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ABSTRACT

Internal gravity waves generated in two-layer stratified shear flows over mountains are investigated here
using linear theory and numerical simulations. The impact on the gravity wave drag of wind profiles with
constant unidirectional or directional shear up to a certain height and zero shear above, with and without
critical levels, is evaluated. This kind of wind profile, which is more realistic than the constant shear
extending indefinitely assumed in many analytical studies, leads to important modifications in the drag
behavior due to wave reflection at the shear discontinuity and wave filtering by critical levels. In inviscid,
nonrotating, and hydrostatic conditions, linear theory predicts that the drag behaves asymmetrically for
backward and forward shear flows. These differences primarily depend on the fraction of wavenumbers that
pass through their critical level before they are reflected by the shear discontinuity. If this fraction is large,
the drag variation is not too different from that predicted for an unbounded shear layer, while if it is small
the differences are marked, with the drag being enhanced by a considerable factor at low Richardson
numbers (Ri). The drag may be further enhanced by nonlinear processes, but its qualitative variation for
relatively low Ri is essentially unchanged. However, nonlinear processes seem to interact constructively
with shear, so that the drag for a noninfinite but relatively high Ri is considerably larger than the drag
without any shear at all.

1. Introduction

Many studies on internal gravity waves, particularly
those that are analytical, consider a background state
where the velocity profile has a constant shear in the
whole domain, or where the shear is piecewise constant.
Examples are the seminal paper of Booker and
Bretherton (1967) on critical levels; the studies of
Klemp and Lilly (1975), Lindzen and Tung (1976),
Miranda and Valente (1997), and Wang and Lin (1999),
concerned with resonance, wave ducting, and down-
slope windstorms; Smith’s (1984, 1986) theory of lee
cyclogenesis; and Keller’s (1994) study about nonhy-
drostatic effects. Other examples include the investiga-
tions on inertia–gravity waves of Shen and Lin (1999),

Wurtele et al. (2000), Shutts (2001), and Öllers et al.
(2003), or those on pure gravity waves by Shutts (1995),
Grubišić and Smolarkiewicz (1997), Shutts and Gadian
(1999), Sharman and Wurtele (2004), and Teixeira et al.
(2005). This kind of wind profile is presumably used for
mathematical convenience, because the solution to the
linear gravity wave problem can then be expressed in
terms of elementary functions when there is no rota-
tion, and even if rotation is included the solution is still
analytical. Among the studies concerned with mountain
waves, the only ones where the impact of an infinite
shear layer on the surface drag is evaluated are those of
Smith (1986), Grubišić and Smolarkiewicz (1997), and
Teixeira et al. (2005). In other studies (e.g., Shutts 1995;
Shutts and Gadian 1999), the assumed Richardson
number (Ri) is too large for the drag to be affected. It
turns out that for a constant unidirectional shear span-
ning the whole atmosphere, the linear hydrostatic drag
decreases with Ri in a way that does not depend on the
sign of the shear, that is, whether the wind velocity
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increases or decreases with height (Grubišić and Smo-

larkiewicz 1997). On the other hand, at low Ri, discon-

tinuities in the shear lead to resonances that modulate

the drag with respect to the height where these discon-

tinuities occur (Miranda and Valente 1997; Teixeira et

al. 2005).

Now, a wind profile with constant shear that extends

indefinitely is clearly unrealistic, and not easily imple-

mented in numerical models. In such models, a wind

that varies linearly near the surface must necessarily be

bounded aloft, possibly with a transition to a constant

value or to zero above some height (Shutts and Gadian

1999). If this transition is sufficiently slow, or occurs

either inside a dissipation layer or above a critical level

at sufficiently high Ri, there is the possibility that down-

ward wave reflections may be precluded. However, ei-

ther for a forward unidirectional shear or when there is

incomplete wave absorption by critical levels in a di-

rectionally sheared flow, a shear discontinuity is likely

to have substantial effects on the surface drag. In nu-

merical simulations where backward unidirectional

shears have been used, it has been shown (Grubišić and

Smolarkiewicz 1997) that the drag behavior follows ex-

act linear predictions for an infinite shear layer quite

closely, and is in even better agreement at low Ri with

predictions obtained using a Wentzel–Kramers–

Brillouin (WKB) approximation, for low mountain

heights (Teixeira et al. 2004; Teixeira and Miranda

2004, 2006). While this behavior may be explained by

critical-level absorption at high Ri, it is not clear why it

holds for Ri as small as 1⁄4, where critical levels are in

fact essentially transparent to gravity waves. The rela-

tively small differences in drag behavior at low Ri that

do exist in this case between numerical and analytical

models have been attributed by Grubišić and Smolark-

iewicz (1997) to nonlinear processes. In the present

study, it is suggested that these differences may be due

to wave reflection at a shear discontinuity existing

above the critical level.

A finite shear layer, where the wind varies linearly

from the surface up to a certain height and then be-

comes constant, is considered. For this flow, which can

be viewed as the simplest possible realistic flow with

shear, the variation of the surface gravity wave drag on

2D and 3D circular mountains is investigated. The

model results, corroborated by numerical simulations,

show that the drag behavior for positive and negative

shears is highly asymmetric, unlike what is predicted by

linear theory for an infinite shear layer.

This paper is organized as follows: Section 2 intro-

duces the theoretical model of mountain waves in a

two-layer atmosphere. Section 3 presents the results,

beginning with a treatment of 2D unidirectional shear

flow and proceeding with 3D directional shear. A com-

parison of the analytical results with numerical simula-

tions and an evaluation of nonlinear effects are carried

out next. Finally, section 4 contains the concluding re-

marks.

2. Internal gravity waves in a two-layer

atmosphere

As will be seen later in this paper, the effects of a

two-layer atmosphere on the surface gravity wave drag

depend essentially on whether the gravity waves are

filtered by passage through a critical level before they

are reflected by a shear discontinuity or not. Thus, the

drag behavior is fundamentally different for unidirec-

tional or directional shear flows. In the first case, all

wavenumbers either have or do not have a single criti-

cal level (where the wind speed is zero) before they are

reflected, while in the second case some wavenumbers

pass through a critical level (where the wavenumber

and wind vectors are perpendicular) before they are

reflected, and others do not.

The behavior of unidirectional shear flows is particu-

larly easy to study in the case of flow over 2D moun-

tains. Understanding the behavior of directionally

sheared flows, on the other hand, requires using 3D

orography. For this reason, flow over a 2D ridge and a

circular mountain will be considered. When the invis-

cid, nonrotating, hydrostatic, linearized equations of

motion with the Boussinesq approximation are com-

bined, a single equation for the vertical velocity pertur-

bation results. The Fourier transform of the vertical

velocity perturbation ŵ satisfies

ŵ � �
N

2
�k

2 � l
2
�

�Uk � Vl�
2

ŵ � 0, �1�

where (U, V) is the undisturbed wind velocity, (k, l) is

the horizontal wavenumber, N is the Brunt–Väisälä fre-

quency of the incoming flow, and the primes denote

differentiation with respect to height z. In (1), it has

been noted that only piecewise linear wind profiles will

be used, so the curvature terms do not appear. This equa-

tion is singular at critical levels, where Uk � Vl � 0.

An undisturbed wind profile that is linear up to a

certain height z1 and then becomes constant, but that

does not have any other constraint, is assumed, that is,

U � U0 � �z and V� V0 � �z, if z � z1, or

U � U0 � �z1 � U1 and V � V0 � �z1 � V1, if

z � z1, �2�
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where U0, V0, �, �, U1, and V1 are constants. This rep-

resents a rather general class of flows. For this type of

wind profile, the solution to (1) in the layer z � z1 is of

the form

ŵ � ��1 �
�k � �l

U0k � V0l
z�

1�2�i�s

� 	�1 �
�k � �l

U0k � V0l
z�

1�2�i�s

, �3�

corresponding to both an upward- and a downward-

propagating wave, where 	(k, l) and 
(k, l) are func-

tions to be determined, s � sign(�k � �l), and

� � �N2�k2 � l2�

��k � �l�2
�

1

4�
1�2

. �4�

On the other hand, in the upper layer, the solution to

(1) takes the form

ŵ � 
 exp�i
N�k2 � l2�1�2

U1k � V1l
z�, �5�

where �(k, l) is a function to be determined.

The boundary conditions that must be applied to (1)

are the following: the flow must be tangential to the

orography at the surface, namely,

ŵ�z � 0� � i�U0k � V0l�ĥ, �6�

where ĥ is the Fourier transform of the terrain eleva-

tion (assumed to correspond to an isolated mountain),

and the wave energy must radiate upward in the upper

layer. This last condition is already included in the so-

lution (5). Additionally, both ŵ and the pressure per-

turbation (or rather its Fourier transform p̂) must be

continuous at z � z1. From the equations of motion, the

Fourier transform of the pressure perturbation may be

related to ŵ and its vertical derivative through

p̂ � i
�0

k2 � l2
��U�k � V�l�ŵ � �Uk � Vl�ŵ�
, �7�

where �0 is a reference density (assumed to be con-

stant). If (3) and (5) are used in conjunction with (7),

and (6) is also applied, then it is possible to determine

the unknown functions 	, 
, and �. For the purpose of

calculating the surface drag, it is only necessary to know

the explicit form of 	 and 
, which can be shown to be

the following:

� �

i�U0k � V0l�ĥ�i�s �
1

2
� i

N�k2 � l2�1�2

�k � �l
��U1k � V1l

U0k � V0l
�

i�s

�i�s �
1

2
� i

N�k2 � l2�1�2

�k � �l
��U1k � V1l

U0k � V0l
�

i�s

� �i�s �
1

2
� i

N�k2 � l2�1�2

�k � �l
��U1k � V1l

U0k � V0l
�

�i�s
, and

	 �

i�U0k � V0l�ĥ�i�s �
1

2
� i

N�k2 � l2�1�2

�k � �l
��U1k � V1l

U0k � V0l
�

�i�s

�i�s �
1

2
� i

N�k2 � l2�1�2

�k � �l
��U1k � V1l

U0k � V0l
�

i�s

� �i�s �
1

2
� i

N�k2 � l2�1�2

�k � �l
��U1k � V1l

U0k � V0l
�

�i�s
. �8�

The remaining coefficient � may be calculated in terms

of 	 and 
. This totally determines the solution to the

gravity wave problem in a generic 3D case. To obtain the

solutions for the 2D case, it suffices to assume l � 0, V0 �

0, � � 0, and V1 � 0 (with the understanding that the

Fourier transforms denoted by a hat are now 1D and

integrated over x, instead of 2D and integrated over x

and y).

Mountain wave drag

The drag force exerted by the flow on the orography

is given in general by

�Dx, Dy� � 4
2i�
��

��

�
��

��

�k, l�p̂*�z � 0�ĥ dk dl

�9�

in a 3D situation, while the drag per unit length on a 2D

ridge is given by

D � 2
i�
��

��

kp̂*�z � 0�ĥ dk, �10�

where the asterisk denotes the complex conjugate (see

Teixeira et al. 2004; Teixeira and Miranda 2004). These

two drags differ in nature as they stand, but when nor-

malized by the corresponding values for a constant

wind equal to the wind at the surface [(U0, V0) or U0,

respectively], they become comparable (see Teixeira et

al. 2005).

The Fourier transform of the pressure perturbation

at the surface, which is necessary in (9) or (10), may be

expressed in terms of 	 and 
, presented in the previous

subsection, as
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p̂�z � 0�

� i
�0

k2 � l2
��k � �l���1

2
� i�s�� � �1

2
� i�s�	�.

�11�

Obviously, the drag may be obtained by taking the

complex conjugate of (11), using the definitions of 	

and 
 [(8)], and inserting them into (9) or (10) after

appropriate simplification.

The actual final explicit form of the gravity wave drag

depends on whether the factor (U1k � V1l)/(U0k � V0l)

contained in (8) is positive or negative. If it is positive,

this means that upward-propagating gravity waves with

the horizontal wavenumber (k, l) have not passed

through their specific critical level, where Uk � Vl � 0,

before they reach z � z1, and so

�U1k � V1l

U0k � V0l
�i�s

� cos��s log �U1k � V1l

U0k � V0l
�� � i sin��s log �U1k � V1l

U0k � V0l
��, and �U1k � V1l

U0k � V0l
��i�s

� cos��s log �U1k � V1l

U0k � V0l
�� � i sin��s log �U1k � V1l

U0k � V0l
��. �12�

If, on the other hand, (U1k � V1l)/(U0k � V0l) � 0, this

means that the waves passed through a critical level

before reaching z � z1. Then it may be noted that be-

cause

U1k � V1l

U0k � V0l
� �U1k � V1l

U0k � V0l
�ei
s, �13�

then

�U1k � V1l

U0k � V0l
�i�s

� e�
��cos��s log �U1k � V1l

U0k � V0l
�� � i sin��s log �U1k � V1l

U0k � V0l
���,

�U1k � V1l

U0k � V0l
��i�s

� e
��cos��s log �U1k � V1l

U0k � V0l
�� � i sin��s log �U1k � V1l

U0k � V0l
���. �14�

All of these equations are consistent with the idea, dic-

tated by causality, that an upward-propagating wave is

attenuated above the critical level, while a downward-

propagating wave is attenuated below the same critical

level. Whether (12), (14), or both formulas have to be

used in the drag integrals depends on the type of flow

being considered. We will begin by treating 2D unidirec-

tional shear flows, where critical levels, if they do exist,

affect the whole spectrum of wavenumbers, and where

the drag in fact has a closed analytical form. We will then

proceed to 3D flows with directional shear, where only

some wavenumbers have a critical level and the drag must

be calculated numerically, albeit through the evaluation

of a simple 1D integral (cf. Teixeira et al. 2005).

3. Results

a. Unidirectional shear flow over a 2D ridge

1) NO CRITICAL LEVEL

Consider a mountain ridge aligned in the y direction

and an incoming flow given by (2), where V0 � � �

V1 � 0, U0 � 0, and � � 0, that is, a unidirectional flow

with forward shear along the x direction (see Fig. 1a).

In this case, the internal waves have no critical levels.

Although we have assumed that � � 0, in fact the same

theoretical framework can be applied to a backward

shear flow that does not have a critical level (Fig. 1b).

In both of these cases, (12) should be used in the drag

FIG. 1. Schematic diagram of the wind profiles with unidirec-

tional shear considered in this study: (a) forward shear, (b) back-

ward shear without a critical level, and (c) backward shear with a

critical level.

JUNE 2008 T E I X E I R A E T A L . 1915



calculations, and after some algebra the final obtained

drag expression is

D � 4
�0NU0�
0

��

k | ĥ |
2

dk

�
�

2
�Ri

1 �
1

4Ri
cos�2� log �U1

U0
�� �

�

2Ri
sin�2� log �U1

U0
��

,

�15�

where Ri � N
2/�2. It is easy to note that, because of the

hydrostatic approximation, the drag expression could

be separated into an integral involving ĥ and a fraction

containing all the effects of shear (cf. Teixeira and

Miranda 2004, 2005). This enables the drag to be nor-

malized by its value for a constant wind equal to U0,

D0 � 4
�0NU0�
0

��

k | ĥ |
2

dk, �16�

yielding the normalized drag

D

D0

�
�

2
�Ri

1 �
1

4Ri
cos�2� log �U1

U0
�� �

�

2Ri
sin�2� log�U1

U0
��

.

�17�

This dimensionless drag is independent of the detailed

shape of the orography as long as this is 2D, and de-

pends on the following two dimensionless parameters:

Ri [contained also in �, which now becomes � � (Ri �
1⁄4)1/2] and |U1 /U0 | . This last parameter is linearly re-

lated to the lower-layer height z1 through U1 /U0 � 1 �

�z1 /U0.

The drag for a shear layer that extends indefinitely is

given by exact linear theory (see Smith 1986) as

D

D0

�
�

Ri1�2
� �1 �

1

4Ri�
1�2

, �18�

while the drag predicted by a linear model employing

the WKB approximation (Teixeira and Miranda 2004) is

D

D0

� 1 �
1

8Ri
. �19�

Obviously, the exact expression (18), valid for arbi-

trarily large shears (as long as Ri � 1⁄4), tends asymp-

totically to (19) for high Ri. Note also that neither (18)

nor (19) depend on the sign of �.

It can be seen that the drag for a limited shear layer

(17) oscillates with |U1 /U0 | , clearly due to wave reflec-

tions at z � z1 and constructive or destructive interfer-

ence between upward- and downward-propagating

waves in the layer z � z1 [much in the same way as in

Teixeira et al. (2005)]. Figure 2a shows the variation of

the normalized drag, as given by (19) and (18) (upper

and lower solid lines, respectively), together with the

normalized drag given by (17) for three values of |U1 /

U0 | (dashed, dotted, and dash–dotted lines). It can be

seen that, apart from the fact that the drag equals one

at Ri�1 � 0, the drag curves for a finite shear layer show

no resemblance to those that assume a shear that ex-

tends indefinitely. The drag for a finite shear layer os-

cillates around the solid curves with a rapidly decreas-

ing period but increasing amplitude as Ri�1 goes from

0 to 4. In this way, the drag takes values larger than 1.5

for high Ri�1, which are not predicted by the theories of

Smith (1986) or Teixeira and Miranda (2004). No mat-

ter what finite value of |U1 /U0 | is used, the drag oscil-

lation never disappears, because in (17) the logarithm

of |U1 /U0 | is taken. Hence, either very small or very

FIG. 2. Normalized drag as a function of Ri�1 for unidirectional

shear flow over a 2D ridge: (a) no critical level, (b) one critical

level.
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large values of |U1 /U0 | lead to very large absolute val-

ues of this logarithm, which cause rapid oscillations of

the denominator in (17). Physically, this behavior

means that, no matter how high the shear discontinuity

is, it will always reflect the waves (there is no wave

dispersion in 2D flow). Thus, this case is intrinsically

different from that of an unlimited shear layer. Only in

the limits Ri�1 � 0 or |U1 /U0 | � 1 do the drag oscilla-

tions disappear, and the drag equals one, but these

cases are of no interest, because they correspond to a

vanishing shear layer.

The limit of the drag as Ri →
1⁄4 may be shown to be

D�Ri � 1⁄4�

D0

�
1

1 � log �U1

U0
��

1

2
log2 �U1

U0
�

. �20�

This expression is plotted in Fig. 3a, together with the

normalized drag for other values of Ri�1, as a function

of |U1 /U0 | . It can be shown that the drag at Ri � 1⁄4

attains a maximum of 2 at |U1 /U0 | � e � 2.7. As an-

ticipated by the fact that logarithms are taken in (20),

the drag behavior is essentially symmetric with respect

to its maximum (in a logarithmic scale), tending to zero

both for very high and very low |U1 /U0 | . On the other

hand, for higher values of Ri, the drag is periodic with

log |U1 /U0 | , having a modulation with both amplitude

and period that increase as Ri decreases, as suggested

by Fig. 2a. This is due to the factors of � inside the sine

and cosine functions in the denominator of (17), and to

the fact that the coefficients multiplying these functions

become larger as Ri decreases.

2) ONE CRITICAL LEVEL

Consider now an incoming flow given by (2), where

V0 � � � V1 � 0, U0 � 0, � � 0, and U1 � 0, that is, a

unidirectional flow with backward shear and a critical

level (see Fig. 1c). In this case, a fraction of the wave

energy passes through the critical level twice—first as it

propagates upward and then as it is reflected back to-

ward the surface. Then, (14) should be used for all

wavenumbers in the calculation of the drag, and the

final expression for the normalized drag may be shown

to be

D

D0

�

�
2

Ri
cosh�2
�� �

�

Ri1�2
sinh�2
��

cosh�2
�� �
�

Ri1�2
sinh�2
�� �

1

4Ri
cos�2� log �U1

U0
�� �

�

2Ri
sin�2� log �U1

U0
��

, �21�

where the terms involving 2�� result from (14) and

ultimately from the branch line of the logarithmic func-

tion. Physically, these terms result from filtering of the

gravity waves by the critical level, and considerably

modify the behavior of the drag, as will be seen next.

Figure 2b shows the normalized drag as a function of

Ri�1 as given by (21) (dashed, dotted, and dash–dotted

line), and by (18) and (19) (solid lines). It can be seen

that the drag has a much more regular behavior than in

the case of no critical level. For the selected values of

|U1 /U0 | , the drag follows the exact and WKB results at

relatively high Ri very closely, while it falls between the

two corresponding curves, and surprisingly stays closer

to the WKB result, for lower Ri. It can be shown that,

FIG. 3. Normalized drag at as a function of | U1 /U0 | for unidi-

rectional shear flow over a 2D ridge: (a) no critical level, (b) one

critical level.
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unlike (17), (21) tends asymptotically to (18) for Ri →

��. The reason for this is very simple: for high values

of Ri, the upward-propagating waves are essentially ab-

sorbed by the critical level [they are in fact attenuated

by a factor of exp(���), as shown by Booker and

Bretherton (1967)], so the waves do not “feel” what is

above this level, and no downward-propagating wave

exists in the layer z � z1.

In the limit Ri →
1⁄4, (21) reduces to

D�Ri � 1⁄4�

D0

�
1 � 



2

2
� 
 � 1 � log �U1

U0
��

1

2
log2 �U1

U0
�

.

�22�

It may be shown that this function has a maximum of

(1 � �)/(�2/2 � � � 1⁄2) � 0.48 at |U1 /U0 | � e � 2.7. It

is fortuitous that this value is so close to the value of 0.5

predicted for the normalized drag by the model using

the WKB approximation (19) at the same Ri.

A more careful analysis of what happens at low Ri

may be aided by Fig. 3b, where the drag is plotted as a

function of |U1 /U0 | for various Ri, including Ri � 1⁄4.

As in the case of no critical level, the period and am-

plitude of the drag oscillations increases as Ri de-

creases, but the amplitude, particularly for Ri � 1⁄4, is

much smaller than in the previous case. This is consis-

tent with the fact that the drag oscillates much less with

Ri in Fig. 2b than in Fig. 2a.

Using (8), it is not hard to show that the reflection

coefficient of the flow under consideration is

R � ��

	
�� �1 � ��Ri1�2

1���Ri1�2 �
1�2

e
�2
� �23�

[a similar definition, without the exponential factor on

the right, is valid in the case of forward shear, as noted

by Keller (1994)]. The exponential factor, correspond-

ing to double absorption at the critical level (of upward-

and downward-propagating waves), means that if Ri is

substantially above 1⁄4 the reflection coefficient is very

low, because the waves are unable to reach the shear

discontinuity, where they are reflected back. Even if

they reach this discontinuity and are reflected, they are

still largely absorbed by the critical level on their way

back to the surface. This explains why the drag modu-

lation is so small in Figs. 2b and 3b compared with Figs.

2a and 3a. For a forward shear the decrease of the

reflection coefficient from 1 at Ri � 1⁄4 to 0 as Ri → ��

is only due to smoothing of the shear discontinuity as Ri

increases (as in Teixeira et al. 2005). This is the reason

why the drag modulation in Figs. 2a or 3a increases as

Ri decreases. For backward shear, on the other hand,

this decay of the reflection coefficient to zero as Ri

increases is much faster, because it is aided by the ex-

ponential factor in (23) (see Fig. 4). This explains the

less erratic behavior of the drag in Fig. 2b, and its close-

ness to theories assuming an infinite shear layer.

There are two additional questions that need to be

clarified. First, if the reflection coefficient is 1 for Ri �
1⁄4 [the exponential factor in (23) is in this case irrel-

evant, being 1 itself], why does the drag tend to a finite

value in this case, both with or without a critical level?

There are two competing physical mechanisms at work

here. On the one hand, in a hydrostatic framework, a

reflection coefficient of 1 would tend to lead to an in-

finite number of upward and downward reflections of

the waves, producing infinite drag in the case of con-

structive interference (see Teixeira et al. 2005). On the

other hand, however, it is known from Grubišić and

Smolarkiewicz (1997) and Teixeira and Miranda (2004)

that constant-shear flows are characterized by a migra-

tion of the upstream pressure perturbation to the top of

the mountain, with the pressure perturbation ultimately

becoming symmetric with respect to the orography at

Ri � 1⁄4. This is the physical reason for the prediction of

zero drag at this Ri by exact linear theory (18) in the

case of a shear that extends indefinitely. It can be

shown that this behavior of the pressure also occurs in

the present case. The two opposing effects described

above balance each other, and explain the finite value

of the drag at Ri � 1⁄4.

Another intriguing aspect is the following: since in

flows both with and without a critical level R � 1 at

Ri � 1⁄4, why is the drag for this value of Ri smaller in

the first case than in the second? This must be due to

the fact that a critical level not only absorbs wave en-

ergy for Ri � 1⁄4, but also changes the wave phase, an

FIG. 4. Reflection coefficient of internal gravity waves as a

function of Ri�1 for unidirectional shear flow over a 2D ridge.
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effect that does not depend on Ri and so that also exists

for Ri � 1⁄4. Therefore, passage of upward- and down-

ward-propagating waves through the critical level when

Ri � 1⁄4 presumably changes their phase in such a way

as to partially counteract the effect of constructive in-

terference, responsible for drag enhancement.

b. Directional shear flow over a circular mountain

After understanding the basic physical processes at

work in 2D flows where reflection at a shear disconti-

nuity and absorption at a critical level occur, it becomes

easier to interpret 3D flows, with unidirectional or di-

rectional shear. The case of unidirectional shear is es-

sentially similar to the 2D case treated above, because

critical levels, if they exist, affect all wavenumbers. The

only difference is that dispersion now modifies the

waves, slightly smoothing the drag behavior (not

shown). For directional shear, when this shear is con-

stant and exists in a single layer, as assumed in the

present study, some of the wavenumbers have critical

levels, while others do not (provided these wavenum-

bers exist in the orographic forcing).

Flow over a circular mountain will be considered be-

cause of the simplifications this affords. Polar coordi-

nates may then be used to express both the incoming

wind,

U � U cos�, V � U sin�, �24�

and the wavenumber vector,

k � � cos�, l � � sin�, �25�

where U � 0 and � � 0 are the magnitudes of the wind

velocity and of the horizontal wavenumber, respec-

tively, and � and � are the corresponding azimuthal

angles. This approach has the following advantages:

First, the normalized drag is independent of the de-

tailed shape of the orography, as for 2D flows (cf. Teix-

eira et al. 2004, 2005). This results from the possibility

of separating the drag integral [(9)] into a part that

depends only on � (which involves the orography

shape) and a part that depends only on �. Second, a

circular orography contains wavenumbers with all pos-

sible azimuthal angles, a feature that is convenient for

illustrative purposes. Finally, in this coordinate system,

a critical level in directional shear flow is expressed

very simply as the level where cos(� � �) � 0, that is,

where � and � are perpendicular to each other.

Figure 5 schematically shows (as the vertical hatch-

ing) the azimuthal angles spanned by the wind profiles

with directional shear that are going to be considered in

the following subsections, along with the azimuthal

angles spanned by the wavenumbers that have critical

levels (horizontal hatching). A wind profile similar to

that shown in Fig. 5a, but where the shear extends in-

definitely, was employed by Shutts (1995) and Shutts

and Gadian (1999). The other two wind profiles, shown

in Figs. 5b,c, are versions for a limited shear layer and

for backward and forward shear, respectively, of one of

the flows used by Teixeira et al. (2004).

The drag can be calculated using the appropriate ex-

pression (9) and normalized by its value for a constant

wind equal to (U0, V0), that is,

�D0x, D0y� � 4

3
�0N�U0, V0��

0

��

�
2
| ĥ |

2 d� �26�

(cf. Phillips 1984; Teixeira and Miranda 2006). The nor-

malized drag is given by 1D integrals over � and com-

prises four terms: two where the azimuthal angle �

spans the directions where the waves have not passed

through a critical level (the regions without horizontal

hatching in Fig. 5), and two other terms where � spans

the directions where the waves have passed through

their critical level (the horizontally hatched regions in

Fig. 5). In the first case, (12) must be used in the drag

integrals, while in the second (14) must be used. Taking

into account the symmetry of both the angles repre-

sented in Fig. 5 and the integrands, the normalized drag

is in fact given by only two terms instead of four. When

the wind turns anticlockwise, the corresponding expres-

sions are

Dx

D0x

�
2


 ��
�1�
�2

�0�
�2

I1I3 d� � �
�0�
�2

�1�
�2

I1I4 d�� and

Dy

D0y

�
2


 ��
�1�
�2

�0�
�2

I2I3 d� � �
�0�
�2

�1�
�2

I2I4 d��, �27�

where

I1 � cos��cos� �
V0

U0

sin��, I2 � sin��U0

V0

cos� � sin��, I3 �
�

2
�Ri�

1 �
1

4Ri�
cos�2��� �

�

2Ri�
sin�2���

, and

I4 �

�
2

Ri�

cosh�2
�� �
�

Ri�
1�2

sinh�2
��

cosh�2
�� �
�

Ri�
1�2

sinh�2
�� �
1

4Ri�

cos�2��� �
�

2Ri�

sin�2���

, �28�
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and

� � log�U1 cos� � V1 sin�

U0 cos� � V0 sin�
�, � � �Ri� �

1

4�
1�2

, and

Ri� �
N2

�� cos� � � sin��2
. �29�

If the wind turns clockwise, �0 and �1 should be

swapped in (27). The above equations can also be used

in the case of unidirectional shear flow over a circular

mountain, if it is noted that �1 � �0 for flow without a

critical level and �1 � �0 � � for flow with a critical

level. In (27), each component of the drag is normalized

by the same component given by (26). This normaliza-

tion is used so that the drag tends to 1 whenever pos-

sible, as Ri → �, but of course becomes invalid if either

D0x or D0y are zero. Then an alternative normalization,

chosen on a case-by-case basis, must be adopted.

1) WIND PROFILE OF SHUTTS (1995)

Consider the wind profile (2), with U0 � 0, � � 0,

V0 � 0, � � 0, and, consequently, U1 � U0 and V1 � 0

(corresponding to Fig. 5a). The angles denoted in Fig.

5a and necessary in the drag integrals of (27) take the

values �0 � 0 and �1 � arctan(V1 /U0). The normalized

drag takes the form given in (27) together with (28)

with the appropriate simplifications, and with the dif-

ference that the y drag component must be normalized

by D0x, because D0y � 0. This corresponds to a simple

multiplication of Dy /D0y by the factor V0 /U0 to yield

Dy /D0x. For this flow, the normalized drag is a function

of Ri � N2/�2 and |V1 /U0 | . For a similar flow, but

where the shear extends indefinitely, exact linear

FIG. 5. Schematic diagram of the wind profiles with directional shear considered in this study. The azimuthal

angles spanned by the wind profile (between �0 and �1) are denoted by the vertical hatching. The angles spanned

by the wavenumbers filtered by the critical levels existing below z � z1 are denoted by the horizontal hatching. (a)

Wind profile of Shutts (1995), (b) wind profile of Teixeira et al. (2004) with backward shear, and (c) wind profile

of Teixeira et al. (2004) with forward shear are described.
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theory (Teixeira and Miranda 2006) predicts the nor-

malized drag to be

Dx

D0x

�
1



�

0

2


cos2
��1 �

1

4Ri
sin2

��
1�2

d� and

Dy

D0x

� 0, �30�

while the theory based on the WKB approximation (cf.

Teixeira et al. 2004) gives

Dx

D0x

� 1 �
1

32Ri
and

Dy

D0x

� 0. �31�

Note that both (30) and (31) do not depend on the sign

of �.

Figure 6 shows (31) and (30) as the upper and lower

solid lines in Fig. 6a and as the single solid line in Fig.

6b, as a function of Ri. The dashed, dotted, and dash–

dotted lines correspond to the limited shear-layer

model developed in the present study for various values

of |V1 /U0 | . A behavior of the drag that is quite similar

to that shown previously in Fig. 2a is observed. The

drag for a limited shear layer oscillates around the solid

curves with a period and amplitude that increase as Ri

decreases. This is due to wave reflection at the level z �

z1, as in the previous flows. The physical reasons for

this behavior are essentially the same as described in

section 3a. However, now only a fraction of the wave-

numbers (those with directions not spanned by the

horizontal hatching in Fig. 5a) is reflected without fur-

ther change. The remaining wavenumbers are filtered

by the critical levels, so they presumably do not con-

tribute to the drag oscillations, in accordance with the

ideas expressed in section 3b. This is consistent with the

somewhat lower relative modulation of the drag in Fig.

6 compared to Fig. 2a. On the other hand, the persis-

tence of the oscillations has one curious consequence:

the y component of the drag becomes negative at rela-

tively low Ri. This means that the drag has the opposite

sign to the mean flow in the whole domain, and so the

mountain tends to accelerate this component of the

flow, unlike what is usual. This rather counterintuitive

result, which was obtained first by the authors in nu-

merical simulations, in fact partly motivated the present

calculations. For symmetry reasons, if � � 0, Dx obvi-

ously takes the same values as calculated above for the

same Ri and |V1 /U0 | , but Dy takes symmetric values.

2) WIND PROFILE OF TEIXEIRA ET AL. (2004)

Consider now either the wind profile (2), with U0 �

V0 � 0, � � 0, U1 � 0, � � 0, and V1 � U0 (corre-

sponding to Fig. 5b), or the same profile with the dif-

ference that � � 0 and consequently U1 � 0 (Fig. 5c).

The angles denoted in Figs. 5b,c take the values �0 �

�/4 and �1 � arctan(U0 /U1) in this case. The normal-

ized drag is given by (27) together with (28) with the

appropriate simplifications. Additionally, the drag

given by exact linear theory for an infinite shear layer is

Dx

D0x

�
1



�

0

2


cos2
��1 �

1

4Ri
cos2

��
1�2

d� and

Dy

D0y

�
1



�

0

2


sin2
��1 �

1

4Ri
cos2

��
1�2

d�, �32�

where Ri � N2/�2, and the drag given by the theory

based on the WKB approximation (Teixeira et al.

2004) is

Dx

D0x

� 1 �
3

32Ri
and

Dy

D0y

� 1 �
1

32Ri
. �33�

FIG. 6. Normalized drag as a function of Ri�1 for directional

shear flow over a circular mountain, for the wind profile of Fig. 5a:

(a) drag along x, (b) drag along y.
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It should again be noted that both (32) and (33) do not

depend on the sign of �.

Figure 7 shows the normalized drag as a function of

Ri�1 for � � 0, and Fig. 8 shows the same for � � 0. In

these figures, the upper solid curves correspond to (33)

and the lower solid curves to (32). The dashed, dotted,

and dash–dotted lines correspond to the model devel-

oped here for a finite shear layer for different values of

|U1 /U0 | . The first observation suggested by these fig-

ures is that drag oscillations somewhat similar to those

visible in Fig. 2a and Fig. 6 occur in Fig. 8, while they

are virtually absent in Fig. 7a and are considerably re-

duced in Fig. 7b. These oscillations lead both compo-

nents of the drag in Fig. 8 to take values much higher at

low Ri than predicted by theories developed for an

infinite shear layer. This is a consequence of the fact

that the angle spanned by the wavenumbers filtered by

a critical level is large in Fig. 5b, while it is small in Fig.

5c. This means that for � � 0 (backward shear of U) the

majority of the wavenumbers are filtered by their criti-

cal levels in the same way as all of them are in Fig. 2b,

while this only happens to a small fraction of the wave-

numbers for � � 0 (forward shear). Therefore, in Fig. 7,

the drag follows relatively closely the exact and WKB

theories: in Fig. 7a, where |U1 /U0 | � 4, for example, the

drag is virtually coincident with the WKB prediction,

and even for other values of |U1 /U0 | stays essentially

between the exact and the WKB results. The y drag

component behaves a little more erratically.

c. Comparison with numerical results and nonlinear

effects

In this section, a few comparisons between the

present analytical drag model and numerical simula-

tions will be shown to exemplify its capabilities and

limitations. Both linear conditions, where the model is

expected to reproduce the numerical results, and

weakly nonlinear conditions will be considered to see

how the linear results are modified for more realistic

(i.e., higher) mountains. The characteristics of the nu-

merical runs carried out are described in the appendix.

FIG. 7. Same as Fig. 6, but for wind profile of Fig. 5b. FIG. 8. Same as Fig. 6, but for wind profile of Fig. 5c.
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1) 2D FLOWS

Figure 9 shows the normalized drag for flow over a

2D ridge as a function of Ri�1. As can be seen, the model

using a finite shear layer (denoted by the solid line) is

able to capture the behavior of the numerical model in

the linear regime (denoted by the solid squares) quite

well. There are some discrepancies in Fig. 9a (for forward

shear) at relatively low Ri�1, where the numerical model

slightly underestimates the drag. This may be due to

spurious damping of the momentum fluxes by the nu-

merical scheme at high altitudes, a problem that was

also verified in Teixeira et al. (2005), and is particularly

acute here for large Ri because the shear discontinuity

is then relatively high. The exact model for an infinite

shear layer (denoted by the dotted line) is clearly inac-

curate, because it fails to capture the differences be-

tween the case of forward and backward shear, as noted

in earlier sections. The results from the numerical model

in nonlinear conditions (denoted by the open squares)

essentially show the same qualitative behavior as the

linear results, but amplified by a considerable factor. In

the presence of shear, the drag may be twice as large as

in linear conditions. This is at variance with the rela-

tively modest increase that the perturbation theory of

Miles and Huppert (1969) predicts when Ri�1 � 0,

D

D0

� 1 �
7

16 �
Nh0

U0
�

2

, �34�

which for Nh0 /U0 � 0.5 gives D/D0 � 1.11, essentially in

agreement with Figs. 9a,b at Ri�1 � 0. There seems to

be a qualitative change in behavior, with nonlinear ef-

fects becoming much more important, when Ri�1 �

O(1). This change is particularly marked and sudden

(occurring between Ri�1 � 0 and Ri�1 � 0.25, and

resembling a singularity) in the case of backward shear

with a critical level (Fig. 9b). The explanation is prob-

ably related to nonlinear critical-level dynamics, as

studied by Clark and Peltier (1984), and is beyond the

scope of this study.

2) 3D FLOWS

In Figs. 10, 11, and 12, similar results for the flows

with directional shear are presented. The symbols that

were used have the same meaning as in Fig. 9. In Fig.

10, the flow used by Shutts (1995) is considered. As in

flow over a ridge, the model developed in the present

study is able to reproduce the results of the linear nu-

merical simulations, but again these slightly underesti-

mate the drag. The drag is considerably larger in non-

linear conditions, but the amplification is not as large as

in Fig. 9. An interesting aspect is that the negative val-

ues of the y component of the drag that are predicted in

linear conditions remain valid in the nonlinear runs.

Thus, the surface drag consistently opposes the corre-

sponding velocity component of this wind profile at

Ri�1 � 1, for example, contributing to a mean accel-

eration of the wind along y.

Figure 11 shows results for the wind profile of Teix-

eira et al. (2004) with backward shear. Again, the ana-

lytical model is able to predict the drag behavior of the

numerical model in the linear regime satisfactorily. Al-

though the y component of the drag is almost in as good

agreement with the analytical model (solid line) as it is

with exact linear theory for an unlimited shear (dotted

l ine) , the drag maximum occurr ing around

Ri�1 � 1 is well captured. The drag amplification in the

nonlinear regime is smaller than in Fig. 9, but larger

than in Fig. 10, with Dx reaching a maximum near

Ri�1 � 0.5 and Dy near Ri�1 � 0.75. Because it was

seen previously that the present wind profile has more

critical levels than the preceding one, but less than a

unidirectional flow, it is possible that the large drag

FIG. 9. Normalized drag as a function of Ri�1 for unidirectional

shear flow over 2D ridge, for | U1 /U0 | � 4 in linear and nonlinear

conditions: (a) no critical level, (b) one critical level.
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amplification at relatively high Ri is due to nonlinear

critical-level dynamics, as in Fig. 9b.

Finally, Fig. 12 displays results for the wind profile of

Teixeira et al. (2004) with forward shear. The analytical

model produces good predictions of the linear runs of

the numerical model. Because of the small range of

angles spanned by wavenumbers with a critical level,

the two components of the drag essentially behave as in

a situation of forward unidirectional shear, showing

some considerable enhancement at Ri � O(1). How-

ever, the drag amplification at Nh0 /(U2
0 � V2

0)1/2
� 0.5

is still somewhat reduced relative to the case of flow

over a ridge (Fig. 2a), presumably because of the wave

dispersion inherent to a 3D flow.

4. Concluding remarks

An essential finding of the present study, substanti-

ated by the preceding results, is that internal wave drag

behaves totally differently for hydrostatic flows with

and without critical levels when the shear is limited to a

layer of finite extent near the surface. This result is

relevant, because linear theory for an unlimited con-

stant-shear layer predicts no differences between these

two cases. However, in numerical models the simplest

way to approximate a constant-shear flow is by making

the wind velocity become constant above some pre-

scribed height. The present results show that this may

be a relatively good approximation for low mountains

in the case of unidirectional shear flow with a critical

level, but not in the case of a flow without critical levels

(e.g., forward shear), where wave reflections at the

shear discontinuity substantially modify the drag be-

havior. For the flow with a critical level, the drag is in

surprisingly good agreement with corresponding results

for a shear that extends indefinitely, particularly when

the WKB approximation is used, despite the fact that

critical levels become transparent to internal waves at

low Ri. This is due to filtering of the waves by these

levels, which suppresses the oscillating drag behavior.

FIG. 10. Normalized drag as a function of Ri�1 for directional

shear flow over a circular mountain, for the wind profile of Fig. 5a

with | V1 /U0 | � 4, in linear and nonlinear conditions: (a) drag

along x, (b) drag along y.

FIG. 11. Same as Fig. 10, but for the wind profile of Fig. 5b.
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In directionally sheared flows, what appears to be

crucial for determining the drag behavior is the fraction

of wavenumbers that encounter their critical levels be-

fore they are reflected at the shear discontinuity. If this

fraction is large, the waves are filtered in such a way

that the reflection seems to be of only modest impor-

tance, while if this fraction is small, the reflection pro-

cess completely determines the drag, generally enhanc-

ing it. These aspects were not contemplated in previous

drag models, and clearly must be taken into account in

certain situations of practical importance, when there

are relatively fast variations of the shear with height.

When the shear variations occur over sufficiently deep

regions, or dissipative processes act before they are

reached by the waves, the drag presumably is domi-

nated by local mechanisms, as assumed in the WKB

treatments of Teixeira et al. (2004) or Teixeira and

Miranda (2006).

From a fundamental point of view, the present study

contributes to the improvement of our knowledge

about physical processes occurring above critical levels,

a topic about which not much has been said yet, be-

cause of the frequent assumption of high Ri and the

consequent total wave absorption (Shutts 1995; Shutts

and Gadian 1999).

Nonlinear processes have been shown to modify the

linear results by generally increasing the value of the

drag. This increase is, however, considerably larger

than that predicted by the theory of Miles and Huppert

(1969). While in the range of Ri�1 considered in the

present study (excepting Ri�1
� 0) the qualitative be-

havior of the drag with Ri�1 is essentially unchanged

for Nh0 /(U2
0 � V2

0)1/2
� 0.5, there appears to be an

interaction of shear and nonlinear effects that potenti-

ates the drag enhancement as long as Ri is not ex-

tremely large. This leads to an apparent singularity in

the drag behavior for unidirectional flow with a critical

level, which deserves further investigation. Grubišić

and Smolarkiewicz (1997) suggested that nonlinear ef-

fects become progressively more important as Ri de-

creases, and might be responsible for the slightly worse

agreement between linear theory and their numerical

simulation results at low Ri. The present findings ex-

plain similar differences, in the linear regime, simply by

wave reflection [suggesting that Grubišić and Smolark-

iewicz (1997) may have used a shear discontinuity

above the critical level]. Our findings also suggest that

when nonlinear processes become important, these

processes are much stronger if there is any appreciable

shear, not only at low Ri. This result has obvious rel-

evance for real flows, because wind profiles completely

devoid of shear must be very rare.
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APPENDIX

Setup of the Numerical Runs

The numerical simulations were carried out using

two different models, developed independently. Flow

over a ridge was simulated using the FLEX model and

flow over a circular mountain used the NH3D model.

FLEX (see Argaín 2003) is a 2D numerical model using

curvilinear coordinates and allowing local grid refine-

ment, which can be used from the microscale to the

mesoscale. NH3D (see Miranda and James 1992) is a

3D mesoscale model using a pressure-based terrain-

following vertical coordinate. Although both models

FIG. 12. Same as Fig. 10, but for the wind profile of Fig. 5c.
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are nonhydrostatic and parameterize turbulent pro-

cesses, they were run in inviscid and approximately hy-

drostatic conditions.

The simulations of flow over a ridge used a domain of

160 � 250 grid points, with uniform horizontal and ver-

tical spacings of 1600 and 80 m, respectively. The time

step was 10 s and the model was run for 6400 time steps

until the drag stabilized to a constant value. A bell-

shaped ridge with height h0 � 10 m and half-width a �

16 km was considered in the linear runs, while h0 � 500

m was used in the nonlinear runs. The wind speed at the

surface was U0 � 10 m s�1 and a constant Brunt–
Väisälä frequency of N � 0.01 s�1 was employed. This

gives Na/U0 � 16, indicating that the flow was mostly

hydrostatic. Additionally, Nh0 /U0 � 0.01 at the surface

for the linear runs and Nh0 /U0 � 0.5 for the nonlinear

runs. A sponge was applied at the lateral boundaries

over a distance 2a � 32 km and at the top of the domain

over a distance 3�U0 /N � 9425 m.

In the simulations of flow over a (bell shaped) circu-

lar mountain, the domain was of 100 � 100 � 200 grid

points, with spacings of 2000 or 3000 m in the horizontal

(respectively, when the wind was aligned or oblique to

the grid at the surface) and between 40 (near the sur-

face) and 400 m in the vertical. The number of time

steps was 10 000 and the time step was 4 or 6 s for the

two cases mentioned above. Sponges spanning 10 grid

points (20 or 30 km, respectively) were used at the

lateral boundaries and a sponge above z � 10 km was

applied at the top of the domain. The mountain height

was h0 � 5 m or h0 � 7.07 m in the linear runs and

h0 � 250 m or h0 � 353 m in the nonlinear runs, and the

half-width of the mountain was a � 10 km or a � 14.14

km. Finally, N � 0.01 s�1 and (U2
0 � V2

0)1/2
� 5 m s�1

or (U2
0 � V2

0)1/2
� 7.07 m s�1. This gives Na/(U2

0 �

V2
0)1/2

� 20 in all simulations, again ensuring nearly

hydrostatic conditions, and Nh0 /(U2
0 � V2

0)1/2
� 0.01 or

Nh0 /(U2
0 � V2

0)1/2
� 0.5, respectively, for the linear and

nonlinear runs.
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