
J
H
E
P
0
8
(
2
0
1
8
)
0
7
7

Published for SISSA by Springer

Received: July 3, 2018

Revised: July 15, 2018

Accepted: August 8, 2018

Published: August 14, 2018

Mott transition with holographic spectral function

Yunseok Seo,a,c Geunho Song,a Yong-Hui Qia,b and Sang-Jin Sina

aDepartment of Physics, Hanyang University,

Seoul 133-791, Korea
bResearch Institute for Natural Science, Hanyang University,

Seoul 133-791, Korea
cGIST College, Gwangju Institute of Science and Technology,

Gwangju 500-712, Korea

E-mail: yseo@gist.ac.kr, sgh8774@gmail.com, qiyh10@gmail.com,

sangjin.sin@gmail.com

Abstract: We show that the Mott transition can be realized in a holographic model of

a fermion with bulk mass, m, and a dipole interaction of coupling strength p. The phase

diagram contains gapless, pseudo-gap and gapped phases and the first one can be further

divided into four sub-classes. We compare the spectral densities of our holographic model

with the Dynamical Mean Field Theory (DMFT) results for Hubbard model as well as

the experimental data of Vanadium Oxide materials. Interestingly, single-site and cluster

DMFT results of Hubbard model share some similarities with the holographic model of

different parameters, although the spectral functions are quite different due to the asym-
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1 Introduction

The Mott transition, the interaction induced Metal-Insulator transition (MIT) [1], is a

challenging subject and quantitative understanding of such phenomena is a necessary virtue

of any successful theory for strongly interacting system (SIS). The physics of Mott transition

is usually discussed using the Hubbard model H = −t(
∑

c†iσcjσ+H.c.)+U
∑

ni↑ni↓, which

captures the competition between hopping and on-site repulsion. However, for 2+1 and

higher dimension, it has not been solved for more than half century.

Holographic method has been developed as a theory of SIS [2, 3], and it is natural

to ask whether it can describe the Mott transition in terms of fermion spectral function.

However, finding the exact gravity dual of a given theory is extremely difficult if possible

at all. Furthermore, Hubbard model is just one simple model that captures some essence
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of the Mott transition, so finding an exact dual of such model is not essential either. In

this situation, instead of trying to find the dual of the Hubbard model, it would be more

sensible to find a holographic model that can achieve the same physics.

There has been much effort on holographic fermion spectral function starting from

ref. [4]. The marginal non-Fermi liquids in holography is established in [5–8]. On the

one hand, holographic gap generation was discussed in [9–12] using the dipole term or

Pauli term

pψ̄Fµνσµνψ. (1.1)

On the other hand, the emergence of free fermion-like point at the bulk mass 1/2 and

the nearby Fermi-liquid-like phase was found in [13–15]. Putting these together, we might

expect that Mott transition can be handily described in holography and Hubbard model

can be replaced in terms of easily calculable theory. However, the Hubbard model is a free

fermion at U = 0, while the holographic theory is strongly interacting even at the absence

of the gap generating term, which is a generic property of a holographic theory. Therefore

it is not clear how similar and different the two theories are and we need to see the details

to evaluate the usefulness of the new theory.

In this paper we study the phase structure of the holographic fermion model with

the bulk mass term and a gap generating interaction given by (1.1). We find that rather

surprisingly, for a fixed bulk mass, the model can describe a transition between the gapless

and gapful phases only when we restrict the bulk mass below the critical mass mc ≃ 0.35.1

We also find that there is a rather large region of pseudo-gap, a phase where the density of

state is depleted near the Fermi sea. The phase diagram is richer than expected since the

gapless phase can be further divided into four subclasses: the bad metal phases with and

without shoulder peaks and the half-metal phase with a gap between the shoulder peak

and the central peak apart from the Fermi-liquid like phase first discovered in [13]. The

presence of half-metal is a surprise at first, but it can be understood as the proximity effect

of the ‘free fermion wall’ sitting at m = 1/2 line in the phase diagram.

It turns out that there is a phenomenologically important difference between the holo-

graphic model discussed here and the Hubbard model: the spectral function of the Hubbard

model is symmetric at the half filling at least for the case where the band structure is simple,

while it is highly asymmetric in the present holographic model for any non-vanishing charge

density without which gap is not generated. Obviously, the real systems are in between.

With such differences understood, it is now meaningful to seek the commonness and

similarity between the different models which realizes Mott transition. Since Hubbard

model contains essentially one parameter, U/t, and the holographic model has two param-

eters m and p, we need to take a path in the phase diagram, which we call embedding.

We will see that there are two common features: i) transfer of the degree of freedom from

the central to shoulder peaks, ii) smoothness of the transition. Our calculation shows that

all the transitions are smooth crossover. Therefore one may wonder why we call a regime

1Notice that the discussion of the ‘interaction induced metal insulator transition’ in terms of conductivity

was already made in ref.’s [16, 17] but not in terms of spectral function and also notice that bosonic Hubbard

model in holographic context was discussed in [18].

– 2 –



J
H
E
P
0
8
(
2
0
1
8
)
0
7
7

as a phase. However, gap and gapless is certainly very different although smoothly con-

nected through the pseudo-gap region, which had been classified as a phase of SIS. We

suggest that such smooth transition with intermediate zone is a general character of SIS.

For the second feature, we will see that there are two paths in gap creation: in one path,

the central peak begins to be reduced in height from the beginning and the gap is created

by such reducing process. In the middle, pseudo-gap appears in the middle. In the other

path, the central peak remains sharp but its weight and width is getting thinner. For

the second path or embedding, the gap creation is done by such thinning process. It is

really surprising that in the DMFT study of Hubbard model such two different paths for

opening the gap were achieved by different approximation scheme. One is called single-site

DMFT and the other is cluster DMFT. It is a bit mysterious how such different features

which would be expected from different models could be obtained in the same model in

both cases: in DMFT as different approximation schemes and in the holographic model as

different parameter regimes.

Finally we tested our model with the experiment using the Vanadium oxide data. It

turned out that the X-ray absorption Spectrum (XAS) data can be fit by our theory but

the photoelectric emission (PES) data can not be unless spectral functions are symmetrized

by hand.

2 Spectral function

2.1 Setup and review

We start from the fermion action in the dual spacetime with non-minimal dipole interaction,

SD =

∫

d4x
√
−gψ̄

(

ΓMDM −m− ipΓMNFMN

)

ψ + Sbd, (2.1)

where the subscript D denotes the Dirac fermion and the covariant derivative is

DM = ∂M +
1

4
ωabMΓab − iqAM . (2.2)

For fermions, the equation of motions are first order and we can not fix the values of all

the component at the boundary, which make it necessary to introduce ‘Gibbons-Hawking

term’ Sbd to guarantee the equation of motion which defined as

−iSbd = ±1

2

∫

ddx
√
hψ̄ψ = ±1

2

∫

ddx
√
h(ψ̄−ψ+ + ψ̄+ψ−), (2.3)

where h = −ggrr, ψ± are the spin-up and down components of the bulk spinors. The sign

is to be chosen such that, when we fix the value of ψ+ at the boundary, δSbd cancel the

terms including δψ− that comes from the total derivative of δSD. Similar story is true

when we fix ψ−. The former defines the standard quantization and the latter does the

alternative quantization. The background solution we will use is Reisner-Nordstrom black
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hole in asymptotic AdS4 spacetime,

ds2 = −r
2f(r)

L2
dt2 +

L2

r2f(r)
dr2 +

r2

L2
d~x2

f(r) = 1 +
Q2

r4
− M

r3
, A = µ

(

1− r0
r

)

, (2.4)

where L is AdS radius, r0 is the radius of the black hole and Q = r0 µ,M = r0(r
2
0 + µ2).

The temperature of the boundary theory is given by T = f ′(r0)/4π and it can be solved

for r0 to give r0 = (2πT +
√

(2πT )2 + 3µ2)/3.

Following [5], we now introduce φ± by

ψ± = (−ggrr)−
1

4φ±, φ± =

(

y±
z±

)

, (2.5)

after Fourier transformation. Then the equations of motion become [5],
√

gxx
grr

z′+(r)−mL
√
gxxz+(r) + i[u(r) + k + p

√
gxxA

′
t(r)]y−(r) = 0

√

gxx
grr

y′−(r) +mL
√
gxxy−(r) + i[u(r)− k − p

√
gxxA

′
t(r)]z+(r) = 0, (2.6)

where u(r) =
√

gxx
−gtt

(ω + qAt(r)). Here, the momentum is along x direction. The corre-

sponding equations for y+, z− are obtained from the above by (At, ω) → (−At,−ω).
At the boundary region(r → ∞), the geometry becomes AdS4 and the equations of

motion (2.6) have analytic solution as

z+ = A1χ1(r) +B1χ2(r), y− = C1χ3(r) +D1χ4(r), (2.7)

y+ = A2χ1(r) +B2χ2(r), z− = C2χ3(r) +D2χ4(r), (2.8)

where

χ1(r) = rm 0F1

(

1

2
−m;−W

4r2

)

, χ2(r) = r−m−1
0F1

(

m+
3

2
;−W

4r2

)

,

χ3(r) = rm−1
0F1

(

3

2
−m;−W

4r2

)

, χ4(r) = r−m
0F1

(

m+
1

2
;−W

4r2

)

, (2.9)

with W = (ω + q µ)2 − k2. The asymptotic behaviors of (2.9) are manifest if we notice

0F1 → 1 in r → ∞. The equation of motion produces the relations of coefficients:

C1 =
iA1 (k − (ω + q µ))

2m− 1
, B1 =

iD1 (k + (ω + q µ))

2m+ 1
, (2.10)

C2 =
iA2 (k + (ω + q µ))

2m− 1
, B2 =

iD2 (k − (ω + q µ))

2m+ 1
. (2.11)

Here, we made an abbreviation for mL with m, which we will restore at the end.

The boundary term in eq. (2.3) becomes

−iSbd = y−z+ − y+z− = (A1D1 −A2D2) +
∑

±

E±r
±2m−1 + E2r

−2, (2.12)
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using the asymptotic behavior of wave functions χi. Here, E± and E2 are functions of the

coefficients of χi. A few remarks are in order. First, for m > 1/2, the second term(E±)

dominates but it can be cancelled by counter terms [19], which do not contribute any finite

terms to the effective action. Second, in the standard quantization where we fix ψ+ at the

boundary, A’s are the source terms. While in the alternative quantizaton where we fix ψ−

at the boundary, Di is taken to be the source. Therefore, if variables with index 1 and

those with index 2 are separable, the retarded Green’s function in standard quantization,

is given by

G = diag

(

i
D1

A1

,−iD2

A2

)

≡ diag(GR
+, G

R
−), m > 0, (2.13)

while that in alternative quantization is given by

G̃ = diag

(

i
A1

D1

,−iA2

D2

)

≡ diag(G̃R
+, G̃

R
−)

= −diag(1/GR
+, 1/G

R
−), m > 0. (2.14)

Since GR for m < 0 case, can be also obtained by GR → −1/GR, G̃R, the Green function

for the alternative quantization for m > 0, is the same as that for −m in the standard

quantization:

G̃R
±(ω, k;m) = −1/GR

±(ω, k;m) = GR
∓(ω, k;−m). (2.15)

Introducing the ξ± by

ξ+ = i
y−
z+
, and ξ− = −i z−

y+
, (2.16)

the equations of motion eqs. (2.6) can be recast into two independent equations for ξ±:

√

gxx
grr

ξ′±=−2m
√
gxxξ±+[u(r)−p√gxxA′

t(r)∓k]+[u(r)+p
√
gxxA

′
t(r)±k]ξ2±, (2.17)

and the Green functions for m < 1/2 can be written as

GR
±(ω, k) = lim

r→∞
r2mξ±(r, ω, k). (2.18)

Notice that two components of the Green function are not independent: GR
−(ω, k) =

GR
+(ω,−k). The spectral function is defined as the imaginary part of the Green function.

There are two of them Im[GR
+] and Im[GR

−] and we can define the spectral function for each

of them:

A±(ω, k) = Im[GR
±(ω, k)]. (2.19)

There is an issue on the finiteness of the spectrum: it was pointed out [20] that the

high frequency behavior of the spectral function diverges like ω2m so that the sum of the

degree of freedom over frequency is infinite if m is positive. Therefore we need to take the

negative bulk mass only in the standard quantization. For the ease of discussion we want to

maintain the positivity of the mass which can be done simply by going to the alternative
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quantization. Even in this case spectral function is ∼ ω−2m which does not decay fast

enough to guarantee the finite integration. The sum rule can still be an issue and we

do not treat this problem here. To summarize, we work in alternative quantization with

positive mass and we treat the fermion as a probe and do not consider its back reaction.

We finish this section with a remark on the ‘zero-pole duality’ of the holographic Green

functions noticed in [21, 22], which is related to

GR
±(ω, k;m, p) = −1/GR

±(ω,−k;−m,−p), (2.20)

or more invariantly, the corresponding relation between the determinant of the matrix

Green function. It allows us to consider only positive m, which save half of our efforts. In

this paper we regard the Green function in m < 0 regime as unphysical due to the divergent

behavior of its spectral function in large ω. It turns out that for m > 0 case, p < 0 region

does not generate any gap and there is no Mott transition: a new band appears and it

always cross the ω = 0 line to generate the Fermi sea as we have demonstrated in the

appendix A. So, for the purpose of discussing the Mott transition we do not need p < 0

regime. Notice that the presence of zero at ω = 0 does not imply a gap while the presence

of pole implies the Fermi surface, because a gap requests vanishing of the spectral function

for all k at ω = 0.

2.2 Non-relativistic system in terms of relativistic formulation

Now how do we define the physical spectral function that can be compared with experi-

mental data? For relativistic system like Dirac or Weyl semi-metal, it is natural to define

it as the traced object which is the sum of the two: Im[GR
+ + GR

−]. One expect that the

chemical potential is small so that the Fermi level is near the Dirac point. In fact we have

a few experiences that such Dirac material with small Fermi sea can be well described by

the RN black hole physics [23–25].

However, if we want to describe a non-relativistic system, the problem is more subtle

as we describe below. Notice that in the presence of chemical potential, both relativistic

and non-relativistic dispersion relations near the Fermi sea are linear. Thus we expect

that dynamical aspects of the two cases are not much different. However, the relativistic

spectrum is a double of non-relativistic case since the former handles the negative and

positive frequency at equal footing. Therefore when we compare the spectrum of the

relativistic theory with real material, half of the theoretical spectrum should be projected

out. Indeed, the relativistic case has a serious deviation from the real data because it

has unphysical spectrum far below the Fermi surface. This can be seen by considering

weakly interacting system with chemical potential. Notice that the Fermi level is defined

by G−1
− ∼ ω + µ − k − Σ = 0 with ω = 0. For a weakly interacting system, the self

energy Σ ≃ 0, then kc, the momentum at which we consider the spectral function can be

taken as kc = µ := kF . Then the spectrum or the pole of the G−1
+ would be at ω = −2µ,

because G−1
+ ∼ ω + µ + kc − Σ = 0. For large chemical potential the spectral function

has high peak deep under the Fermi sea, which is certainly unphysical. See the figure 1,

where the spectral function as function of ω along the k = kc = kF line has two peaks:

– 6 –
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ω	

k	

k
F	

G+
−1

= 0 G
−

−1
= 0

−µ

ω
*	

(a) Relativistic Spectrum(RS)

ω	

k	

k
F	

G+
−1

= 0 G
−

−1
= 0

−µ

ω
*	

(b) NRS approximated by RS

A(ω)	

ω	

(c) Half filling

Figure 1. (a) spectrum in relativistic formulation. (b) Unphysical spectrum appears in G+ in

hole sector when we approximate the non-relativistic spectrum (NRS) in terms of the relativistic

theory near the Fermi level. To elliminate such pole we define the spectral function by eliminating

the spectrum deep under the Fermi sea: ω < −µ. (c) Definition of half filling.

one at the Fermi surface and the other at the ω = ω∗ = −2µ, deep in the Fermi sea. Such

feature is attributed to the relativistic formulation of the fermion and it continues to exist

for strongly interacting system. When we describe a non-relativistic system in terms of

relativistic fermions, we have to exclude such spectrum. Therefore we identify our spectral

function as Im[GR
−] rather than the traced one.

A(ω, kc) = A− = Im[GR
−(ω, kc)] (2.21)

This is fine for practical purpose where we set k non zero only along x-direction but it is not

a rigorous definition, because in more than 1+1 dimension G+ and G− are not separable,

as the lightcone structure in figure 1 suggests. More proper way to state it is to discard

the spectrum below ω = −µ if µ≫ T .

2.3 definition of the half filling in the absence of the lattice

For most of practical calculations in holography, one does not encode the presence of the

lattice. However, the starting point of Mott transition is to have a half filled band which is

certainly band conductor, which should become insulator under the growth of the coupling

strength. Therefore we need to ask what is the definition of the half filling when we do

not encode the lattice. One may think this is not a serous question in holography since

generic phase of fermion in the absence of extra interaction is a bad metal and we have at

least one a gap generating interaction. However, it is rather confusing in understanding the

definition of the doping which is necessary to calculate physical quantity in terms of the

doping rate. Here we propose that the system is half filled if the Fermi level ω = 0 divide

the density of state by half, namely if the area under the density of state (DOS) graph is

divided into two equal areas by ω = 0. See figure 1(c). If we denote the total itinerant

charge density of the system by Q and the pure material’s itinerant charge density by Q0,

then the doping rate is given by x = (Q−Q0)/Q0. When we consider doping the Mott

insulator, Q is zero at the half filling and the doped charge is the only itinerant charge.

Therefore in this case the doping rate is an exact measure of the charge density Q.

– 7 –
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3 The phases of holographic fermion

We study the phases diagram of the model given by eq. (2.1) as function of p and m.

There are two self evident phases: gapless, gapped phases. The pseudo-gap appears as

an interpolating zone of these two phases. The phase diagram is richer than expected,

because the gapless phase can be subdivided into four subclasses: Fermi liquid like (FL),

bad metal(BM), bad metal prime(BM’) and half-metal(hM) phases.

The most typical phase of the gapless phase is bad metal phase. Since A(ω, k) ∼ ω−2m,

it is not well localized near Fermi surface (FS). The peak at the free fermion point

(p,m) = (0, 1/2) is singularly sharp. For the continuity of the phase diagram, we have

to install a Fermi-liquid-like phase near that point and we take the phase boundary value

to be m ∼ 0.35. However this phase can not be a real Fermi liquid in two aspects: i) the

central peak is not really localized and decays too slowly as mentioned above. ii) the width

of the central peak does not follow Γ ∼ T 2 law. Instead, we find that they follow Γ ∼ T

law for small chemical potential µ/T ≪ 1. The reason we call it Fermi-liquid-like phase is

due to the sharp linear dispersion relation ω + µ = ±k. Also for large chemical potential

µ/T ≫ 1, we find the half width of the central peak Γ ∼ Tα with α ≃ 2 so that it resembles

the true Fermi liquid. See the figure 4.

The reason for the presence of the free fermion point at (p,m) = (0, 1/2) is well

understood in [6, 13]. ψ is the dual of the operator with dimension ∆ = d/2 −m which

is dimension of free fermion when m = 1/2 so that the fermion with m = 1/2 in alternate

quantization is dual to the free fermion. Along the m = 1/2 line in the phase diagram, the

spectral function is also sharp although the spectrum can be more diversified. We call that

line as ‘free fermion wall’. The bad metal prime is the bad metal with shoulder peak(s).

See figure 2(d) and (b). The half metal is the bad metal prime with a gap between the

central peak and the shoulder peak. See figure 2(c).

Since the transitions are smooth everywhere, one may wonder whether we can classify

the phases. However, it would be more strange if we say that SIS has just one phase since

even the gap and gapless phases are smoothly connected. With this understanding, the

phase boundary naturally depends on the choice of the criterion: we choose the onset of

pseudo-gap by R = 0.9 where R is the ratio of the spectral function at the central dent,

A(ω = 0, kc), to that at the Hubbard peak. Here kc = kF if kF exists, otherwise it is the

momentum at which one of the dispersion curve branch just touches the Fermi level ω = 0

which happens at m = 0.35. See figure 5(b). For the gapped phase we choose R = 0.01.

The result of the detailed study of phases are summarized by the phase diagram given

in figure 3. The dashed line along m = 0.5 represents the free fermion wall, the FL phase

is located at the upper-left corner and gapped phase is at the lower-right corner. All other

phases sit between the two and can be understood as effects of proximity to, or competition

of those two. Notice also that the phase diagram is divided by the line of m ≃ 0.35: the

lower half region is where gap-generation phenomena is observed as we expected from the

presence of the dipole term. However, in the upper region, a new metallic phase appears

instead of gapped one. We call it half-metal phase, because significant fraction of density

of state is depleted from the quasi-particle peak near the Fermi level and moved to the

– 8 –
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(c) half-metal (hM)
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(f) gapped (G)

Figure 2. (a)–(f):Typical fermion phases. (a) FL with (p=0.5, m=0.45,kc = 1.65), (b) BM’ with

shoulder (p=2, m=0.4, kc = 2.30), (c) hM (p=6, m=0.45, kc = 2.48), (d) BM without shoulder

(p=0.5, m=0.1, kc = 1.20), (e) PG (p=2,m=0.1,kc = 2.89): notice the position of the ω = 0

compared with the BM’ phase in (b), (f) Gapped phase (p=6, m=0.15, kc = 5.68).
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(a) Phase diagram
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GPG

BM’

BM

(b) Substructure in gapless phase

Figure 3. Phase diagram in (p,m) space. (a) Three phases which are gapless, psuedo-gap and

Gapped phases, appear and all transitions are smooth crossover. The gapless phase can be further

divided into four subregions: Fermi liquid like (FL), bad metals (BM), bad metal prime (BM’), half

metal (hM).

shoulder region. The emergence of this new metallic phase in the strongly coupled system

was unexpected. To understand its appearance, we study the effect of the dipole term on

the spectral density near m = 0.5. See figure 4.

It turns out that the peak along the dispersion curve ω + µ = k exists along m = 0.5

line although more and more degrees of freedom are depleted from the central peak and

moved to the shoulder as we increase p.2 We call the line m = 0.5 ‘the free fermion wall’.

2Previously, the free fermion phase near the m = 0.5 was noticed by Leiden group [13] at p = 0 and here

we study it in the presence of the gap generating dipole term.
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(a) m = 0.5, p = 0 (b) m = 0.5, p = 5 (c) m = 0.47, p = 5

Figure 4. Contour plot of spectral density for m ∼ 0.5. Red line indicates the Fermi level. (a) At

p = 0, the degree of freedom follows the dispersion relation ω + µ = k, (b) At p = 5, new branch

of dispersion curve appears. (c) Lowering m from 0.5, the spectral curves are reconnected to avoid

the ‘level crossing’.

(a) m = 0.25 (b) m = 0.35 (c) m = 0.45

Figure 5. m-evolution at p = 6 shows the origin of the half-metalic phase: increasing the m pushes

up the new band, making the Fermi sea. Large p is responsible for the sharpness of new band.

One important effect of the dipole term is the creation of new band. See figure 4(b). As p

increases, it push down the new band below the Fermi level so that a gap is created and

will be increased. The third effect of increasing p is to make the new band sharper which

means it keep transferring the spectral density from the central peak to the shoulder peak.

This is similar to the effect of U in the DMFT calculation of Hubbard model. Now lowering

m from 0.5, the spectral curves are reconnected to avoid the ‘level crossing’. Consequently,

the density profile moves from figure 4(b) to (c).

We can now understand the role of mass in creating the half-metal phase: increasing

the m pushes up the new band created by p so that the band can cross the Fermi level. See

figure 5. This effect competes with that of increasing p, but the effect of mass is stronger.

For m > 0.35 the new band always crosses Fermi sea and this is the mechanism of the hM

phase. Notice that the new band touch the Fermi level at m = 0.35 for all p.
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Figure 6. Role of mass in stabilizing the Fermi surface (FS): (a)Fast decay of FS for nonzero

Temperature T = 0, 0.1, 0.4 at m = p = 0. (b) FS stabilized by bulk mass: m = 0, 0.24, 0.48 at

T = 0.1 and p = 0.

For small mass m < 0.35, the dipole interaction leads to metal-insulator transition as

p increases. For p > 4 and m = 0, gap is dynamically generated as it was shown by Phillips

et al. [9]. For larger mass, the gap generation requests slightly higher values of dipole

strength. The pseudo-gap is nothing but the intermediate zone of this smooth transition,

namely 0.8 < p < 4 for m = 0. Notice that in the phase diagram figure 3, there is a rather

large territory of PG.

Similarly, for m > 0.35, the dipole term drives BM’ -hM transition because the new

band always crosses the Fermi level. This is why strong dipole interaction leads to the

half metal rather then a Mott insulator for in this regime. As p increases the new band is

narrowed and sharpened but it never disappears even at very large p. In the appendix, we

study the evolution in m for fixed p and evolution in p for fixed m in more detail.

The figure 6(a) shows that in the absence of the bulk mass, peak in the spectral

density k-plot goes away very rapidly as we increase temperature. That is, quasi-particles

are fragile at finite temperature, which is the character of non-Fermi liquids. On the other

hand, if we increase the mass, the Fermi surface peak becomes sharper as we can see in

the figure 6(b). We can see the role of mass is the stabilizer of the quasi-particle nature

in holographic matter. As m → 1/2, such ‘quasi-particle stabilizing tendency’ increases

singularly so that the system is a Fermi liquid like whatever is the strength of dipole term.

In fact, the spectral function shows that the dispersion curve is straight line as if it is a free

fermion. For applications to the realistic material, having such a dial to make the system

Fermi-liquid-like in a limit is very useful because in the real experiments, one tunes the

coupling by applying pressure or doping rate. In the presence of the dipole coupling whose

role is to introduce a gap which break the conformal symmetry dynamically, there is no

guarantee that the ‘free fermion’ continues to exists. Our observation is that, nevertheless,

such free fermion nature at m = 1/2 persists in the presence of the dipole interaction

regardless of its strength. We call it free fermion wall in m-p phase diagram. We found

that if m > 0.35, metalic phase exist always as a consequence.
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4 Comparison with other studies

4.1 Comparison with Hubbard model

Usually a theoretical study for Mott transition has been done using the Hubbard model.

Therefore it is inevitable to compare our result with the previous study of Hubbard model.

We emphasize that our model is not the holographic dual of Hubbard model but a replace-

ment of it for the Mott transition purpose. In fact the model studied here has a notable

difference from the Hubbard model. First, U = 0 in the latter is free fermion while p = 0 in

the former is not unless the bulk mass is fine-tuned. Second, at the half filling, the Hubbard

model has symmetric spectral function while the holographic theory does not. Third and

most vividly, we have two parameters m, p while the Hubbard model has only one, U/t. In

order to compare our model to the result of Hubbard model, we have to restrict to an 1

dimensional subspace of the phase space, which we call embedding: namely, we associate

a line in the parameter space (p,m) in the holographic model that gives qualitatively the

same spectral density. Any line connecting the free fermion point and the gapped phase can

realize a Mott transition and define an embedding. Here we consider two simplest choices:

the first one start from the free fermion point and reach at the gapped phase following a

straight line

m+ αp = 1/2, p = f(U/t), (4.1)

with an unknown monotonically increasing function f .

This defines a linear embedding given in figure 7. The second starts from a point in

the ‘free fermion wall’, the line m = 1/2, and rapidly goes down to small bulk mass regime

and turn there to reach the gapped regime following a curve

p = β

(

1

2m
+ 1

)

, with β = constant. (4.2)

We call it ‘hyperbolic embedding’ and it is the red line in figure 7. The readers should

not pay too much attention to the explicit form of the embedding. It is just two choices

with qualitatively different behavior. They have some interesting characters. The linear

embedding has following characters: i) It can have central and shoulder peak structures,

ii) it does not have a pseudo-gap phase, and iii) as we increase the coupling p, the degrees

of freedom transfer from central peak to shoulder peak so that the central peak becomes

thinner and thinner until a gap is created. These three turns out to be the characteristic

property of the single site DMFT result for Hubbard model [26]. However, the holographic

model has too much asymmetry in spectral function so that the and three peak structure

which is one of the property of single site DMFT is not manifest since one of the shoulder

is too weak. See figure 8 (a) and (b).

The second embedding has pseudo-gap without central-peaks which is analogous to

cluster DMFT results [27]. The ‘transfer’ of the spectral density from the quasi-particle

peak to the Hubbard side peaks are common to both embeddings. The apparent similarity

between the two should be coming due to sharing the Mott transition. However, due to

the large asymmetry again, the detail is different. The comparison of 2-site DMFT and its

holographic analogue, the hyperbolic embedding, is given in figure 9 with β = 0.5.
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Figure 7. Phase diagram with two class of embeddings: linear embedding mimics single site

DMFT and the Hyperbolic one resembles two site DMFT. α, β in eq. (4.2) and (4.4) are 1/40 and

1/20 respectively.

(a) single site DMFT result (b) Linear embedding

Figure 8. Comparision of DMFT results and Linear embedding. (a) Hubbard model in single site

DMFT. The figure is from [26]. (b) Evolution of Linear embedding. Transfer of DOS, persistence

of central peaks till the gap formation are common with DMFT. But due to the heavy asymmetry

in spectral function, the three peak structure of single site DMFT is not manifest here. α ≃ 1/40.

It is rather surprising that two different approximation scheme of DMFT for the same

model behave as if they are different models and yet the holography can accommodate them

with different parameter regime. Since we are comparing different theories, the similarity

is overall one and they are different in detail. The difference in gap creation is worthwhile

to emphasize. The single site DMFT [26] shows that the gap creation is ‘sudden’ since it

is created with a finite size. On the other hand, linear embedding opens gap starting with

zero size.

4.2 Comparing with experiment

The ultimate test of a physical model is the capability of its explaining the data. Here we

take Vanadium Oxides data and see how the theory fits data. It turns out that the X-ray

absorpsion spectroscopy data for SrVO3 (red circles and diamonds) [28] and Ca0.9Sr0.1VO3

(blue boxes and triangles) [29] can be well fit with our theory. We adapted the data
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(a) 2-site DMFT result
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(b) a hyperbolic embedding

Figure 9. Comparision of cluster DMFT results: (a) Hubbard model in 2-site DMFT. The figure

is from [27]. (b) Evolution along the hyperbolic embedding in holographic model. Appearance of

the pseudo-gap resembles cluster DMFT, but here again, due to the large asymmetry, the details

look different.
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Figure 10. Experimenal data vs holographic theory: XAS data; color red is for SrVO3 and (color

blue) is for CaVO3. The data for SrVO3 is from [28], and that for CaVO3 is from [29]. The param-

eters values we used (m, p, kc, µ) = (0.47, 1.90, 2.05, 1.73) for red line and (0.46, 1.70, 2.07, 1.73) for

blue line.

presented in the lecture note of Vollhardt in [30] and DMFT study in [31, 32] and the

result is given in figure 10. However, we were not so lucky in the Photoemission (PES) data,

because the parameters taken to fit the XAS data create too much asymmetry in spectral

function so that unless we symmetrize by hand, we do not have a room to accommodate

the PES data. We do not have a good reason to take such symmetrization although in

some literature it is practiced [33–35]. Once symmetrized, the data can be fit very well by

our model. See the figure 19 in the appendix.

5 Discussion

In this paper we studied the phase diagram of a holographic model which can accommodate

the physics of Mott transition. The key feature is the presence of gapped phase and the free

fermion point. The competition of the two generate pseudo-gap phase as an intermediate

zone. Any line connecting the gapped and free fermion point in the phase space can be
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regarded as a an analogue of the Hubbard model. We report that all the phase change

is smooth and we did not find any signal of instability in the spectral density within the

unitarity bound m < 1/2. Comparing the DMFT result on the Hubbard model with ours,

three features agree with single site DMFT: the appearance of shoulder peak and transfer

of the DOS to the shoulder peak and the maintenance of the central peak till the gap

creation. However, due to the large asymmetry created by the chemical potential, three

peak structure is not manifest since one of the shoulder is too weak. For the cluster DMFT

and the hyperbolic embedding, there is an agreement in the appearance of the pseudo-gap.

But again due to the asymmetry, the details are different.

What is the origin of the spectral asymmetry? If spatial dimension is bigger than

1, the momentum space light-cone (ω + µ)2 − k2 = 0 is asymmetric because the region

below the chemical potential is closer to the tip of the cone. In 1+1 dimensional theory we

do not expect such asymmetry. The charge dependence of the interaction term enhanced

this phenomena.

Apart from the asymmetry there is one more problem in this model. It turns out that

for the model with dipole interaction, the filling fraction changes the interaction strength

p, which is odd at first sight. This can be understood the if we note that p always comes

with Q, the charge density of RN black hole, so that increasing p has the effect of increasing

Q. Increasing Q has the effect of increasing µ so that in the presence of the Fermi sea, the

Fermi level should look as if it is increased. In real material changing the coupling strength

should not involve the effect of changing the particle number. Therefore we should conclude

that the dipole term is not proper to model the Mott transition in a system where particle

number is preserved.

We describe some future interests below. First, we need to find other gap creation

mechanism which can realize the Mott transition such that spectral function maintains

particle-hole symmetry at least approximately, lack of which is the most serious defect of

present model in practical application. Second, we need to consider the back reaction of the

background geometry. This is especially interesting due to the parallelism of holographic

theory and the DMFT calculation near quantum critical point [36, 37]. Third, when the

gap is generated, the conformal invariance is also broken therefore the conformal unitarity

condition that restricted us m ≤ 1/2 is not much meaningful. Then, we should investigate

beyondm = 1/2. Next, we should study the fermions in the presence of the complex scalar,

the superconducting order parameter. Also we did not investigate much how the system

changes as temperature and chemical potential change. It will give most practical results

since those data are most measured. Many interesting questions are waiting analysis to

accommodate the reality in the holographic model.
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Figure 11. Demonstration of no gap in p < 0 region. Interaction generates a new band that

always crosses the ω = 0 line, so that the phase is always gapless.

A Spectral function in p < 0

In section 2, we claimed that we do not find any gap. To demonstrate this we show that

the spectral function in p < 0 region does not have any gap even for large negative p = −8

and small m due to the interaction generated band. However, it might be interesting to

investigate this regime for the phenomenological study because spectrum is rich in hole

(ω < 0) region while p > 0 gives rich spectrum in particle (ω < 0) region.

B Phase space of T=0

The phase diagram depends on temperature. We examined the phase space in zero tem-

perature: bad metal and its prime regions are reduced but not go away at T = 0 because

the presence of sharp peak itself does not guarantee that it is Fermi liquid. At p = 0, the

spectral function depends on the frequency ∼ ω−2m in alternative quantization we use.

If m is not large enough, localizing the spectral function to the Fermi surface can not be

achieved so that it is far from Fermi liquid behavior. Therefore we need to distinguish the

phase near the m = 0.5, p = 0, the free fermion point, from the phase near m = 0, p = 0,

which is dubbed as bad metal region. Notice also that the zero temperature Fermi surface

disappears very quickly (if not on m=1/2 line) as soon as we turn on T just a bit.

Bad-metal prime region shrinks to m > 0.45 but it still exists. See figures 12

and 13 below.

Gapped phase and pseudo-gap phase expand such that much of the bad metal prime

region become pseudo-gap at zero temperature. The phase boundary of gapped phase and

pseudo-gap is moved to near p=3 at m=0 according to our criterion. The phase diagram

is drawn schematically in the figure 14, where we do not find any qualitative change.

However, the zero temperature phase diagram is not very useful to fit the data of the

transition metal oxides. This is because typical data belong to bad metal prime phase,

and at zero temperature, this relevant regime is tiny, therefore there is not much room to

adjust the parameter to fit data. In this paper, we have drawn it at T = 0.1, which gives

a typical phase diagram and useful to us for data fitting.
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Figure 12. The spectral density at T = 0 and p = 0 at fixed momentum kF . (a) Spectral density

at k = kF . There is sharp peak at kF . As mass decreases, it is not localized at the fermi-surface

and can not be classified as a Fermi liquid. (b) Spectral density at k = −3 also shows that it is

broad for small mass. The hight decreases up to m ∼ 0.25 and increases.
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Figure 13. Evolution of the spectral density at T = 0 and p = 2. BM’ region is much reduced at
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Figure 14. Schematic phase diagram at T = 0.
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(a) p = 1 (b) p = 2 (c) p = 6 (d) p = 8
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Figure 15. (a)–(d) on p-evolution of the DOS along the line m = 0.1 show appearance of and

pseudo-gap and gapped phase; (e)–(h) spectral function along vertical red line in each figure (a)–(d).

kc = 1.65, 2.46, 5.68, 6.86 respectively from (e) to (h).

C The role of m and p

C.1 Gap generation versus appearance of half-metal phase

Here we follow fixed mass line in the parameter space to see the evolution as we increase

the p. We first study the lower half of the phase diagram by calculating its evolution along

the line m = 0.1 with increasing the dipole strength. The result is drawn in figures 15

(a)–(h), where three different phases appear:

1. Figure 15 (a,e) p = 1, bad metal phase with broadened peak with low height at Fermi

level,

2. Figure 15 (b,f) p = 2, psuedo-gap phase with incomplete depletion of DOS at Fermi

level.

3. Figure 15 (c,g) p = 6, gapped phase; figure 15 (d,h) p = 8, gapped phase with

increased gap size.

The overall feature of the evolution is from metalic to the insulating phase with pseudo

gap phase in the middle and it agrees with our expectation.
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Figure 16. (a)–(d):p-evolution of the DOS at m = 0.45 shows appearance of and bad metal prime

and half-metal; (e)–(h) spectral function along vertical red line in each figure (a)–(d). We choose

kc as (1.74, 2.08, 2.32, 2.48) respectively.

We now show the evolution along the line of m = 0.45 with increasing p to demon-

strate the changes of phase in the upper half part of the phase diagram. The ω-plots in

figures 16(e)–(h) are is along the red vertical redlines in figure 16(a)–(d) respectively. We

can see three different phases:

1. Gapless metalic phase with linear dispersion: it is a Fermi liquid (FL) regime.

2. The bad metal phase due to development of incomplete generation of conduction

band.

3. New metalic phase which we call half-metal due to the development of the conduction

band. half-metal because half of the DOS at the Fermi sea is depleted and moved to

shoulder region.

C.2 Bulk-mass evolution at fixed p

We now study the role of mass more systematically by calculating the evolution of the

DOS at two nonzero fixed values of p, that is along two vertical lines p = 2.5 and p = 6.0

in phase dragram. In the figure 17(a)–(h), the m-evolution along p = 0.2 line is drawn,

where a few physically interesting phases appear. From the figures 17(i)–(p), we can see

that the bulk mass sharpens the peak at the Fermi surface consistently regardless of the

value of p. One can see that increasing m pushes up the new band so that gap is reduced.

When the middle band crosses the Fermi level, central peak appears signaling the creation

of the half-metalic phase. For both cases the final stage is hM phase.
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(a) m = 0 p = 2.5 (b) m = 0.15 p = 2.5 (c) m = 0.35 p = 2.5 (d) m = 0.45 p = 2.5
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Figure 17. (a)–(h): m- evolution of the spectral density with increasing m with p = 2.5. We

choose kc as (2.89, 2.89, 2.89, 2.25) respectively. (i)–(p):Evolution of the spectral density at p = 6.0.

For both cases the final stage is hM phase. We choose kc as (5.68, 5.68, 5.68, 2.48) respectively.
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Figure 18. Symmetrized spectral functions for Bad metal prime and psuedo-gap.
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Figure 19. PES data with symmetrized spectral function: color red is for SrVO3 and (color blue)

is for CaVO3. The data for SrVO3 is from [28], and that for CaVO3 is from [29]. The parameters

values we used are (m, p, kc, µ) = (0.47, 2.2, 2.08, 1.732) for red line and (0.47, 2.05, 2.04, 1.732) for

blue line.

D Symmetrized spectral function

Pseudo-gap data in the context of High-Tc superconductor theory is usually presented

using symmetrized spectral function (SSF) [33–35]. We present the result it in figure 18

for those who are already familiar to condensed matter literature.

D.1 PES data with symmetrized spectral function

As we mentioned in the main text, the photoemission data can be fit by the holographic the-

ory only when we symmetrize the spectral function in ω: A(ω, k) → f(A(ω, k)+A(−ω, k))
fermion distribution function f = 1/(1 + eE/kT ). Although we do not have good reason to

do it, the result is fantastic. In figure 19 we record the result for possible use in the future.

D.2 Evolution along two embeddings

Here we give four embeddings given by the four colored lines in figure 20 and corresponding

spectral functions in figures 21 and 22 using the symmetrized embedding.
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Figure 20. An embedding defines a path from gapless to gapped phase in holographic model:

α = 1/40 (1/20) for yellow (red) line in linear embedding. β =8/9 (4/3) for blue (green) curve in

hyperbolic embedding.
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Figure 21. U -evolutions for linear Embedding. (a)–(d) are at marked point of embedding diagram

for upper (Yellow) line, (e)–(h) for lower (Red) line.
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Figure 22. U -evolutions for Hyperbolic Embedding (V 6= 0). (a)–(d) for upper (Blue) curve,

(e)–(h) for lower (Green) curve, Spectral functions at kc for V 6= 0 (Green Curve).
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