K; this state is close to the lowest-energy crystal-field
orbital, |α1〉 ∼ |1〉. Switching on the spin-orbit coupling
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FIG. 4. LDA+DMFT (upper panels) and LDA+SO+DMFT
(lower panels) t2g spectral-function matrix. Solid lines: A1,1. Dashed
and dotted lines: A2,2 and A3,3. Left: L-Pbca, T = 580 K. Right:
S-Pbca, T = 290 K. Calculations performed with cRPA Coulomb
parameters.

transforms |α1〉σ into the Kramers doublet∣∣αso
1

〉
σ

= sσ 0.972 |xy〉σ
sσ 0.191 e−isσ 0.03π |yz〉σ + 0.075 e−isσ 0.09π |yz〉−σ

− sσ 0.085 e−isσ 0.09π |xz〉σ − 0.073 e+isσ 0.39π |xz〉−σ ,

where sσ = +1 for σ =↑ and sσ = −1 for σ =↓ and
nαso

1
= ∑

σ nαso
1σ

∼ 1.90 at T = 290 K. Hence, xy-orbital order
persists even in the presence of spin-orbit coupling; the latter
merely reduces somewhat the xy component. The doublet
|αso

1 〉σ is similar to the doublet obtained by diagonalizing
the on-site Hamiltonian in the presence of spin-orbit inter-
action, |1so〉; the latter has a slightly smaller xy component,
|〈xy|1so〉| ∼ 0.956. All these results and conclusions change
very little if we use cRPA instead of cLDA Coulomb
parameters.

Remarkably, we find that the spin-orbit coupling reduces
the gap for the S-Pbca structure, as can be seen in Figs. 3
and 4, even if such a reduction is very small. This can be
qualitatively understood already in the atomic limit (see the
Appendix for details). Let us consider at first an idealized
t4
2g atom (N = 4 electrons). In the presence of xy-orbital

ordering, for simplicity we can at first consider the xy2 states as
inert. Then, the atomic gap in the Axz(ω) and Ayz(ω) spectral
functions is given by

Exz→xz
gap (λz) = U + J − λz.

This happens because the relevant |N + 1〉 and |N − 1〉
multiplets split into doublets that differ by λz in energy,
while the lowest-energy |N〉 multiplet is not modified by the
spin-orbit interaction at linear order. The conclusion remains
approximately true even if we take into account the xy2 states
explicitly. In the small λxy/2εCF limit, the actual atomic gap is
given by

Exy→xz
gap (λz) ∼ U − 3J + εCF − λz/2.

This is the opposite conclusion with respect to what one
finds in LDA+U calculations [22] (static mean-field theory),
where, in the nonmagnetic case, the gap is actually increasing
with the effective spin-orbit coupling [51]. Remarkably, the
situation changes drastically in the absence of crystal-field
and xy-orbital order, i.e., when the |N〉 atomic states with
nxy = 1 are degenerate with those nxy = 2 states, as it happens
in the absence of a crystal-field splitting. In that case, the
S = 1 multiplet splits and the lowest energy state has total
angular momentum jt = 0. For such a ground state, the
spin-orbit coupling increases the gap. It is important to
point out that, in LDA+DMFT calculations, the effective
crystal-field enhancement, which ultimately leads to orbital
order, is dynamical (frequency-dependent), and it is much
larger in the low-frequency limit than in the high-frequency
(Hartree-Fock) limit. In particular, we find �εCF(0) ∼ 2 eV
and �εCF(∞) = −0.18 eV for the cLDA Coulomb param-
eters, and �εCF(0) ∼ 1.5 eV and �εCF(∞) = 0.14 eV for
the cRPA Coulomb parameters. The spin-orbit coupling is
also enhanced dynamically, but it remains smaller than the
effective crystal-field splitting, and at low frequencies even
sizably smaller. In the case of the metallic L-Pbca structure,
the crystal-field enhancement is small in both limits, with or
without spin-orbit interaction.

2. Anisotropic Coulomb interaction effects

Recently, we have shown that the low-symmetry terms
in the Coulomb vertex �U = Uxz,xz − Uxy,xy and �U ′ =
Uxz,yz − Uxy,yz are very important in determining the shape
of the Fermi surface of Sr2RuO4 [30]. Here we want to
analyze the effects of �U and �U ′ on the metal-insulator
transition in Ca2RuO4. Remarkably, due to tilting rotation and
the remaining deformations of the octahedra, in Ca2RuO4,
different from in Sr2RuO4, the xy orbitals are longer range
than yz/xz states [52]. Thus we expect that, correspondingly,
�U = Uxy,xy − Uxz,xz and �U ′ = Uxy,yz − Uxz,yz have a
negative, rather than a positive, sign. Furthermore, we find that
the difference in spread between xz and yz, a measure of the
orthorhombicity, is small [52], hence we take Uxz,xz ∼ Uyz,yz.
Material-specific cRPA or cLDA estimates of �U and its sign
would of course be very welcome to confirm these conclusions.
Figure 5 shows the total spectral functions of S-Pbca for
the representative case �U = 3�U ′ = −0.45 eV. The figure
shows that the overall effect of the Coulomb anisotropy is
small. The anisotropic Coulomb terms slightly modify the
shape of the spectral function and the relative occupations,
but the gap is barely changed. Let us compare here in detail
LDA+DMFT results with the full Coulomb vertex. The fully
occupied doublet, which for �U = �U ′ = 0 is

|α〉σ = 0.929|xy〉σ + 0.271|yz〉σ − 0.254|xz〉σ , (3)

for �U = 3�U ′ = −0.45 eV becomes

|α1〉σ = 0.969|xy〉σ + 0.187|yz〉σ − 0.162|xz〉σ . (4)

Due to the Coulomb anisotropy terms, and in particular
�U < 0, the occupation of the xy orbital increases, but only
slightly. These results altogether lead us to the conclusion that
Coulomb anisotropy, although very important for the shape of
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FIG. 5. Total LDA+DMFT t2g spectral function with anisotropic
Coulomb interactions. Left panel: �U = �U ′ = 0. Right panel:
�U = 3�U ′ = −0.45 eV. T = 290 K. These calculations have been
done with the full Coulomb vertex at T = 290 K and for cLDA
parameters.

the Fermi surface of correlated ruthenates, does not play a key
role in the metal-insulator transition observed in Ca2RuO4.

3. Effects of antiferromagnetic ordering

Ca2RuO4 orders antiferromagnetically [9] at TN ∼ 110 K.
Here we investigate the effects of magnetic order on the
spectral function matrix. LDA+DMFT spin-polarized AFM
calculations yield a paramagnetic solution at 290 K. Since
LDA+DMFT calculations in the T → 0 limit are very
time-consuming, to obtain a sizable magnetic moment we
introduce a staggered magnetic field with the same q vector
of the magnetically ordered structure; this leads to staggered
magnetic moments μz ∼ 1.96μB per Ru at 290 K. Even for
such a large local moment, the picture remains the same.
We find that the system retains xy-like orbital order below
the magnetic transition, and the magnetic moment comes
mostly for the half-filled natural orbitals |α2〉 and |α3〉, which
are almost completely spin-polarized. For what concerns the
spectral function, the main effect is a partial spectral-weight
transfer within the Hubbard bands and a somewhat larger gap.
The differences are more pronounced for the cRPA Coulomb
parameter set, as can be seen in Fig. 6.
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FIG. 6. The LDA+DMFT total t2g spectral function for the
paramagnetic (full line) and antiferromagnetic (dashed line) phase.
The AFM spectrum is calculated in the presence of a large staggered
antiferromagnetic field yielding a magnetic moment μz ∼ 1.96μB .
Both spectra have been calculated at T = 290 K and for cLDA (left
panel) and cRPA (right panel) Coulomb parameters.

B. Low-energy magnetic model and spin waves

1. Magnetic Hamiltonian and superexchange couplings

The spin-orbit coupling has an important role in deter-
mining the magnetic structure and magnetic excitations. Two
competing models have been proposed so far: in the first
scenario, the spin-orbit interaction leads to a total angular
momentum jt = 0 state [35,36]; in the second picture, the
spin-orbit interaction yields, instead, only perturbative effects
(e.g., a magnetic anisotropy tensor) partially removing the
degeneracy of the S = 1 ground-state multiplet [33]. In the first
scenario, the magnetic linear-response function is of the Van
Vleck type, in the second it arises from the local S = 1
magnetic moments. Our LDA+SO+DMFT results show that,
in the insulating phase, the spin-orbit interaction does not
lead to a jt = 0 ground state [53], which would give p ∼ 0.
Instead, we find a fully occupied Kramers doublet (p ∼ 1)
with a dominant xy component and a partial (real) mixing to
the xz state, as it happens when the crystal field, rather than
spin-orbit, determines the ground state. We therefore explore
the second picture and calculate the effective spin Hamiltonian
in second-order perturbation theory. Toward that end, we
assume that the ground-state multiplet is the S = 1 orbitally
ordered state. The resulting S = 1 generalized Heisenberg-like
model takes the form

HS = 1

2

∑
ii ′

�i,i ′Si · Si ′ +
∑

i

∑
μμ′

Di
μμ′S

i
μSi

μ′ . (5)

Here the first term describes the superexchange magnetic
interaction, and the second term describes the single-ion
anisotropy, while here μ,μ′ are the crystal a,b,c directions.
The exchange coupling �i,i ′ is given by

�i,i ′ ∼ −1

2

∑
mc>1

[∣∣t i,i ′1,mc

∣∣2 + ∣∣t i,i ′mc,1

∣∣2

U − 3J + �1,mc

2J

U − J + �1,mc

]

+ 1

2

∑
mc>1

∑
m′

c>1

∣∣t i,i ′mc,m′
c

∣∣2 + ∣∣t i,i ′m′
c,mc

∣∣2

U + J + �mc,m′
c

. (6)

The LDA crystal-field states |mc〉σ are labeled in order
of growing on-site energies εmc+1 � εmc

. The energy differ-
ences are �mc,m′

c
= εm′

c
− εmc

, with �1,mc
> 0. We calculate

the exchange parameters both for the experimental S-Pbca
structure measured at 180 K and the one measured at 11 K;
they yield similar results. In the following, we give the numbers
for the 11 K structure calculated for the cLDA Coulomb
parameter sets. For the nearest-neighbor magnetic coupling
�1 = �i,i+(a±b)/2 we obtain �1 ∼ 2.6 meV, basically the same
for the bonds along the x and y directions. Furthermore, we
find that the effects of spin-orbit on the hopping integrals
are small, and that the Heisenberg parameters are basically
isotropic. The next-nearest-neighbor couplings exhibit instead
a small direction dependence, with �a

2 = �i,i+a = −0.1 meV
and �b

2 = �i,i+b = 0.08 meV along the b direction, and
the interlayer couplings, �b

z = �i,i+(b+c)/2 = 0.30 meV and
�a

z = �i,i+(a+c)/2 = 0.54 meV. The remaining parameters are
tiny and can be neglected. The hopping integrals to the par-
tially occupied orbitals yield a ferromagnetic superexchange
contribution, which is responsible for the minus sign in the first

075145-5



GUOREN ZHANG AND EVA PAVARINI PHYSICAL REVIEW B 95, 075145 (2017)

TABLE II. Single-ion anisotropy tensor D (in meV) for site 1 (see Fig. 1 for definition) for the different structures. These values have been
obtained for the cRPA parameters U = 2.3 eV and J = 0.4 eV and isotropic λeff = 180 meV.

L-Pbca (400 K) S-Pbca (180 K) S-Pbca (11 K)

D =

⎛
⎜⎝

−41.42 1.82 0.00

1.82 −39.63 0.00

0.00 0.00 −4.11

⎞
⎟⎠

⎛
⎜⎝

−16.34 0.27 0.00

0.27 −16.40 0.00

0.00 0.00 −1.42

⎞
⎟⎠

⎛
⎜⎝

−16.00 0.35 0.00

0.35 −16.24 0.00

0.00 0.00 −1.39

⎞
⎟⎠

term of Eq. (6); the latter competes with the remaining antifer-
romagnetic (positive) contribution and, remarkably, dominates
for the coupling �a

2 . Furthermore, surprisingly, the interlayer
exchange couplings �

a/b
z are sizably larger than �

a/b

2 , indicat-
ing that the system exhibits a small but non-negligible three-
dimensional character. By using the cRPA parameters, we
obtain an overall very similar picture but, as expected, larger
couplings, in particular �1 ∼ 5.3 meV, �a

2 ∼ −0.02 meV,
�b

2 ∼ 0.18 meV, �b
z ∼ 0.50 meV, and �a

z ∼ 0.80 meV.
Experimentally, the exchange parameters were estimated

via inelastic neutron scattering as �1 ∼ 16 meV in Ref. [33]
and �1 ∼ 5.6 meV in Ref. [34]. Our result �1 ∼ 3–6 meV is
closer to the second value. The apparent discrepancy with the
first work can be ascribed to the spin model used to fit spin-
wave data, in which only a small in-plane single-ion anisotropy
term Dbb is included. By using our exchange couplings and
a realistic single-ion magnetic anisotropy, we find spin-wave
spectra in line with experiments (see the next subsection). The
single-ion magnetic anisotropy tensor is given by

Di
μμ′ ∼

∑
N

〈0|Hiμ

SO|N〉〈N |Hiμ′
SO |0〉

E0 − EN

, (7)

where {|N〉} are the excited atomic multiplet levels and
{EN } are their energies, and |0〉 is the S = 1 ground-state
triplet with energy E0 ∼ 2εCF + 6U − 13J . Remarkably, our
LDA+DMFT calculations yield a sizable enhancement of the
spin-orbit couplings. This can be shown by analyzing the off-
diagonal elements of the self-energy matrix. The enhancement
is dynamical and anisotropic; for the cLDA parameters, the
Hartree-Fock contributions (large Matsubara frequency limit)
of the enhancement, �λz ∼ −2(U − 3J )n2↑,3↑ and �λxy ∼
2(U − 3J )n1↑,3↓, are 30 and 60 meV, respectively, while in
the low-frequency limit it is about 100 meV at 290 K for both
tensor components. It is important to point out that although
this enhancement is large, the effective coupling is sizably
smaller than the 900 meV estimated via the static mean field
(LDA+U) in Ref. [22]; this is partly due to the form of the
Coulomb interaction used in that work, which differs from
the actual atomic Coulomb vertex [54]. A uniform increase
of the average coupling λeff = (λxz + 2λxy)/3 enhances the
strength of the single-ion anisotropy; the anisotropy, δλ =
λxy − λz > 0, with everything else remaining the same,
enhances Daa and Dbb with respect to Dcc.

In Table II we show the single-ion anisotropy tensor for an
isotropic λeff ∼ 180 meV and cRPA Coulomb parameters. For
all structures considered here, we find that Daa ≈ Dbb < 0
and is much larger in absolute value than Dcc < 0. This
indicates that the easy axis is within the Ru-O plane, in line
with neutron scattering experiments [9,55], and the magnetic

anisotropy is to a large extent tetragonal. Remarkably, the
Daa ∼ Dbb element is about twice as large (in absolute value)
in the L-Pbca than in the S-Pbca structure; this happens be-
cause the S-Pbca structure yields larger tetragonal crystal-field
splitting. In our calculations, the easy axis direction rotates
from ê ∼ −0.85â + 0.53b̂ at 400 K to ê ∼ −0.6â + 0.8b̂ at
11 K, i.e., it rotates progressively toward the b direction by
increasing the distortions. It is worth noticing, however, that
within the ab plane, the calculated easy magnetization axis
direction depends strongly on the tiny off-diagonal tensor
elements Dab and the tiny in-plane anisotropy Daa − Dbb,
and therefore it is very sensitive to experimental errors in
the determination of the small orthorhombic distortions. More
specifically, we find that the difference in single-ion anisotropy
energy gain between ê and any other direction in the ab plane
is smaller than 1 meV, hence it is comparable to errors arising
from experimental incertitude on atomic positions or to small
neglected magnetic interaction terms. Neutron scattering ex-
periments [9] indicate that the actual easy axis is parallel to b̂.

2. Magnon dispersion

In this section, we calculate the spin-wave dispersion
by means of the Holstein-Primakoff transformation [56,57].
Figure 7 shows the results obtained using the cRPA values
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FIG. 7. Magnon dispersion of Ca2RuO4. Points: Experimental
points showing the maximum of intensity taken from Fig. 3 in
Ref. [33]. Lines: Spin-wave dispersion calculated by us with (a)
all exchange and single-ion anisotropy parameters, (b) setting
�a

z = �b
z = 0, (c) setting Daa and Dbb equal to the average value

(Daa + Dbb)/2, and finally (d) setting to zero all single-ion anisotropy
parameters but Dbb, redefined as Dbb − Daa . All interactions have
been calculated for the cRPA Coulomb parameters.
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of the Coulomb interaction and λeff ∼ 180 meV. As shown
in panel (a), the main features of experimental data are
well reproduced. The lower two branches split because of
the interlayer magnetic couplings �a

z and �b
z . This can be

verified by comparing the results in panel (a) with those
in panel (b); the latter were obtained by setting �a

z and
�b

z to zero. The two upper branches are the result of band
folding (the unit cell contains four formula units). Panel (d)
shows results we obtained by setting all single-ion anisotropy
terms to zero except from Dbb, redefined as Dbb − Daa .
Thus the superexchange couplings only contribute to about
half the bandwidth, while the rest originates from single-ion
anisotropy. Furthermore, the small in-plane anisotropy results
in a finite excitation energy [33] at the � point, larger
than 10 meV. This can be seen in panel (c), where the
orthorhombic anisotropy is set to zero. Similar conclusions
can be achieved with cLDA parameters provided, however,
that λeff ∼ 330 meV and Daa − Dbb ∼ 1 meV. The picture
emerging from this analysis is thus different from the one
suggested in Ref. [33] in which the magnon bandwidth is
attributed almost completely to the exchange couplings.

IV. CONCLUSIONS

In this work, we have studied the metal-insulator transition
of Ca2RuO4 in the presence of spin-orbit interaction and
anisotropic Coulomb interaction. We used the local-density
approximation + dynamical mean-field theory (LDA+DMFT)
approach. We use two sets of screened Coulomb parameters
available in the literature, one calculated via the constrained
random-phase approximation (CRPA) and the other via
the constrained local-density approximation (cLDA). The
LDA+DMFT results that we obtain with these two sets
are qualitatively similar. Our calculations show that the
change of structure from L-Pbca → S-Pbca is the most
influential factor in determining the metal-insulator transition
in Ca2RuO4, whereas spin-orbit coupling, magnetic ordering,
and the anisotropic Coulomb interactions are not decisive.
Furthermore, contrary to what static mean-field LDA+U
calculations suggest [21], we find that the spin-orbit interaction
slightly reduces the gap in the xy-orbitally-ordered insulating
S-Pbca phase.

By means of many-body perturbation theory, we then
compute the intersite magnetic couplings and the spin-orbit-
generated single-ion anisotropy tensor D. With this realistic
set of parameters, we calculate the magnon dispersion via spin-
wave theory. The quantitative agreement with experiments is
better when cRPA screened Coulomb parameters are used, but
qualitatively the results are similar for both cRPA and cLDA
parameter sets. We find that the D tensor is key in determining
the spin dynamics of Ca2RuO4: it not only contributes to
half the bandwidth, but, surprisingly, it also yields a siz-
able gap at the � point via the small in-plane anisotropy
Daa − Dbb ∼ 1 meV.
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APPENDIX

Let us assume that the ground-state multiplet is the
S = 1 multiplet |4; S,mS〉 with the electronic configuration
xy2xz1yz1 and energy E(4) = 2εCF + 6U − 13J . The corre-
sponding states can be found in Table III. In the T → 0 limit,
the diagonal elements of the atomic Green-function matrix are
given by

Gxyσ (ω) = 1

3

∑
N=3

∑
mS

|〈3|cxyσ |4; 1,mS,xy〉|2

ω − iδ + μ − E(4) + E(3)

= 2/3

ω − iδ + μ − (3U − 4J )

+ 1/3

ω − iδ + μ − (3U − 7J )
.

Here |N〉 indicates all of the possible states with N

electrons,

Gxzσ (ω) = 1

3

∑
N=5

∑
mS

|〈5|c†xzσ |4; 1,mS,xy〉|2

ω + iδ + μ + E(4) − E(5)

+ 1

3

∑
N=3

∑
mS

|〈3|cxzσ |4; 1,mS,xy〉|2

ω − iδ + μ − E(4) + E(3)

= 1/4

ω − iδ + μ − (εCF + 3U − 7J )

+ 1/4

ω − iδ + μ − (εCF + 3U − 9J )

+ 1/2

ω + iδ + μ − (εCF + 4U − 7J )
.

These Green functions yield the correct Hartree-Fock high-
frequency limit, �xz(∞) − �xy(∞) = (U − 5J )/2. In the
limit in which the spin-orbit interaction does not change (at
least in a first approximation) the occupied state multiplet, we
can neglect the effects of λxy . Thus, the most relevant effect
for the Green function is that the following states gain/lose
energy �E = ∓σλ/2:

∣∣∣∣5;
1

2
,
σ

2

〉
±

= icyzσ ± cxzσ√
2

|6〉,

∣∣∣∣3;
1

2
,
σ

2

〉
±

= i
∣∣3; 1

2 , σ
2 ,yz

〉
α

± ∣∣3; 1
2 , σ

2 ,xz
〉
α√

2
.

These states are only relevant for the Gxz/yz Green func-
tion. Table III gives the list of all atomic multiplets for
a t2g atom with N electrons in the absence of spin-orbit
interactions.
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TABLE III. The atomic t2g states (m = xy,xz,yz) in the basis that diagonalize the Coulomb matrix. The label σ in the first column takes
the value ±1, while in the states it means ↑ or ↓. The labels m, m′, and m′′ indicate different orbitals.

|N ; S,mS〉 E(N )

|0〉 0∣∣1; 1
2 , σ

2

〉 = c†mσ |0〉 εm

|2; 0,0〉a = 1√
3
[c†xz↑c

†
xz↓ + c

†
yz↑c

†
yz↓ + c

†
xy↑c

†
xy↓]|0〉 4

3 εCF +U +2J

|2; 0,0〉b = 1√
6
[c†xz↑c

†
xz↓ + c

†
yz↑c

†
yz↓ − 2c

†
xy↑c

†
xy↓]|0〉 2

3 εCF +U −J

|2; 0,0〉c = 1√
2
[c†xz↑c

†
xz↓ − c

†
yz↑c

†
yz↓]|0〉 2εCF +U −J

|2; 1,σ,m′′〉 = c†mσ c
†
m′σ |0〉 εm + εm′ +U −3J

|2; 1,0,m′′〉 = 1√
2
[c†m↑c

†
m′↓ + c

†
m↓c

†
m′↑]|0〉 εm + εm′ +U −3J

|2; 0,0,m′′〉 = 1√
2
[c†m↑c

†
m′↓ − c

†
m↓c

†
m′↑]|0〉 εm + εm′ +U −J∣∣3; 3

2 , 3σ

2

〉 = c†xzσ c†yzσ c†xyσ |0〉 2εCF +3U −9J∣∣3; 3
2 , σ

2

〉 = 1√
3
[c†xzσ c†yzσ c

†
xy−σ + c†xzσ c

†
yz−σ c†xyσ + c

†
xz−σ c†yzσ c†xyσ ]|0〉 2εCF +3U −9J∣∣3; 1

2 , σ

2

〉
a

= 1√
6
[−2c†xzσ c†yzσ c

†
xy−σ + c†xzσ c

†
yz−σ c†xyσ + c

†
xz−σ c†yzσ c†xyσ ]|0〉 2εCF +3U −6J∣∣3; 1

2 , σ

2

〉
b

= 1√
2
[c†xzσ c

†
yz−σ − c

†
xz−σ c†yzσ ]c†xyσ |0〉 2εCF +3U −6J∣∣3; 1

2 , σ

2 ,m
〉
a

= 1√
2
[c†

m′↑c
†
m′↓ + c

†
m′′↑c

†
m′′↓]c†mσ |0〉 εm + εm′ + εm′′ +3U −4J∣∣3; 1

2 , σ

2 ,m
〉
b

= 1√
2
[c†

m′↑c
†
m′↓ − c

†
m′′↑c

†
m′′↓]c†mσ |0〉 εm + εm′ + εm′′ +3U −6J

|4; 1,σ,m′′〉 = c†mσ c
†
m′σ c

†
m′′↑c

†
m′′↓|0〉 4εCF − εm − εm′ +6U −13J

|4; 1,0,m′′〉 = 1√
2
[c†m↑c

†
m′↓ + c

†
m↓c

†
m′↑]c†

m′′↑c
†
m′′↓|0〉 4εCF − εm − εm′ +6U −13J

|4; 0,0,m′′〉 = 1√
2
[c†m↑c

†
m′↓ − c

†
m↓c

†
m′↑]c†

m′′↑c
†
m′′↓|0〉 4εCF − εm − εm′ +6U −11J

|4; 0,0〉a = 1√
3
[c†xz↑c

†
xz↓c

†
yz↑c

†
yz↓ + c

†
yz↑c

†
yz↓c

†
xy↑c

†
xy↓ + c

†
xy↑c

†
xy↓c

†
xz↑c

†
xz↓]|0〉 4εCF − 4

3 εCF +6U −8J

|4; 0,0〉b = 1√
6
[c†xz↑c

†
xz↓c

†
yz↑c

†
yz↓ + c

†
yz↑c

†
yz↓c

†
xy↑c

†
xy↓ − 2c

†
xy↑c

†
xy↓c

†
xz↑c

†
xz↓]|0〉 4εCF − 2

3 εCF +6U −11J

|4; 0,0〉c = 1√
2
[c†xz↑c

†
xz↓c

†
yz↑c

†
yz↓ − c

†
yz↑c

†
yz↓c

†
xy↑c

†
xy↓]|0〉 2εCF +6U −11J∣∣5; 1

2 , σ

2

〉 = c†mσ c
†
m′↑c

†
m′↓c

†
m′′↑c

†
m′′↓|0〉 4εCF − εm +10U −20J

|6〉 = c
†
xz↑c

†
xz↓c

†
yz↑c

†
yz↓c

†
xy↑c

†
xy↓|0〉 4εCF +15U −30J
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[9] M. Braden, G. André, S. Nakatsuji, and Y. Maeno, Phys. Rev. B
58, 847 (1998).

[10] F. Nakamura, T. Goko, M. Ito, T. Fujita, S. Nakatsuji, H.
Fukazawa, Y. Maeno, P. Alireza, D. Forsythe, and S. R. Julian,
Phys. Rev. B 65, 220402(R) (2002).

[11] P. Steffens, O. Friedt, P. Alireza, W. G. Marshall, W. Schmidt,
F. Nakamura, S. Nakatsuji, Y. Maeno, R. Lengsdorf, M. M.
Abd-Elmeguid, and M. Braden, Phys. Rev. B 72, 094104 (2005).

[12] G. Cao, S. McCall, V. Dobrosavljevic, C. S. Alexander, J. E.
Crow, and R. P. Guertin, Phys. Rev. B 61, R5053(R) (2000).

[13] M. Neupane, P. Richard, Z.-H. Pan, Y.-M. Xu, R. Jin, D.
Mandrus, X. Dai, Z. Fang, Z. Wang, and H. Ding, Phys. Rev.
Lett. 103, 097001 (2009).

[14] A. Shimoyamada, K. Ishizaka, S. Tsuda, S. Nakatsuji, Y. Maeno,
and S. Shin, Phys. Rev. Lett. 102, 086401 (2009).

[15] I. Zegkinoglou, J. Strempfer, C. S. Nelson, J. P. Hill, J.
Chakhalian, C. Bernhard, J. C. Lang, G. Srajer, H. Fukazawa,
S. Nakatsuji, Y. Maeno, and B. Keimer, Phys. Rev. Lett. 95,
136401 (2005).

[16] T. Hotta and E. Dagotto, Phys. Rev. Lett. 88, 017201 (2001).

075145-8

https://doi.org/10.1038/25315
https://doi.org/10.1038/25315
https://doi.org/10.1038/25315
https://doi.org/10.1038/25315
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevLett.107.256401
http://arxiv.org/abs/arXiv:1610.02854
https://doi.org/10.1103/PhysRevLett.89.257402
https://doi.org/10.1103/PhysRevLett.89.257402
https://doi.org/10.1103/PhysRevLett.89.257402
https://doi.org/10.1103/PhysRevLett.89.257402
https://doi.org/10.1103/PhysRevLett.90.137202
https://doi.org/10.1103/PhysRevLett.90.137202
https://doi.org/10.1103/PhysRevLett.90.137202
https://doi.org/10.1103/PhysRevLett.90.137202
https://doi.org/10.1038/nmat3236
https://doi.org/10.1038/nmat3236
https://doi.org/10.1038/nmat3236
https://doi.org/10.1038/nmat3236
https://doi.org/10.1103/PhysRevB.60.R8422
https://doi.org/10.1103/PhysRevB.60.R8422
https://doi.org/10.1103/PhysRevB.60.R8422
https://doi.org/10.1103/PhysRevB.60.R8422
https://doi.org/10.1103/PhysRevLett.84.2666
https://doi.org/10.1103/PhysRevLett.84.2666
https://doi.org/10.1103/PhysRevLett.84.2666
https://doi.org/10.1103/PhysRevLett.84.2666
https://doi.org/10.1103/PhysRevB.63.174432
https://doi.org/10.1103/PhysRevB.63.174432
https://doi.org/10.1103/PhysRevB.63.174432
https://doi.org/10.1103/PhysRevB.63.174432
https://doi.org/10.1103/PhysRevB.58.847
https://doi.org/10.1103/PhysRevB.58.847
https://doi.org/10.1103/PhysRevB.58.847
https://doi.org/10.1103/PhysRevB.58.847
https://doi.org/10.1103/PhysRevB.65.220402
https://doi.org/10.1103/PhysRevB.65.220402
https://doi.org/10.1103/PhysRevB.65.220402
https://doi.org/10.1103/PhysRevB.65.220402
https://doi.org/10.1103/PhysRevB.72.094104
https://doi.org/10.1103/PhysRevB.72.094104
https://doi.org/10.1103/PhysRevB.72.094104
https://doi.org/10.1103/PhysRevB.72.094104
https://doi.org/10.1103/PhysRevB.61.R5053
https://doi.org/10.1103/PhysRevB.61.R5053
https://doi.org/10.1103/PhysRevB.61.R5053
https://doi.org/10.1103/PhysRevB.61.R5053
https://doi.org/10.1103/PhysRevLett.103.097001
https://doi.org/10.1103/PhysRevLett.103.097001
https://doi.org/10.1103/PhysRevLett.103.097001
https://doi.org/10.1103/PhysRevLett.103.097001
https://doi.org/10.1103/PhysRevLett.102.086401
https://doi.org/10.1103/PhysRevLett.102.086401
https://doi.org/10.1103/PhysRevLett.102.086401
https://doi.org/10.1103/PhysRevLett.102.086401
https://doi.org/10.1103/PhysRevLett.95.136401
https://doi.org/10.1103/PhysRevLett.95.136401
https://doi.org/10.1103/PhysRevLett.95.136401
https://doi.org/10.1103/PhysRevLett.95.136401
https://doi.org/10.1103/PhysRevLett.88.017201
https://doi.org/10.1103/PhysRevLett.88.017201
https://doi.org/10.1103/PhysRevLett.88.017201
https://doi.org/10.1103/PhysRevLett.88.017201


MOTT TRANSITION, SPIN-ORBIT EFFECTS, AND . . . PHYSICAL REVIEW B 95, 075145 (2017)

[17] A. Liebsch and H. Ishida, Phys. Rev. Lett. 98, 216403
(2007).
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1 (Forschungszentrum Jülich, Jülich, 2011), Link: http://www.
cond-mat.de/events/correl11/manuscripts/pavarini.pdf.

[41] Z. V. Pchelkina, I. A. Nekrasov, Th. Pruschke, A. Sekiyama, S.
Suga, V. I. Anisimov, and D. Vollhardt, Phys. Rev. B 75, 035122
(2007).

[42] J. Mravlje, M. Aichhorn, T. Miyake, K. Haule, G. Kotliar, and
A. Georges, Phys. Rev. Lett. 106, 096401 (2011).

[43] M. Schmidt, T. R. Cummins, M. Bürk, D. H. Lu, N. Nücker,
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The prefactor of the pair-hopping term is zero. This Hamiltonian
differs from the classical density-density form (even after
neglecting the spin-flip term). For the Hamiltonian above, the
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from HU is, as expected, identical to the one we obtain in
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