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Mechanisms of Mott transitions and dx2�y2 -wave superconductivity (SC) are studied in the half-filled-

band Hubbard model on square lattices with a diagonal hopping term (t0), using an optimization

(or correlated) variational Monte Carlo method. In the trial wave functions, a doublon–holon binding

effect is introduced in addition to the onsite Gutzwiller projection. We mainly treat a d-wave singlet state

and a projected Fermi sea. In both wave functions, first-order Mott transitions without direct relevance to

magnetic orders occur at U ¼ Uc, which is approximately the bandwidth, for arbitrary t0=t. These

transitions originate in the binding or unbinding of a doublon to a holon. d-wave SC appears in a narrow

range immediately below Uc. The robust d-wave superconducting correlation is necessarily accompanied

by enhanced antiferromagnetic correlation; the strength of SC decreases, as t0=t increases.
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1. Introduction

In connection with the superconductor–insulator transi-

tions in organic compounds �-(BEDT-TTF)X,1) the half-

filled-band Hubbard model on anisotropic triangular lattices

[Fig. 1(b)]2) has been intensively studied. In addition, a

recent experimental study3) has reported that a series of film

samples of nondoped high-Tc cuprates (parent materials of

electron-doped systems) do not become antiferromagnetic

(AF) insulators but exhibit metallic properties including

superconductivity (SC) at 21K. Thus, it is important to

grasp the mechanisms of Mott transitions and SC, if any, in

half-filled-band Hubbard models with frustration. Because

such phenomena arise at intermediate correlation strength

(U � W; W being the bandwidth), one has to use a method

that can reliably treat both strongly correlated and weakly

correlated regimes. As one of such methods, the optimiza-

tion (or correlated) variational Monte Carlo (VMC) method4)

has rapidly progressed in recent years for the study of

ground-state properties.5)

Using this method, the present authors have recently

studied the Hubbard model on the anisotropic triangular

lattice [Fig. 1(b)].6) With a projected d-wave singlet state, it

is found that (1) a conductive-to-nonmagnetic-insulator

(Mott) transition occurs at U ¼ Uc, which is somewhat

smaller than W , and is caused by the binding (and

unbinding) of a doublon to a holon; (2) dx2�y2 -wave SC

appears in the vicinity of both the Mott transition and the AF

phase, and develops together with the short-range AF

correlation (or fluctuation).

In weakly frustrated cases, the two lattices in Figs. 1(a)

and 1(b) have a common characteristic wave number G ¼
ð�; �Þ in spin correlation. In strongly frustrated cases,

however, the characteristic wave numbers become different;

for instance, 120�-structure spin correlation is probably

dominant in (b) for t0 � t,7) whereas the collinear structure is

favored in (a). In this paper, we carry out similar detailed

calculations for the lattice, often treated in the context of

high-Tc cuprates (t–t0–U model) [Fig. 1(a)], and reveal

whether or not the above mechanisms of the Mott transition

and of SC also work here. In addition to the d-wave singlet

state, we study Mott transitions in the projected Fermi sea.

The organization of this paper is as follows: In §2, we

introduce the model and method we use. In §3 and §4, we

discuss Mott transitions in the d-wave singlet state and in the

projected Fermi sea, respectively. Section 5 is assigned to

the stability and properties of the d-wave superconducting

(SC) state. In §6, we construct a ground-state phase diagram

based on the present VMC calculations, and address

important problems with respect to antiferromagnetism

(AF). In §7, we briefly summarize the main results and

discuss the subject further.

Part of the present results have been reported in a previous

letter.8)

2. Model and Method

In §2.1, the model we study is introduced, and related

studies are summarized. In §2.2, we briefly review the

background of variational wave functions for the Hubbard

model in the research on the Mott transition. In §2.3, we give

t
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t
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Fig. 1. (Color online) Lattice structure and hopping integrals t and t0, (a)

studied in this work, and (b) often used for �-BEDT-TTF salts. Lattice

sites are denoted by dots.
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an account of the wave functions used in this paper and the

conditions of VMC calculations.

2.1 Hubbard model on frustrated square lattices

In this paper, we study the Hubbard model9–11) on a square

lattice with diagonal transfer t0 [Fig. 1(a)],

H ¼ Hkin þHU ¼
X

k�

"ðkÞcyk�ck� þ U
X

j

nj"nj#; ð1Þ

"ðkÞ ¼ �2tðcos kx þ cos kyÞ � 4t0 cos kx cos ky; ð2Þ

with U, t > 0. Equation (1) has been often used as a simple

model that captures the essence of cuprates.12) Here, we

concentrate on the half-filled band (n ¼ Ne=Ns ¼ 1; Ne:

electron number and Ns: site number) and consider doped

cases in a forthcoming publication. We exclusively treat the

case of t0 � 0, because the behavior for t0 (> 0) is identical

to that for �t0, owing to the particle–hole symmetry at

n ¼ 1. Note that the negative sign of t0=t is in agreement

with the hole-doped case of high-Tc cuprates. When jt0=tj is
varied, the features of the bare band, eq. (2), abruptly change

at jt0=tj ¼ 0:5, at which low-lying energy levels become

strongly degenerate; the van Hove singularity points depart

from ð�; 0Þ and ð0; �Þ for jt0=tj > 0:5. Furthermore, the

plausible values of high-Tc cuprates are considered to be

jt0=tj ¼ 0:1{0:3.13) Thus, we restrict the range of frustration

strength to 0 � jt0=tj � 0:5 in this paper.

Despite the importance of the model, reliable knowledge is

limited, particularly in the intermediate and strong coupling

regimes. For the pure square lattice (t0 ¼ 0), it is believed that

the ground state is insulating with a long-range AF order for

U > 0, owing to the complete nesting condition.14) For

frustrated cases (t0 6¼ 0), however, it is urgently required to

clarify the properties of the conductor-insulator transi-

tion.15–18) For SC at half filling, although the anisotropic

triangular lattices have often been studied,19) studies on the

present lattice are rare to our knowledge.

2.2 Historical background of wave functions

As a many-body trial wave function, the Jastrow type20) is

useful and has been often applied: � ¼ P�, where P

denotes a many-body correlation (Jastrow) factor composed

of projection operators, and � is a one-body wave function

usually given by a Slater determinant. For the Hubbard

model, more than four decades ago, Gutzwiller introduced

the celebrated onsite projection,11)

PG ¼
Y

j

1� ð1� gÞnj"nj#
� �

; ð3Þ

which has primary importance for arbitrary parameters in the

Hubbard model. Although the Gutzwiller wave function

(GWF), �FS

G
¼ PG�F (�F: Fermi sea), looks simple, it is

generally difficult to accurately calculate expectation values

using it. Hence, a mean-field-type approximation [now

called a Gutzwiller approximation (GA)] was introduced by

Gutzwiller himself,21) and was used and extended by many

researchers for the following two decades.22) However,

variation theory loses its various advantages when additional

approximations such as GA are applied, and consequently it

becomes difficult to improve the wave function. To break

this deadlock, VMC methods23) have been applied to this

problem;24,25) thereby and by subsequent exact analytic

treatment in one dimension,26) the precise behavior of �FS

G

was clarified for the first time. Although PG is indispensable

for treating the Hubbard model, its independent use leads

to the following physically unsatisfactory results: (1) The

momentum distribution function nðkÞ tends to be an

increasing function of jkj, (2) 2kF anomalies in the spin

[charge density] structure factor SðqÞ [NðqÞ] cannot be

properly represented, and (3) a Mott transition cannot be

described, in addition to the problem of a considerably

high variational energy.

Although the electron–electron interaction in the Hubbard

model is limited to within a single site, its effect reaches

distant sites. Therefore, to overcome the above shortcomings

of PG, one needs to add intersite correlation (long-range

Jastrow) factors. In cases of low electron density, distance-

dependent long-range Jastrow factors are useful.27) On

the other hand, at half filling, the short-range part of the

Jastrow factor is predominant owing to the screening effect.

Castellani et al.28) derived an effective Hamiltonian of the

Hubbard model, taking account of both spin and charge

degrees of freedom. In their effective Hamiltonian, an

exchange term between a doubly occupied site (doublon)

and an empty site (holon) appears, indicating that a doublon–

holon correlation is inherent in the Hubbard model. Kaplan

et al.29) actually showed by studying one-dimensional (1D)

small clusters that the binding of a doublon to a holon is

important for large U=t to reduce the energy at half filling.

Using exact diagonalization, Yokoyama and Shiba27) studied

the ground-state wave function of Hubbard rings at half

filling, at which the ground state is known to be insulating for

U=t > 0.30) They found that, for large U=t, the magnitudes of

the coefficients of bases with one doublon (and one holon)

decrease exponentially as a function of the distance between

doublon and holon. This means that a doublon is bound to a

holon within the decay distance in an insulating state.

A simplified wave function that reflects the above

arguments is written as �Q ¼ PQPG�.27,29) Here, the

doublon–holon binding factor PQ is limited to the nearest-

neighbor part:

PQ ¼
Y

i

1� �Q�
i

� �

; ð4Þ

Q�
i ¼

Y

�

dið1� eiþ�Þ þ eið1� diþ�Þ
� �

; ð5Þ

where di ¼ ni"ni#, ei ¼ ð1� ni"Þð1� ni#Þ, and � varies over

all the nearest neighbors. A variational parameter � (0 �
� � 1) controls the strength of doublon–holon binding in the

nearest-neighbor sites; as � increases, a doublon tends to

adhere to a holon, and for � ! 1, a doublon cannot leave a

holon, as shown in Fig. 2.

This Jastrow factor, PQPG, can also be derived naturally

from the strong-coupling expansion. It is known that the

GWF with g ¼ 0 is an extremely good trial state for the 1D

Heisenberg model,25,31) and that the Gutzwiller-type func-

tions, PG�AF and PG�BCS (�AF: Hartree–Fock-type AF

state; �BCS: dx2�y2 -wave BCS state), yield quantitatively

reasonable results for the 2D t–J model.32–34) These

favorable properties of the GWF for strong-coupling models

can be applied to the Hubbard model by considering a

canonical transformation, Ht�J � e
iS
HHube

�iS (t=U !
0),35) and similarly,
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h�GjHt�J j�Gi
h�Gj�Gi

�
h�Ge

iSjHHubje�iS
�Gi

h�Ge
iSje�iS�Gi

: ð6Þ

Thus, an improved wave function for the Hubbard model is

given by applying the strong-coupling expansion, e�iS, to a

Gutzwiller-type function �G (¼ PG�). Considering virtual

hopping processes in this expansion, as shown in Fig. 2, one

easily notices that the first-order terms of this expansion

roughly correspond to PQ�G. In addition, it was found that a

more direct form of e
�iS

�G yields improved results36)

similar to those of PQ�G, mentioned in the following

sections.

In the early VMC study of the projected Fermi sea, �FS

Q ¼
PQPG�F, for the 1D and 2D square lattices, Yokoyama

and Shiba27) concluded that �FS

Q corrects the shortcomings

(1) and (2), mentioned above, of the GWF, but a Mott

transition does not arise, even in �
FS

Q . Subsequently, Millis

and Coppersmith37) also concluded, by calculating the zero-

frequency part of the optical conductivity using a VMC

technique, that a Mott transition cannot be described in

terms of this type of wave function. However, as we have

repeatedly explained in previous papers,6,38) these early

studies were not sufficiently thorough or careful to arrive at

the correct conclusion that the doublon–holon binding factor

PQ is essential for describing a Mott transition. Actually, the

existence of Mott transitions has been confirmed using PQ

for various systems,39) such as the square lattice,8,38) the

anisotropic triangular lattice,6) the kagomé lattice,40) the

checker-board lattice,41) and a degenerate Hubbard model on

the square lattice.42)

2.3 Wave functions and VMC conditions

In this paper, we continue to study the Mott transition

induced by PQ. Considering the lattice structure shown in

Fig. 1(a), we introduce into PQ the effect of doublon–holon

binding between diagonal-neighbor sites �0 [r ¼ ð�x;�yÞ],
in addition to that of the nearest neighbors, � [r ¼ ð�x; 0Þ
and ð0;�yÞ]:

PQ ¼
Y

i

�

1� �Q�
i

��

1� �0Q�0

i

�

; ð7Þ

Q
�ð�0Þ
i ¼

Y

�ð�0Þ
dið1� eiþ�ð�0ÞÞ þ eið1� diþ�ð�0ÞÞ
� �

; ð8Þ

in which � (�0) varies over all the adjacent sites in the bond

directions of t (t0). The weight assignment of the correlation

factors P ¼ PQPG is explained in Fig. 2. For the pure

square lattice (t0 ¼ 0), we use eq. (4) instead of eq. (7) for

simplicity, because we can confirm that the effect of �0 is

negligible, even quantitatively, for t0 ¼ 0. The wave function

we deal with in this paper is

�Q ¼ PQPG�: ð9Þ

As a one-body part �, we primarily study a fixed-density

BCS state:43)

�d ¼
X

k

akc
y
k"c

y
�k#

� �Ne=2

j0i; ð10Þ

ak ¼
vk

uk
¼

�k

"k � � þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð"k � �Þ2 þ�2

k

q ; ð11Þ

where � is a variational parameter that is reduced to the

chemical potential for U=t ! 0. Since we know that, at half

filling, the simple dx2�y2 wave is the most stable among the

various gap shapes,32,33,44) here we exclusively consider the

d-wave gap:

�k ¼ �dðcos kx � cos kyÞ: ð12Þ

Note that although the variational parameter �d indicates the

magnitude of the d-wave gap, a state (�d
Q ¼ P�d) with

finite �d does not necessarily mean a SC state.45) We fix the

value of t0 in "k in the wave function [eq. (11)] at the same

value as that in the Hamiltonian, because the renormaliza-

tion of "k
46) is not significant when the system is con-

ductive,6) and � compensates this effect to some extent in the

insulating regime, as we will see later. For �d ¼ 0, �d is

reduced to �F, which is explained next.

As a reference state, we also study the Fermi sea,

�F ¼
Y

k<kF ;�

cyk�j0i: ð13Þ

A complication is that �FS

Q (¼ PQPG�FS) does not merely

represent a normal state; �
FS

Q also undergoes a Mott

transition, as we found for the attractive Hubbard model.38)

The results of the attractive model for the symmetric case

(t0 ¼ 0 and n ¼ 1) can be exactly mapped to those of the

repulsive model through a canonical transformation.47) As an

extension in this paper, we study the properties of �FS

Q for

asymmetric cases (t0 6¼ 0).

For the comparison made in §5 and §6, we consider an

ordinary mean-field solution �AF
48) for a one-body AF state

with a long-range order. In the trial AF state,

�
AF

Q ¼ PQPG�AF; ð14Þ

the AF gap �AF is optimized as a parameter, but t0 in "k is

fixed at the model value, similarly to that in �
d
Q.

Because our trial functions have at most five parameters to

be optimized [g, �, �0, �dðAFÞ, �], we have used a simple

version of optimization VMC methods,49) namely a line

minimization of one parameter with the others fixed.50) In

one round of iteration, every parameter is optimized once. In

most cases of optimization in this study, the parameters

converge within 2 or 3 rounds, after which we continue

the optimization process for another 15–20 rounds. The

optimized values of the parameters and energy are deter-

mined by averaging the results of these rounds after

convergence. Because each optimization procedure is

(a)    1 (b)   g (c)  g (1-μ) (d)  g (1-μ)(1-μ')

Fig. 2. (Color online) Weight assignment of Jastrow factor P ¼ PQPG

depending on local electron configuration. Each circle indicates a site. A

solid (open) circle indicates a doublon (holon). Thin arrows denote virtual

hopping processes in the strong-coupling expansion. (a) Configuration

with no doublon; a basis for U=t ! 1. (b) A doublon sits at a nearest

neighbor of a holon; a virtual state in the second order of strong-coupling

expansion in t=U. (c) A doublon sits at a diagonal neighbor of a holon; a

virtual state in the second (fourth) order in t0=U (t=U). (d) A doublon sits

at a farther site from a holon; a higher-order virtual state. For the case of

eq. (4), we set �0 ¼ 0.
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carried out with typically 2:5� 10
5 (L ¼ 10{14) samples,

preserving the acceptance ratio of 0.5, our data are practi-

cally the averages of 3–5 million samples. Thereby, the

accuracy in the total energy is markedly increased, typically

to the order of 10�4t. Because the convergence of optimi-

zation becomes very slow near phase transitions, particularly

continuous transitions, we carried out longer iterations (� 50

rounds) in such cases. With the optimized parameters thus

determined, physical quantities are calculated in different

VMC simulations with 2:5� 10
5 samples. We used lattices

of L� L sites (L ¼ 6{18, mainly 10–14) with periodic-

antiperiodic boundary conditions. Because the closed-shell

condition cannot be satisfied in a wide range of asymmetric

model parameters (t0 6¼ 0) at half filling, we are often

obliged to calculate with open shells.

Finally, we mention finite-size analysis in this study. In

the symmetric case (t0 ¼ 0), the system-size dependence of

various quantities is often monotonic, because the k-point

structure included in the Fermi surface becomes systematic

with increasing L. In contrast, in asymmetric cases, the

k-point structure is unique to each system size L and

frustration strength t0; therefore, the system-size dependence

becomes irregular, and the t0=t dependence is not smooth.

3. Mott Transitions in d-Wave State

In this section, we study Mott transitions arising in the

d-wave singlet state �
d
Q. In §3.1, we show that a first-order

transition occurs by observing hysteresis in the U=t

dependence of total energy. In §3.2, we identify this critical

behavior as a Mott transition without relevance to magnetic

orders by studying various quantities. In §3.3, we consider

the properties of this transition with reference to other

studies.

3.1 Total energy and hysteresis behavior

First, let us consider the behavior of the optimized total

energy per site, E. In the inset of Fig. 3, E=t for t0=t ¼ 0 is

plotted for a wide range of U=t and four system sizes (L). On

this scale, L dependence is imperceptible. One readily

notices a cusp at U=t � 6:5, where the data points of various

L are concentrated. In the main panel of Fig. 3, this cusp is

magnified. We have optimized the wave function succes-

sively, from both weak- and strong-correlation sides toward

this cusp. For the system with L ¼ 10, the optimized

energies from the two sides coincide, and E=t becomes a

smooth function of U=t. On the other hand, for larger

systems (L 	 12 in Fig. 3), the optimized values in the

weak-correlation side are not smoothly connected to those in

the strong-correlation side, and vice versa.51) At the cusp, all

optimized variational parameters have discontinuities, as

shown in Figs. 4(a)–4(e). Such hysteresis and discontinuities

indicate that a first-order phase transition occurs at the cusp

point (U ¼ Uc). In the following subsection, we identify this

transition as a Mott (conductor-to-nonmagnetic-insulator)

transition.

Next, we study the L dependence of the critical point. We

first note that it is essential to check the system-size

dependence when we consider critical phenomena, as we

have learned from the distinct behavior between L ¼ 10 and

L 	 12 in Fig. 3. As the system size increases (L 	 12), the

critical point shifts to a larger value of U=t (Fig. 3). This is

partly because a large system size is more advantageous to

conductive states, which have longer correlation lengths. For

t0=t ¼ 0, because the system-size dependence of E=t is fitted

well with quadratic curves of 1=Ns, the critical value for

L ¼ 1 can be estimated as Uc=t ¼ 7:0� 0:1 using the

method of least squares.

Here, we consider the t0=t dependence. As shown in

Fig. 4(f), the total energy E=t also has a cusp for finite t0=t.

The behavior of E=t near the cusps is magnified in Fig. 5 for

four values of t0=t and for L ¼ 12. For U < Uc, E=t is

significantly reduced as jt0=tj increases; this behavior is

common to the noninteracting case, in which the gain in Et0

exceeds the loss in Et [Et (Et0 ): the contribution from the t

(t0) term to hHkini]. In contrast, for U > Uc, E=t changes

only very slightly; we will return to this point in §3.3.

Consequently, as jt0=tj increases, the transition point shifts to

a larger value of U=t, particularly rapidly for large t0=t,

although the bandwidth remains constant, 8t, for 0 � t0=t �
0:5. This t0=t dependence of Uc=t can be verified from the

behavior of the parameters [Figs. 4(a)–4(e)].

In Fig. 6, we show the system-size dependence of E=t

near Uc=t for strongly frustrated cases (t0=t ¼ �0:4

and �0:5). Here, even the system as small as L ¼ 10

exhibits clear hysteresis. The critical value Uc=t tends to

increases monotonically as L increases, although the

extrapolation of Uc=t to L ¼ 1 is difficult using the present

data, because of the nonmonotonic system-size dependence,

as mentioned. However, we predict that Uc=t for L ¼ 1 is

only slightly larger than those for finite L, because the rate

of increase of Uc=t with respect to L is similar to that for

t0=t ¼ 0.

3.2 Confirmation of Mott transition

In this subsection, we confirm that the above transition is a

Mott transition by studying various quantities.

First, we consider the doublon–holon binding factor �,

which is a good indicator of the Mott transition. In Fig. 4(c),

6.2 6.4 6.6 6.8 7
-0.5

-0.49

-0.48

-0.47

-0.46

-0.45

U / t

E
 /

 t

L = 10

12

14

t' / t = 0

16

cond. insul.   L
  10
  12
  14
  16

0 10 20

-1.5

-1

-0.5

U / t

E / t

  L
 10
 12
 14
 16

Fig. 3. (Color online) Total energies of d-wave state for pure square

lattice (t0 ¼ 0) for four system sizes near critical points (Uc), indicated by

arrows. Hysteresis is observed for L ¼ 12 {16; the local minima for the

conductive (insulating) sides are denoted by open (solid) symbols. For

L ¼ 10, hysteresis is not observed using the present VMC calculations,

and the parameters vary continuously. The critical values are Uc=t ¼
6:54, 6.61, and 6.69 for L ¼ 12, 14, and 16, respectively. Inset: The

behavior of E=t over a wider range of U=t.
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the optimized value of � is plotted as a function of U=t. For

each t0=t and L, except for t0 ¼ 0 and L ¼ 10, � has a

discontinuity and suddenly increases at U ¼ Uc. Note that

for U < Uc, � primarily depends on t0=t and slightly on L in

relation to SC, as mentioned later, whereas for U > Uc, �

significantly increases as L increases, but is almost inde-

pendent of t0=t. Thus, in the strong-correlation side U > Uc,

� has a value close to 1,52) which means that almost all

doublons and holons are bound within nearest-neighbor

sites. This situation is shown in the snapshots taken in the

VMC sampling process (Fig. 7). On the weak-correlation

side of Uc [Fig. 7(a)], where � has a relatively small value,

doublons (negative charge carriers) are often isolated from

holons (positive charge carriers). Thus, charge can move

substantially, and the system is considered conductive. On

the other hand, for U > Uc [Fig. 7(b)], each doublon is, in

most cases, paired with a holon, in addition to there being a

decrease in the carrier number. It follows that free charged

particles rarely exist.

Second, we consider the doublon density,

d ¼
1

Ns

X

i

ni"ni# ¼
EU

U
; ð15Þ

which is regarded as the order parameter of Mott transi-

tions,28,53,54) by analogy with the particle density in gas–

liquid transitions. In eq. (15), EU ¼ hHinti=Ns. In the inset of

Fig. 8, d is plotted for four values of t0=t and for various

system sizes. As U=t increases, d decreases linearly from the

noninteracting value 0.25, but at U ¼ Uc, it suddenly drops

to a considerably smaller value, and then decreases slowly

for U > Uc. In the main panel of Fig. 8, the vicinity of the

critical point is magnified; the discontinuity of d at Uc is
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Fig. 4. (Color online) (a)–(e) Optimized variational parameters (at the global minima of E=t) for d-wave state near critical values Uc as function of U=t:
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clear for each case. This abrupt decrease in doublon density

can actually be verified in Fig. 7, where the number of

doublons is 24 (d ¼ 0:094) for U=t ¼ 6:25, and 9 (d ¼
0:035) for U=t ¼ 7:5, which is consistent with the values in

Fig. 8. Thus, the discontinuity of the doublon density at Uc

is similar to that of the change in particle density in gas–

liquid transitions.

Third, the behavior of the momentum distribution func-

tion,

nðkÞ ¼
1

2Ns

X

k;�

hcyk�ck�i; ð16Þ

at the Fermi surface is another good indicator of a Mott

transition. In Fig. 9, we show the U=t dependence of

nðkÞ measured with the optimized parameters along the

path �ð0; 0Þ–Xð�; 0Þ–Mð�; �Þ–� in the Brillouin zone for

t0=t ¼ 0. Because the present trial state is a projected d-

wave, there is a node in the gap function in the �–M

direction, and nðkÞ has a discontinuity at the Fermi surface,

kF, in this direction if the system is metallic or SC. As shown

in Fig. 9, the discontinuity at kF is clear for U < Uc,

whereas, at U ¼ Uc, the behavior of nðkÞ abruptly changes,

and becomes a smooth function for U > Uc also in the �–M

direction; that is, the Fermi surface disappears. Thus,

metallic properties are abruptly lost at U ¼ Uc, even in the

nodal direction of the dx2�y2 wave.

To consider this behavior quantitatively, we employ the

quasi-particle renormalization factor Z, which roughly

corresponds to the inverse of effective mass, unless the

k-dependent renormalization of self energy is severe. We

estimated Z from the magnitude of the jump in nðkÞ at k ¼
kF in the nodal direction, and plotted it in Fig. 10 for four

values of t0=t.55) For all the values of t0=t, Z decreases slowly

for U < Uc, whereas at U ¼ Uc, Z suddenly vanishes with a

sizable discontinuity, reflecting the first-order character of

the transition. The system-size dependence of Z is very

small, except for minor differences near Uc. The behavior of
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Fig. 6. (Color online) Total energies for strongly frustrated cases (t0=t ¼
�0:4 and �0:5) near critical points, indicated by arrows, for three system

sizes. Hysteresis is observed for every case; the conductive and insulating

cases are denoted by the same symbols. The critical values are Uc=t ¼
6:64, 6.70, and 6.78 for L ¼ 10, 12, and 14, respectively, for t0=t ¼ �0:4,

and similarly, Uc=t ¼ 6:93, 7.00, and 7.10 for t0=t ¼ �0:5.
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Fig. 7. (Color online) Snapshots (typical electron configurations) taken in

VMC sampling process of d-wave state for t0=t ¼ 0 and L ¼ 16 (Uc=t ¼
6:69). (a) U=t ¼ 6:25 (� ¼ 0:30), slightly less than Uc, and (b) U=t ¼
7:50 (� ¼ 0:85), slightly greater than Uc. Closed and open squares,

upward and downward triangles denote doublons, holons, "- and #-spins,
respectively.
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Z strongly suggests that the effective electron mass diverges

for U > Uc.

Finally, let us consider the charge structure factor,

NðqÞ ¼
1

Ns

X

i; j

e
iq
ðRi�RjÞ ninj

	 


� n2; ð17Þ

with ni ¼ ni" þ ni#. Within variation theory, it is known that

NðqÞ / jqj for jqj ! 0 if the state does not have a gap in the

charge degree of freedom, whereas NðqÞ / q2 if a charge

gap opens. In Fig. 11, we show the U=t dependence of NðqÞ
for t0=t ¼ �0:25 and �0:4. For U < Uc, the behavior of

NðqÞ near the � point seems linear in jqj for both values of

t0=t. The behavior of NðqÞ abruptly changes at the critical

point, and seemingly becomes quadratic in jqj for U > Uc.

Although it is not easy to definitely determine the power of

NðqÞ for the small systems used here, we find that the size

dependence is different for U < Uc and for U > Uc. As

shown in Fig. 12, the behavior of NðqÞ near the � point for

U < Uc approaches the analytic curve of U=t ¼ 0 (L ¼ 1)

as L increases. Conversely, for U > Uc, the slope of NðqÞ for
jqj ! 0 becomes smaller as L increases, suggesting the

quadratic behavior of NðqÞ. It follows that �d
Q is gapless in

the charge sector and conductive for U < Uc, but a charge

gap probably opens for U > Uc and �
d
Q becomes insulating.
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Because of the behavior of all the quantities discussed

above, it is appropriate to judge that a first-order Mott

transition occurs in the d-wave singlet state at U ¼ Uc for

the arbitrary values of t0=t considered.

3.3 Properties of Mott transitions

Most of the properties of the Mott transition in �
d
Q in the

present model, eq. (1), are shared with those studied in the

preceding report for the anisotropic triangular lattice.6) In

such cases, we avoid repeating detailed explanations, and

only give a brief summary.

(1) In contrast to the behavior in Brinkman–Rice theory,53)

in which electrons cease moving and doublons com-

pletely vanish in the insulating regime, the present

VMC result exhibits energy reduction broadly propor-

tional to �t2=U ð¼ �J=4Þ for U > Uc, as shown in

Fig. 13. Thus, as we argued in a previous letter,8) the

results of strong-coupling theories (t–J-type models)

are qualitatively useful for U > Uc; the value of Uc is

roughly equal to the bandwidth.33)

(2) As the frustration t0=t increases, the character of the

first-order phase transition becomes notable. For

example, as t0=t increases, the hysteresis in E=t is

observed in smaller systems, and the magnitude of

discontinuity at U ¼ Uc for the variational parameters

and quantities such as d and Z increases.

(3) In the insulating regime, �d
Q tends to exhibit gaplike

behavior in the spin structure factor,

SðqÞ ¼
1

Ns

X

ij

e
iq
ðRi�RjÞ SziS

z
j

D E

; ð18Þ

for small jqj. As seen in the inset of Fig. 14, for t0 ¼ 0,

SðqÞ is a linear function of jqj at U=t ¼ 0; as U=t

increases, SðqÞ becomes a quadratic function of jqj,
suggesting that a SC gap opens and becomes large, as

will be mentioned in §5. For U > Uc, the quadratic

behavior of SðqÞ becomes clearer; it is possible that a

spin gap opens in the insulating regime. As discussed

later, the frustration makes no difference at this point.

This gaplike behavior is in contrast to the case of

�
FS

Q , as will be argued in §4. Strictly, however, the

insulating state represented by �d
Q can be gapless in the

spin sector, in the same manner that the d-wave SC is

gapless in the node direction. To settle this point,

further studies are necessary.

(4) In the preceding study for the anisotropic triangular

lattice,6) a band renormalization effect46) is taken into

account by optimizing t0 in �
d
Q as a variational

parameter, independently of t0 given in the Hamilto-

nian. In the insulating regime, the effective t0 is

significantly reduced to an almost nonfrustrated value,

namely t0=t � 0. Thereby, the Fermi surface almost

recovers the nesting condition for the square lattice,

leading to highly developed short-range AF correla-

tion. In the trial states studied here, the band

renormalization effect is not included, but the various

results are quantitatively similar to those of the

previous study, and the AF correlation considerably

increases for U > Uc, as shown in Figs. 14 and 25.

This result is mainly caused by the behavior of the

chemical potential � [Fig. 4(e)],56) which changes its

sign for U > Uc so as to recover the nesting condition,

instead of by the band renormalization.

(5) In Table I, we show the optimized parameters in the

insulating regime (U > Uc) for various t
0=t. Note that

the parameters vary only very slightly, except for �=t;

the optimized �
d
Q is almost unchanged with varying

t0=t. In Table II, we list the total energy and energy

components for U > Uc, calculated using the opti-

mized �
d
Q. E is again almost independent of t0=t,

because Et0 makes a very slight contribution, even for

large t0=t (see also Table III). As shown in the final

column of Table II, the AF spin correlation retains a

considerably large value for large t0=t. This indicates

that �
d
Q is stabilized by preserving the nesting

condition for the square lattice; in other words, the

quasi-Fermi surface is retained at the gap maxima

ð�; 0Þ and ð0; �Þ, at the cost of the energy reduction due
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to the diagonal hopping or frustration. Thus, the AF

correlation is a key factor for stabilizing �
d
Q.

Regarding the AF correlation, it is known for the SC states

with d-type symmetries that the gap maxima overlap with

the hot spot, namely, the intersection of the Fermi surface

and the magnetic Brillouin zone boundary.44) Thus, it is

possible that the shape of the gap function �k deviates from

that of the simple d-wave, particularly for large t0=t. This is

an interesting future problem.

4. Mott Transitions in Projected Fermi Sea

In this section, we discuss the Mott transition in �
FS

Q as a

continuation of the previous studies for t0=t ¼ 0.8,38) This

transition has features different from those of �d
Q, although

�
FS

Q always has a higher energy than �
d
Q within the present

model. In §4.1, we make a careful analysis for t0 ¼ 0.

In §4.2, we consider the t0=t dependence, and contrast the

properties in �
FS

Q with those in �
d
Q.

4.1 Case for t0 ¼ 0

The existence of a Mott transition in �
FS

Q for t0=t ¼ 0 was

first pointed out in ref. 38, in which the critical value was

estimated as Uc=t � 8:8 by analyzing the cusplike behavior

in energy components and the discontinuity in nðkÞ for

L ¼ 10 and 12. For these sizes, the transition appeared

continuous. Certainly, we can find cusplike behavior in

Fig. 13 [or in the main panel of Fig. 15(d)], where the U=t

dependence of total energy is shown. Because the system-

size dependence is considerably large near the cusp, we

show the magnification in the vicinity of the cusp in the inset

of Fig. 15(d). For L � 14, E=t is a smooth function of U=t

and has a unique optimized value, whereas for L ¼ 16 and

18, E=t exhibits hysteresis or double-minimum behavior

near the critical point, Uc=t ¼ 8:59 and 8.73, respectively,

as in the case of �
d
Q studied in the preceding section.

Correspondingly, the two variational parameters, g and �,

exhibit discontinuities at Uc for L 	 16, as shown in

Figs. 15(a) and 15(b), although their magnitudes are small

compared with those of �
d
Q in Figs. 4(a) and 4(c). Thus,

this transition, at least for t0=t ¼ 0, is ascertained to be of the

first order.

In Fig. 16, the doublon density is plotted as a function of

U=t. At the critical point Uc, the order parameter d of Mott

transitions has a discontinuity for L 	 16, and suddenly

drops to a small value. Simultaneously, the doublon–holon

binding parameter � becomes large and approaches 1, as

shown in Fig. 15(b). These results again suggest that this

transition is a Mott transition with the doublon–holon

binding mechanism similar to that of �
d
Q. Actually, we

have verified that the feature of electron configurations is

considerably different for U < Uc and for U > Uc (not

shown), as in Fig. 7.

The transition is corroborated by the behavior of nðkÞ and
NðqÞ, in the same way as for the d-wave state. In Fig. 17,

nðkÞ [eq. (16)] is plotted along the path �–X–M–� for

various values of U=t. Because �
FS

Q is metallic for U < Uc,

the Fermi surface can be defined in any direction; in this

path, kF points are located at the X point and at the midpoint

of the �–M segment. For U < Uc, the discontinuities are

apparent at both points of kF, whereas for U > Uc, the

discontinuities vanish, indicating a gap opening. In Fig. 18,

we show the magnitude of discontinuity, Z, measured at the

X point, because the extrapolation error is small. As U=t

increases, the quasi-particle renormalization factor, Z,

monotonically decreases, and vanishes at Uc; the effective

mass diverges, and �
FS

Q becomes insulating. For L � 14, Z

is continuous near Uc, as reported in Fig. 17 in ref. 38,

whereas Z has an appreciable discontinuity at Uc for L 	 16

and probably for L ¼ 1. Incidentally, the discontinuity in Z

in �
FS

Q is smaller than that in �
d
Q (Fig. 10); the character of

the first-order transition is less conspicuous in �
FS

Q . In

contrast, in dynamical mean-field theory for the hypercubic

lattice,57) Z continuously decreases and vanishes at U ¼ Uc

without a discontinuity.

In Fig. 19, NðqÞ [eq. (17)] is plotted for various values of

U=t. The behavior for small jqj is basically the same as that

for �d
Q [Fig. 11], namely, NðqÞ / jqj for U < Uc, whereas

Table III. Comparison of ratio � ¼ Et0=Et among the different phases

indicated in the brackets for the d-wave state and the projected Fermi sea.

The abbreviations ‘‘ins.’’ and ‘‘wSC’’ denote insulating and weak SC,

respectively. The systems of L ¼ 14 is used. Values of � are shown as

percentages.

U=t
� jt0=tj

0 6.25 7.5 13

0.25 3.3 1.4 (SC) 0.12 (ins.) —
�

d
Q

0.4 8.8 7.6 (wSC) 0.28 (ins.) —

0.25 3.3 3.3 (metal) 3.2 (metal) 0.4 (ins.)
�

FS

Q
0.4 8.8 8.8 (metal) 8.5 (metal) 1.1 (ins.)

Table I. Optimized variational parameters of two wave functions, �d
Q and

�
FS

Q , studied in §4, in respective insulating regimes (U > Uc) for various

t0=t. The final digits may include some errors. L ¼ 14.

� jt0=tj g �d=t � �0 �=t

�
d
Q 0.0 0.266 1.291 0.831 — 0.0

(U ¼ 7:5t) 0.25 0.254 1.339 0.840 �0.0677 0.200

0.3 0.254 1.335 0.837 �0.0665 0.230

0.4 0.254 1.349 0.837 �0.0690 0.279

0.5 0.253 1.355 0.832 �0.0688 0.317

�
FS

Q 0.0 0.140 — 0.923 — —

(U ¼ 12t) 0.25 0.119 — 0.904 0.0776 —

0.4 0.121 — 0.829 0.1317 —

Table II. Three energy components, total energy and spin structure factor

at AF wave number, calculated using �d
Q and �

FS

Q in respective insulating

regimes (U > Uc) for various t
0=t. L ¼ 14. The final digits may include

some errors. Because each energy component and E=t are averaged

independently, E=t does not precisely coincide with the sum of its

components.

� jt0=tj Et=t Et0=t EU=t E=t SðGÞ

�
d
Q 0.0 �0.6922 0.0 0.2548 �0.4384 7.54

(U ¼ 7:5t) 0.25 �0.6888 �0.0008 0.2533 �0.4375 7.28

0.3 �0.6899 �0.0012 0.2532 �0.4370 7.27

0.4 �0.6848 �0.0019 0.2529 �0.4357 7.06

0.5 �0.6829 �0.0033 0.2522 �0.4340 6.90

�
FS

Q 0.0 �0.4383 0.0 0.1809 �0.2575 15.93

(U ¼ 12t) 0.25 �0.3455 �0.0018 0.1576 �0.1899 3.81

0.4 �0.3276 �0.0053 0.1573 �0.1752 2.09
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NðqÞ tends to be proportional to q2 for U > Uc. This follows

that a charge gap opens for U > Uc.

From all the above results, we regard this transition as a

Mott (metal-to-nonmagnetic-insulator) transition, which is

caused by the doublon–holon binding mechanism, basically

in the same way as in �
d
Q.

Finally, we consider the spin degree of freedom. In

Fig. 20, SðqÞ [eq. (18)] is plotted for various values of U=t.

As U=t increases, the AF correlation SðGÞ increases, and

increases abruptly near the critical point. Although the

behavior of SðqÞ is, as a whole, similar to that of �
d
Q

(Fig. 14), SðGÞ is twice as large for �
FS

Q . However, the

sublattice magnetization,

m ¼
1

Ns

X

i

e
iG
rihSzi i

�

�

�

�

�

�

�

�

�

�

; ð19Þ

remains zero within the statistical fluctuation. Thus, a long-

range order is not realized, although the AF correlation is

considerably enhanced in the insulating regime. Note that

the behavior of SðqÞ for jqj ! 0 is linear in jqj for arbitrary
U=t, as shown in the insets of Fig. 20, in contrast to the case

of �d
Q (inset of Fig. 14). This strongly suggests that the spin

gap is absent. Thus, �
FS

Q for U > Uc represents a non-

magnetic insulator without a spin gap, which is considered to

be realized in �-(ET)2Cu2(CN)3.
58)

4.2 Effect of frustration

First, we consider the effect of frustration on the proper-

ties of the transition. In Figs. 15(a)–15(c), we show the

optimized variational parameters for t0=t ¼ �0:25 and �0:4,

as well as t0 ¼ 0, for systems up to L ¼ 16. Let us consider
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FS
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correlation (Gutzwiller) factor. (b) Doublon–holon binding factor between nearest-neighbor sites. The insets in (a) and (b) are magnifications near Uc
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all the main panels. In (c), we add the data of �FS

Q including �0 for t0=t ¼ 0. Although �0 has a finite value in the metallic region, its effect is almost
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the doublon–holon binding parameter � [Fig. 15(b)] as a

typical parameter. For small systems (e.g., L ¼ 10), � is a

smoother ‘‘S’’-shaped function of U=t than that for t0 ¼ 0. As

the system size increases, � abruptly exhibits semicritical

behavior at a slightly larger U=t than that for t0 ¼ 0 [Uc=t �
10:95 (11.45) for t0=t ¼ �0:25 (�0:4) for L ¼ 16]. In

contrast to the case of t0 ¼ 0, the cases of t0=t ¼ �0:25

and �0:4 do not indicate a first-order-transition-like dis-

continuity or hysteresis, even for L ¼ 16. In comparing

the results among the three values of t0=t, we notice that

the critical behavior tends to be more continuous as the

frustration becomes strong. We do not consider larger

systems in this work, because the statistical fluctuation

around the critical points increases rapidly as L increases.

However, we assume that this size-dependent critical

behavior is a sign of a first-order transition.

These features can be seen in the other variational

parameters [Figs. 15(a) and 15(c)], total energy [Fig. 15(d)]

doublon density (Fig. 16) and quasi-particle renormalization

factor (Fig. 18). The feature that the critical properties tend

to become continuous as t0=t increases is opposite to that of

�
d
Q studied in §3, but similar to that of the path-integral-

renormalization-group approach.17)

Next, we consider the effect of frustration on the

insulating state. As shown in Table I, when t0=t varies, the

optimized parameters, namely, the wave function, appreci-

ably changes, in contrast to that of �
d
Q. Accordingly, the

physical quantities with respect to �
FS

Q vary with t0=t, as

shown in Table II. For energy, a notable point is that the

contribution of Et0 is still strongly suppressed in �
FS

Q ,

similarly to that for �d
Q. To consider quantitatively how Et0

behaves when U=t varies, we list the ratio � � Et0=Et in the

different phases in Table III. � almost maintains its value of

the noninteracting case (U ¼ 0) in the metallic phase, but in

the insulating phase, � drops to a very small value, although

not as small as in �
d
Q. This feature is affected by �0. As seen

in Fig. 15(c), �0 abruptly decreases at Uc, indicating that the

doublon–holon binding in the diagonal direction, which
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Brillouin zone. Data for three values of t0=t and various system sizes are

plotted as a function of U=t. The tails for U > Uc are mainly caused by

finite-sized effects.
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assists local diagonal hopping for large U=t, also becomes

less advantageous for U > Uc in �
FS

Q . The decrease in �0 is

anticipated to enhance AF correlation, mentioned below.

Returning to Table II, we find that the AF spin correlation

SðGÞ markedly increases for t0=t ¼ 0, but abruptly decreases

as jt0=tj increases, in sharp contrast with that of �
d
Q. To

elucidate the situation, we plot SðqÞ for t0=t ¼ �0:25 and

�0:4 in Figs. 21(a) and 21(b), respectively (cf. also Fig. 20

for t0 ¼ 0). Although the magnitude of SðGÞ abruptly

decreases as jt0=tj increases from 0 to 0.25, the peak position

of SðqÞ remains at q ¼ G. For t0=t ¼ �0:4, however, in

addition to the successive decrease in magnitude, the peak of

SðqÞ moves to incommensurate wave numbers near the M

point.

Thus, the effect of frustration is explicitly reflected in

physical quantities estimated in the insulating state of �FS

Q .

5. dx2�y2 -Wave Superconductivity

In this section, we study the properties of SC arising in the

d-wave singlet state �
d
Q. In §5.1, we deduce the area where

SC appears in the t0–U plane by distinguishing, in the

condensation energy, between the contributions from a SC

gap and from an insulating gap. In §5.2, we confirm the

appearance of SC by directly observing the d-wave pairing

correlation function. In §5.3, we consider the origin of

this SC.

5.1 Condensation energy

First, to determine the stability of the d-wave singlet state

�
d
Q, we consider its condensation energy given by

�E ¼ Eð�d
QÞ � Eð�F

QÞ; ð20Þ

where Eð�Þ denotes the optimized variational energy per site

with respect to �. In Fig. 22(a), �E=t for various t0=t is

plotted as a function of U=t; in Fig. 22(b), the region near

the Mott critical points (Uc=t) is magnified.

Because the behavior of �E depends on the value of t0=t,

we first consider the weakly frustrated cases (t0=t . 0:3). As

pointed out in ref. 8, for small values of U=t (. 5), �E=t is

extremely small; at intermediate values of U (¼ Uonset �
5t{6t),�E=t starts to increase slowly at first, then abruptly at

the Mott critical value Uc of �
d
Q, where, in some cases, we

can observe a mild cusp in Fig. 22(b). As U=t increases

further, �E=t has a maximum and then slowly decreases.

We are now aware (§3) that, for U > Uc, �
d
Q becomes an

insulating state. Hence, the marked increase in �E in this

regime is considered to originate from the insulating d-wave

gap.45) Consequently, the region where substantial energy

reduction occurs owing to a SC gap is restricted to

Uonset . U < Uc. This idea is supported by the behavior of

the d-wave gap parameter �=t, which exhibits an appreci-

able increase for the corresponding values of U=t and t0=t, as

shown in Fig. 4(b). Incidentally, the doublon–holon binding

parameter � increases very similarly to �=t [Fig. 4(c)],

suggesting that this binding plays an active role in the

d-wave pairing in the nearest-neighbor sites.

Next, we proceed to the strongly frustrated cases

(t0=t & 0:4). A major feature of �E, different from that in

the weakly frustrated case, is that there is no substantial

increase for Uonset . U < Uc. As seen in Fig. 22(b), we

cannot determine Uonset for t
0=t ¼ �0:4 and �0:5, except for

a special case, t0=t ¼ �0:4 and L ¼ 10.59) Correspondingly,

the increase in the d-wave gap �=t [Fig. 4(b)] is firmly

suppressed in the conductive region (U < Uc), compared

with those in the weakly frustrated cases. The behavior of �

[Fig. 4(c)] again follows that of �=t. Thus, SC, if there is

any, is expected to be weak in this regime.
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Note that the value of U=t at the maximum of �E=t in the

insulating regime approximately corresponds to the Mott

critical point of �
FS

Q , UFS

c
=t, considered in §4. UFS

c
=t also

corresponds to the crossover value, at which the character of

SC changes from the interaction-energy origin to the kinetic-

energy origin.8)

5.2 Pair correlation function

To directly confirm the appearance of dx2�y2 -wave SC, the

d-wave nearest-neighbor pair correlation function PdðrÞ is

convenient for the present approach:60)

PdðrÞ ¼
1

Ns

X

i

X

�;�0¼x̂x;ŷy

ð�1Þ1�	ð�;�0Þ

� �
y
�ðRiÞ��0 ðRi þ rÞ

	 


; ð21Þ

where x̂x and ŷy denote the lattice vectors in the x- and y-

directions, respectively, and �
y
�ðRiÞ is the creation operator

of a nearest-neighbor singlet,

�
y
�ðRiÞ ¼ ðcyi"c

y
iþ�# þ c

y
iþ�"c

y
i#Þ=

ffiffiffi

2

p
: ð22Þ

If PdðrÞ has a finite value for jrj ! 1, off-diagonal long-

range order exists. For finite systems, however, we have to

appropriately determine long-distance values of PdðrÞ,
particularly, in the cases of small U=t, where the correlation

length is long. In Fig. 23, PdðrÞ is plotted for two values of

t0=t. Although PdðrÞ for large jrj should vanish for U=t ¼ 0,

spikes of sizable magnitude appear near r ¼ ðL=2;L=2Þ
[ð0; L=2Þ] for t0=t ¼ 0 [�0:4] for this system size.61)

Furthermore, a trace of this spike structure remains up to

fairly large values of U=t. Thus, for small U=t, we should

choose PdðrÞ which does not have such peculiar finite-sized

effects. Fortunately, we found that, in the noninteracting

cases, the magnitude of jPdðrÞj for r ¼ ðL=2� 1;L=2Þ,
which is almost the farthermost point, is very small (less

than 10
�4) for arbitrary values of t0=t and L. Hence, we

employ Pd½ðL=2� 1;L=2Þ� as the large-jrj value, P1
d , for

small U=t, namely, 0 � U � Umax, with Umax being the

value at which PdðrÞ becomes maximum. For the strong-

correlation regime (U > Umax), PdðrÞ becomes almost

constant for jrj 	 3,62,63) as shown in Fig. 23. Hence, in

this regime, we adopt the average of PdðrÞ for jrj 	 3 as P1
d .

In Figs. 24(a) and 24(b), P1
d thus obtained is plotted as a

function of U=t. In the weakly correlated regime (U=t . 4),

the increase in P1
d is small, irrespective of the value of t0=t.

For weakly frustrated cases (jt0=tj . 0:3), P1
d starts to

increases appreciably at U � Uonset as U=t increases, has a

peak at U=t ¼ 6{6:25, and then abruptly decreases at the

Mott critical point U ¼ Uc. The system-size dependence of

P1
d near the peak is weak for L 	 12. Thus, in these cases,

robust d-wave SC certainly occurs for Uonset . U < Uc. On

the other hand, for strongly frustrated cases [jt0=tj & 0:4 in

Fig. 24(b)], no sizable increase in P1
d is observed at the

value corresponding to Uonset. P
1
d slowly and monotonically

increases until it abruptly drops at U ¼ Uc.
59) Moreover, the

system-size dependence is very large. Eventually, robust d-

wave SC occurs in a limited area, Uonset . U < Uc and

jt0=tj . 0:3, within �
d
Q. A similar result has been recently

obtained using a fluctuation exchange approximation.64)

In Fig. 24(c), we show the magnification of P1
d near the

Mott critical points. In the insulating regime (U > Uc), P
1
d

becomes almost independent of t0=t, as mentioned in item (5)

in §3.3, decreases rapidly as the system size L increases, and

probably vanishes in the limit of L ! 1. Because the
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statistical fluctuation in the VMC data is much smaller in the

insulating regime than in the conductive regime, the data are

more reliable. The disappearance of P1
d for U > Uc is

expected in an insulating state.

5.3 Properties of superconductivity

First, we study the relation between d-wave SC and AF

correlation. In Figs. 14, 25(a), and 25(b), the U=t depen-

dence of SðqÞ in �
d
Q is shown for t0=t ¼ 0, �0:3, and �0:4,

respectively. As mentioned, robust SC arises for t0=t ¼ 0

and �0:3, but does not for t0=t ¼ �0:4 (Fig. 24). This is

supported by the small-jqj behavior of SðqÞ, shown in the

insets of Fig. 25. For t0=t ¼ �0:3, SðqÞ for small jqj tends to
be quadratic in jqj as U=t increases, indicating that a SC gap

develops, whereas for t0=t ¼ �0:4, SðqÞ remains almost

linear in jqj.
We now focus on the AF wave number G. For U ¼ 0,

SðqÞ has a pointed peak for t0 ¼ 0, a rounded peak for t0=t ¼
�0:3 and a flat top for �0:4, due to the frustration. For the

cases of t0=t ¼ 0 and �0:3, in which robust SC appears, SðGÞ
steadily increases as U=t increases, even in the conductive

regime, U < Uc [Figs. 14 and 25(a)]. In the strongly

frustrated case (t0=t ¼ �0:4), in which the SC correlation

does not develop, the magnitude of SðGÞ reaches no more

than half that for t0=t ¼ �0:3, although SðqÞ increases

slightly for U < Uc [Fig. 25(b)]. To consider the t0=t

dependence of SðqÞ explicitly, we plot SðqÞ for various

values of t0=t in Fig. 26(a) at U=t ¼ 6, near which P1
d has a

maximum (see Fig. 24). When t0=t is varied, the change in

SðqÞ is quantitatively insignificant, except near the M point.

As jt0=tj increases, SðGÞ sharply decreases, particularly at

t0=t � �0:3, and G is no longer a characteristic wave

number for jt0=tj & �0:45. In Fig. 26(b), we compare the

t0=t dependence of SðGÞ with that of P1
d . In respective

system sizes, when SðGÞ abruptly decreases for jt0=tj > 0:25,

P1
d similarly decreases. In Fig. 27, we show the U=t

dependence of SðGÞ. Although in every case SðGÞ generally
increases as U=t increases, the range of significant increase

[SðGÞ & 2] in the conductive regime roughly corresponds to

Uonset . U < Uc, and is accompanied by a marked increase

in P1
d (Fig. 24). We have confirmed, for a wide range

of model parameters, that whenever P1
d is appreciably

enhanced, SðqÞ has an evident peak at q ¼ G. This result

strongly supports the idea that the SC in this model is

induced by AF spin correlation. Incidentally, this mechanism

is reflected in the ratio of energy components. As shown in

Table III (U=t ¼ 6:25), when SC is weak (jt0=tj ¼ 0:4), � is

only slightly smaller than the noninteracting value, whereas

for robust SC (jt0=tj ¼ 0:25), � becomes less than half

the value for U ¼ 0; the diagonal hopping is considerably

suppressed.
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Next, we consider the energy gain in the SC transition.

The components of condensation energy are shown in

Fig. 28, that is, the differences in kinetic and interaction

energies between �
d
Q and �

FS

Q ; the actual expression is given

in the figure. Here, Ekin ¼ hHkini ¼ Et þ Et0 , and �Ekin þ
�EU ¼ �E ð	 0Þ [eq. (20)]. In the SC regime (U < Uc),

�Eint (�Ekin) is always positive (negative), regardless of the

value of t0=t. This indicates that the SC transition is induced

by the gain in the interaction energy at the expense of kinetic

energy. This feature smoothly continues to the weak-

coupling limit (U=t ! 0), and is common to conventional

BCS superconductors. Although the component of energy

gain switches to the kinetic energy at U ¼ 8t{11t, which

broadly corresponds to UFS

c
, SC is excluded for U > Uc.

The kinetic-energy-driven SC is not realized at half filling,

in contrast to that in the doped cases.8)

Incidentally, this behavior of �Ekin and �EU is not

restricted to the d-wave state, but is also found in some

order–disorder transitions. As an example, we plot, in

Fig. 29(b), �Ekin (¼ �Et) and �EU for the AF state �
AF

Q

[eq. (14)], which will be discussed in the next section,

for t0=t ¼ 0. The interaction part �EU makes a positive

contribution to �E for U=t . 8, whereas the kinetic part

�Et contributes for U=t & 7. Hence, the behavior is

qualitatively identical to that of �d
Q. Such behavior is also

observed in SC and CDW states for the two-dimensional

attractive Hubbard model.65)

6. Phase Diagram and Antiferromagnetism

Up to this point, we have not considered the competition

with the AF state, but it is a crucial problem when drawing a

phase diagram. We thus compare the stability between �
d
Q

and the AF-ordered state �
AF

Q [eq. (14)] into which we do

not introduce band renormalization parameters to equalize

the condition with �d
Q. Whenever �AF is finite at half filling,

�
AF

Q is insulating and has an AF long-range order; the

sublattice magnetization m [eq. (19)] behaves similarly to

�AF.

In Fig. 30, we show a phase diagram constructed as

follows. The boundary between AF-I and P-M (jt0=tj � 0:2)

is determined by the points where the extrapolated values of

�AF vanish. The boundary between AF-I and SC (or P-I) is

determined by the comparison of the total energies. The

boundary between P-I and P-M is determined by Uc=t for

the largest systems for each t0=t obtained in §3. The last

boundary is extended to t0=t ¼ 0 if �AF

Q is not allowed, as

indicated by a dashed line. It is unnecessary to fix the

boundary between SC and P-M, because the small magni-

tude of � often survives for extremely small U=t; instead,

we show Uonset=t with a dotted line.

For t0=t ¼ 0, a continuous metal-to-AF-insulator transition

occurs at U ¼ UAF

c
¼ 0,14) owing to the complete nesting

condition. This AF state is very stable and continues to the
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Heisenberg limit (U=t ! 1). Our result is consistent with

it, as shown in Fig. 29(a), where the condensation energy for

�
AF

Q is always larger than that for �
d
Q. The nature of the

continuous transition seems to be preserved in the region of

small jt0=tj, although UAF

c
becomes finite, and the tendency

toward a first-order transition gradually develops as jt0=tj
increases. Note that as the frustration becomes strong, �AF

Q

is rapidly destabilized, and surrenders to �
d
Q at t0 ¼ t0

c
�

�0:2t. Moreover, jt0
c
=tj tends to decrease as U=t increases;

this feature is consistent with the result that the AF state

has the largest range of n at U � W in a phase diagram in the

n–U plane.8) However, this tendency is not in accord with

the arguments of the J–J0 spin model, which is an effective

model of eq. (1) for large U=t. Various studies of the J–J0

model66) concluded that the AF order vanishes at much

larger values: J0=J � 0:4 (jt0=tj � 0:63).

We consider that this discrepancy is primarily due to the

choice of variational states: (1) �d
Q does not have a seed of

AF long-range order, although the AF short-range correla-

tion appreciably develops, and (2) in �
AF

Q , we have not

allowed for the band renormalization effect. These two

requirements are satisfied simultaneously by adopting a

coexisting state of AF and SC gaps,67,68) with a band

renormalization effect.46) In fact, we have performed VMC

calculations using such a wave function for the anisotropic

triangular lattice and found that the area of the AF phase

considerably expands.69) A similar result has been obtained

independently by Chen,70) and also for the checkerboard

lattice by Koga et al.41) Thus, it is urgent that the wave

function is improved in this line to refine the phase diagram.

7. Conclusions

7.1 Summary

Using an optimization variational Monte Carlo method,

we have studied the half-filled-band Hubbard model on

frustrated square lattices, given by eq. (1). Our primary aim

is to understand the mechanisms of the Mott transition and

of the dx2�y2 -wave SC arising in the Hubbard model. To this

end, we introduce an intersite correlation factor that controls

the binding between a doublon and a holon into the trial

functions: normal (Fermi sea), d-wave singlet and AF states.

We have succeeded in describing the d-wave SC and a Mott

transition simultaneously in a single approach. We itemize

our main findings:

(1) Within the d-wave singlet state, a first-order Mott

(conductor-to-nonmagnetic-insulator) transition occurs

at Uc, which is approximately the bandwidth, for

arbitrary t0=t. In the insulating regime, most doublon–

holon pairs are actually confined within the nearest-

neighbor sites, in contrast to the case in the conductive

regime. The critical Uc=t gradually increases as the

frustration becomes strong. This transition is not

directly related to a magnetic order.

(2) We have confirmed that in the projected Fermi sea, a

first-order Mott transition without relevance to magnet-

ism also arises at a larger U=t than the bandwidth for

arbitrary t0=t, although the state does not have the

lowest energy.

(3) The nonmagnetic insulating state (d-wave singlet state

for U > Uc) has a considerably low energy and a

strong short-range AF correlation. According to the

small-jqj behavior of SðqÞ, the d-wave state tends to

have short singlet bonds owing to the nearest-neighbor

pairing [eq. (12)], in contrast to the projected Fermi

sea, which clearly does not have a spin gap.

(4) Robust SC with dx2�y2-wave symmetry appears for

moderate values of U=t (� 6) and t0=t (0:2 .

jt0=tj . 0:35). This area is adjacent to both domains

of a Mott insulator and an AF long-range order. The

phase diagram obtained in this study is shown in

Fig. 30.

(5) By comparing the pair correlation function with SðqÞ, it
is found that robust SC is always accompanied by

appreciably enhanced short-range AF spin correlation,

which is weakened by the frustration and almost

vanishes for jt0=tj & 0:35. The SC transition is induced

by the gain in interaction energy; this mechanism is

identical to that in the weak-correlation limit as well

as that of conventional BCS superconductors.

(6) The AF long-range order prevailing in the weakly

frustrated cases (jt0=tj . 0:2) is rapidly destabilized

as jt0=tj increases if a band renormalization effect is

not introduced.

7.2 Further discussions

(1) In comparing the present study for the frustrated square

lattice [Fig. 1(a)] with the preceding study,6) in which

almost the same wave functions are applied to the

anisotropic triangular lattice [Fig. 1(b)], the results for

the two lattices are qualitatively identical, indicating

that the two types of frustration work similarly unless

jt0=tj is too large. However, the critical values with

respect to t0=t are approximately doubled for the latter

lattice; namely, the AF state becomes unstable at

approximately jt0=tj ¼ 0:2 for the former and 0.4 for

the latter, and the robust SC disappears at approx-

imately jt0=tj ¼ 0:35 for the former, and 0.8 for the

latter. This can be explained by the difference in the

number of frustrated bonds.

(2) Recently, using a VMC method with a two-body long-

range Jastrow factor for the square lattice (t0 ¼ 0),

Capello et al.71) found that a metal-to-insulator tran-

sition arises, similar to that in �
FS

Q , for example, in the

behavior of Z and d. The critical value of their function

is Uc=t � 8:5, which is close to 8:73 (L ¼ 18) in �
FS

Q .

Although their transition is regarded as continuous,

evidence of the first order is possibly be found by a

detailed analysis of larger systems. In their wave

function, no explicit (four-body) doublon–holon bind-

ing factor is introduced, but a short-range part of the

two-body Jastrow factor may substantially work as a

binding factor under the condition of strong electron

repulsion at half filling. It will be interesting to reveal

the relation between the two wave functions.

(3) In this paper, we have restricted the electron density to

half filling (n ¼ 1). When carriers are doped, unless the

doping rate j1� nj is too large, the doublon–holon-

binding effect remains significant, as we showed for

t0 ¼ 0 in the previous letter.8) The Mott transition at

half filling changes to a crossover from weakly to

strongly correlated regimes. As j1� nj increases, the
AF order is rapidly destabilized, and the SC phase
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expands to the region of large U=t, consistent with the

behavior of high-Tc cuprates. We will report a detailed

description of doped cases with the effect of frustration

elsewhere.
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