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ABSTRACT

A hydrostatic theory for mountain waves with a boundary layer of constant eddy viscosity is presented.

It predicts that dissipation impacts the dynamics over an inner layer whose depth is controlled by the inner-

layer scale d of viscous critical-level theory. The theory applies when the mountain height is smaller or near

d and is validated with a fully nonlinear model. In this case the pressure drag and the waveReynolds stress can

be predicted by inviscid theory, if one takes for the incident wind its value around the inner-layer scale. In

contrast with the inviscid theory and for small mountains the wave drag is compensated by an acceleration of

the flow in the inner layer rather than of the solid earth. Still for small mountains and when stability increases,

the emitted waves have smaller vertical scale and are more dissipated when traveling through the inner layer:

a fraction of the wave drag is deposited around the top of the inner layer before reaching the outer regions.

When the mountain height becomes comparable to the inner-layer scale, nonseparated upstream blocking

and downslope winds develop. Theory and the model show that (i) the downslope winds penetrate well into

the inner layer and (ii) upstream blocking and downslope winds are favored when the static stability is strong

and (iii) are not associated with upper-level wave breaking.

1. Introduction

The impact of small- to medium-scale mountains on

the atmospheric dynamics has been intensively studied

over the last 50 years by two quite distinct communities.

One community is studying how mountains modify the

turbulent boundary layer (Jackson and Hunt 1975), an

issue that is central in the context of wind resource

modeling (Ayotte 2008) or dune formation (Charru

et al. 2013). The associated theories form the basis of

subgrid-scale orography parameterizations, where the

enhancement of turbulence caused by mountains is

modeled by increasing the terrain roughness length

(Wood and Mason 1993). Wood et al. (2001) used fully

nonlinear simulations to extend the theory and improve

the estimate of the depth over which the mountain

drag is deposited. These parameterizations are used for

mountains with horizontal scales smaller than 5000m

(Beljaars et al. 2004). At these scales one can expect that

the horizontal scale of the mountains L is such that the

advective time scale L/u0 is smaller than the inverse of

the buoyancy frequency N21. This ensures that the flow

behaves according to neutral flow dynamics.

The second community is more focused on mountain

dynamical meteorology. It studies the onset of down-

slope winds, foehn, and trapped waves using theories

and models where internal gravity waves control the

dynamics, and where the boundary layer is often

neglected. The relevance of the approach is illustrated

by Sheridan et al. (2017), where a near-linear mountain

wave model permits to interpret wind perturbations due

to mountain wave events over theUnited Kingdom. The

associated theory is extremely vast in itself (Durran

1990). Among other things, this theory has been used

to predict realistic partitions between upper-level and

lower-level wave drag and orographic blocking, which

are concepts that are used in parameterizations of

subgrid-scale orography with horizontal scales L .

5000m (Lott and Miller 1997). Note that this type of

parameterization is still used in atmospheric models,

and even in the models with horizontal resolution that

resolve these scales (Sandu et al. 2015; Pithan et al.

2016). In fact, it is not so clear whether there is a critical

mountain size (L5 5000m) below which the flow would

only impact the boundary layer and above which the

flow would only impact the waves. We actually believe

that this criteria is quite ad hoc and should depend on

the nature of the flow.Corresponding author: François Lott, flott@lmd.ens.fr
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Because boundary layer dynamics is highly controlled

by the inviscid dynamics aloft, and because in mountain

meteorology the wave forcing is embedded into the

boundary layer, it soon appeared that the two commu-

nities should make some effort to integrate results from

the other community. It is in this context that Hunt et al.

(1988) and Belcher and Wood (1996) included stratifi-

cation and gravity waves in boundary layer theories over

mountain. Belcher and Wood (1996) showed that when

the Froude number F 5 u0/NL is smaller than 1, the

mountain drag is due to mountain gravity waves (rather

than boundary layer effect) and is well predicted by

linear gravitymountain wave theory. This result actually

depends on the height at which one chooses the refer-

ence velocity u0 and reference Brunt–Väisälä frequency
N. As we shall see, in the absence of background wind

curvature, the relevant altitude to compute these

quantities is that of the inner layer, which is the altitude

where disturbance advection by the background wind is

balanced by dissipation. Still in this context but in the

mountain meteorology community, studies using nu-

merical model show that the boundary layer drag re-

duces downslope windstorms and mountain waves

(Richard et al. 1989; Ólafsson and Bougeault 1997).

More recent observations show that the atmospheric

boundary layer can absorb downward-propagating

waves and weaken trapped lee waves (Smith et al.

2002; Jiang et al. 2006). These last results have moti-

vated a series of theoretical studies on the interaction

between the boundary layer and mountain waves. All

so far use crude parameterizations of the boundary

layer: Smith et al. (2006) uses a bulk boundary layer

model, Lott (2007) used constant eddy viscosity, and

Lott (2016) uses linear drags (Newtonian cooling and

Rayleigh drag).

Despite these simplifications, these studies reproduce

the increase in trapped waves absorption when stability

increases, insisting on cases where the incident wind is

weak near the ground. This near-surface critical-level

situation, a situation that was little studied because it

poses fundamental problems in the inviscid mountain

wave theory, was nevertheless found to produce in-

teresting dynamics. Near-surface critical level favors

downslope windstorms and foehn (Lott 2016; Damiens

et al. 2018) and permits to establish a bridge between

trapped lee waves and Kelvin–Helmholtz instabil-

ities (Lott 2016; Soufflet et al. 2019). Interestingly,

the critical-level mechanism that is a priori a dissi-

pative mechanism turned out to be extremely active

dynamically.

To summarize, there are two descriptions of the in-

teraction between boundary layers andmountain waves:

on the one hand boundary layer studies tell that the

pressure drag is controlled by the mountain wave dy-

namics outside of the boundary layer, but imposes very

simplified dynamics outside of it (Belcher and Wood

1996). And on the other hand, ‘‘mountain wave’’ studies

that give great attention to the potential impact of a

boundary layer on mountain waves but that use very

simplified boundary layer representation (Smith et al.

2006). We actually believe that there is still room to

develop a theory where the boundary layer and the

mountain wave field fully interact in a comprehensive

way. We see at least three reasons for this. The first is

that in mountain wave theory, the gravity wave (GW)

field is controlled by the low-level flow amplitude, and it

is not obvious to tell at which (or over which) altitude it

should be measured in the absence of strong wind cur-

vatures. Second, we know that the inviscid dynamics

potentially produces downslope winds in the stratified

case and it could be interesting to test if they extend

down to the surface and well into the inner layer. Last,

we know that the pressure drag is controlled by the wave

drag in the stable case, but we do not know if a fraction

of the wave drag could and should be deposited into the

inner layer rather than being radiated away. This issue

could have important consequences for the formulation

of parameterizations.

The purpose of the present paper is to answer these

questions in the reference case where the boundary

layer is parameterized via a constant kinematic eddy

viscosity n. This case has the unique merit that, while the

Couette profile with constant shear u0z is an exact so-

lution, we can handle the interactions with topography

using the stratified viscous solutions derived by Hazel

(1967) and Baldwin and Roberts (1970). However, a

consequence of using uniform wind shear is that the

‘‘boundary layer depth’’ of the incident flow is infinite, it

is therefore totally distinct from the ‘‘inner-layer depth’’

over which the waves are affected by dissipation and

that scales as

d5

 

nL

u
0z

!1/3

. (1)

These simplifications of uniform viscosity and back-

ground shear were made in the literature of the late

1950s by Benjamin (1959) and Smith (1973) in the con-

text of flows over water waves and dunes, respectively.

Since then, we are well aware that such a ‘‘laminar’’

approach is an extreme idealization. A reason is that

boundary layer dynamics tends to produce winds with

strong shear near the surface but that vary much more

slowly at higher altitudes (the associated curvatures

defining the ‘‘boundary layer depth’’ quite precisely). To

defend our choice nevertheless, we can recall that in the
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atmosphere the low-level wind shears are not only due

to the boundary layer: they are also related to the large-

scale dynamics. This has been shown for instance in

experiments done by Sheridan et al. (2007) and Doyle

et al. (2011), where they observe strong shears over few

kilometers above the ground. This being said, we will

have to keep in mind that models with constant eddy

viscosity probably overstate the significance of the low-

level shear stresses on the waves and pressure drag

(Sykes 1978).

The plan of the paper is as follows. In section 2 we

derive the theory in the hydrostatic case. In section 3 we

discuss the pressure drag and wave momentum fluxes it

predicts. In section 4 we analyze the onset of downslope

winds. As our theory is linear except for the lower

boundary condition, our results are checked against fully

nonlinear simulations in section 5. In section 6, we dis-

cuss further the significance of works on boundary layer

using constant eddy viscosity. We also discuss in this

section how our results could be useful to understand the

dynamics in more realistic cases. In appendix A, we

detail some aspects of the theory, and in appendix B we

provide details on the numerical implementation of

the model.

2. Theory

a. Basic equations

We consider a background flow solution of the viscous

equations,

u
0
(z)5 u

0z
z, r

0
(z)5 r

r
1 r

0z
z , (2)

where the wind shear u0z and stratification r0z are both

constant, and that is incident on a Gaussian ridge of

characteristic length L and maximum height H:

h(x)5He2x2/(2L2) . (3)

Following quite conventional approaches (Beljaars

et al. 1987; Belcher and Wood 1996), we consider ob-

stacles of small slope and use linear equations. To

characterize the factors that control the dynamics we

also normalize the response by introducing the ‘‘outer’’

scaling:

(x, z)5L(x, z), (u0,w0)5 u
0z
L(u,w),

(p0, b0)5 (r
r
u2
0zL

2p,u2
0zLb), (4)

where u0 and w0 are the horizontal and vertical wind

disturbances whereas b0 is the buoyancy disturbance.

With this scaling, and making the conventional ‘‘Prandtl’’

approximation that the vertical derivatives dominate

the viscous terms, the 2D Boussinesq hydrostatic linear

equations write

z›
x
u1w52›

x
p1 n›2zu , (5a)

052›
z
p1 b , (5b)

z›
x
b1 Jw5P21n›2zb , (5c)

›
x
u1 ›

z
w5 0 (5d)

with no-slip boundary conditions:

h(x)1 u(x,h)5 0, w(x, h)5 0, and

Jh(x)1 b(x,h)5 0 at h5 Se2x2/2 . (6)

In Eqs. (5) and (6),

J52
gr

0z

r
r
u2
0z

, P5
n

k
, S5

H

L
, and n5

n

u
0z
L2

(7)

are a Richardson number, a Prandtl number, a

slope parameter, and an inverse Reynolds number,

respectively.

To help establish where the waves are produced

and where they are dissipated, we next derive from

Eqs. (5) a wave-action budget. As this is not often

done in mountain waves literature, we recall that

the interest is to define a quantity A that is quadratic

(to measure the wave amplitude locally) and conser-

vative in the adiabatic frictionless case. For action

we chose the pseudomomentum, because its verti-

cal flux Fz is closely related to the mountain wave

Reynolds stress1 [see further discussions in Durran

(1995) and Lott (1998)]. Although the exact form of

the wave action is rigorously derived when starting

from Hamiltonian dynamics (Scinocca and Shepherd

1992), we can directly use the formula for the pseudo-

momentum A derived in this paper, and derive a budget

that includes dissipation by doing the formal operation:

b

J
›
z
[Eq. (5a)]1

u
z

J
[Eq. (5c)]. (8)

After few integrations by parts one obtains

1 It is actually interesting to recall that the seminal paper on

wave–mean flow interaction by Eliassen and Palm (1961) was

about mountain waves.
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›

›x

0

B
B
B
B
@

z
›
z
u

J
b

|fflffl{zfflffl}

A

1
b2

2J
1

u2

2

1

C
C
C
C
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fx

1
›

›z
uw
|{z}

Fz

5 n
b

J
›2z ›zu1P21n ›

z
u ›2z b

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Q

, (9)

where Fx and Fz the horizontal and vertical components

of the pseudomomentum flux, and where Q is the

production/destruction of action by dissipative processes.

Note that Fx includes the horizontal advection of action by

the background flow zA. As we search inflow solutions

that are linear, we next express them in terms of Fourier

transform,

w(x, z)5

ð
1‘

2‘

w(k, z)eik x dk, where

w(k, z)5
1

2p

ð
1‘

2‘

w(x, z)e2ik x dx, (10)

which transforms Eqs. (5) into

ik z u1w52ik p1 n›2zu , (11a)

ik zb1 Jw5P21n›2zb , (11b)

b5 ›
z
p , (11c)

ik u1 ›
z
w5 0. (11d)

b. Solutions

For high Reynolds number n � 1, the dynamics is

inviscid at leading order. Each harmonics satisfy Eqs.

(11) with n5 0, which results in w satisfying

w
z z

1
J

z2
w5 0: (12)

Such equation has two solutions (Booker and

Bretherton 1967):

z1/26im, where m5

ffiffiffiffiffiffiffiffiffiffiffi

J2
1

4

r

. (13)

When k. 0 and J . 0.25, only the solution

w
I
(k, z)5 z1/21im (14)

corresponds to a gravity wave propagating upward. The

cases with k, 0 are treated by complex conjugation and

will not be discussed further. The cases with J, 0.25 are

degenerated in the hydrostatic approximation because

the direction of vertical propagation cannot be used to

distinguish between the two solutions in Eq. (13). This

difficulty, which forbids to treat the weakly stratified

cases (i.e., here when J , 1/4), will be resolved in a fu-

ture nonhydrostatic treatment of the inviscid solution.

To solve the inner layer we introduce the scaling,

z5 d~z, (u,w)5 (~u, dk~w),

(p,b)5 (d~p, ~b) where d5

�
n

k

�1/3

. (15)

At leading order, it transforms the full set of non-

dimensional Eqs. (5) into the sixth-order set:

›2
~z~u5 i~z~u1 ~w1 i~p , (16a)

›2
~z
~b5P(i~z~b1 J ~w) , (16b)

›
~z
~w52i~u, ›

~z
~p5 ~b . (16c)

This set of equations can be reduced to one single

equation for ~w,

(›2
~z 2 iP~z)(›2

~z 2 i~z)›2
~z ~w5 JP~w , (17)

which has six independent solutions. Hazel (1967) and

Baldwin and Roberts (1970) have found their asymp-

totic form when ~z/‘. Two grow exponentially as

~z/‘ and cannot be used (Van Duin and Kelder 1986),

the four that remain have asymptotic forms:

~w
1
’
~z/‘

~z1/22im, ~w
2
’
~z/‘

~z1/21im, ~w
3
’
~z/‘

~z25/4e2(2
ffi
i

p
/3)~z3/2 ,

~w
4
’
~z/‘

~z29/4e2(2
ffiffiffiffi
iP

p
/3)~z3/2 . (18)

In Lott (2007), these four solutions are evaluated over

the entire domain 0, ~z,‘, that is, by using the as-

ymptotic forms (18) above ~z5 5 and integrating down

Eq. (17) from ~z5 5 to ~z5 0 with a Runge–Kutta algo-

rithm. We will essentially proceed like this here (some

serious convergence issues are discussed in appendix A).

We then notice that the inner function ~w2 matches the

upward inviscid solution (14) and that ~w3 and ~w4 decay

exponentially fast with altitude, which permit to tell that all

the combinations of ~w2, ~w3, and ~w4 are uniform solutions

that can match wI . We therefore search a uniform ap-

proximation of the vertical velocity under the form

w(k, z)5 k d(k)

(

f
2
(k)~w

2

"

z

d(k)

#

1 f
3
(k)~w

3

"

z

d(k)

#

1 f
4
(k)~w

4

"

z

d(k)

#)

, (19)
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where all fields are expressed using outer variables,

and with similar expression for u and b deduced from

Eq. (11). To evaluate the unknown functions f2, f3, and

f4, we write the boundary conditions:

w(x, h)’

ð
1‘

2‘

k d(k)[f
2
(k)~w

2
( ~h)1 f

3
(k)~w

3
( ~h)

1 f
4
(k)~w

4
( ~h)]eik x dk5 0, (20a)

u(x,h)’

ð
1‘

2‘

[ f
2
(k)~u

2
( ~h)1 f

3
(k)~u

3
( ~h)

1 f
4
(k)~u

4
( ~h)]eik x dk52h(x) , (20b)

b(x,h)’

ð
1‘

2‘

[ f
2
(k)~b

2
( ~h)1 f

3
(k)~b

3
( ~h)

1 f
4
(k)~b

4
( ~h)]eik x dk52Jh(x) , (20c)

where ~h(x, k)5h(x)/d(k). Once discretized in the hor-

izontal and spectral domain, the set of Eqs. (20) corre-

sponds to three linear equations for f2(k), f3(k), and f4(k)

that can be inverted with conventional matrix inversion

routines (see appendix B for more details on the nu-

merical treatment).

3. Mountain wave fields and drags

We plot in Fig. 1 the flow response when the inverse

Reynolds number n5 0:001, the slope parameter S 5

0.01, the Richardson number J 5 4, and the Prandtl

number Pr 5 0.5. This last parameter will stay un-

changed in the rest of the paper: we have found

moderate sensitivity of the upper wave fields to this

parameter as long as its value stays around 1. In this

setup, the characteristic inner-layer scale is that of the

dominant harmonic k5 1, that is, d(k5 1)5 n1/3 5 0:1,

which is also the nondimensional form of the inner-layer

scale in Eq. (1). The inner-layer scale is therefore much

larger than the mountain slope.

The total wind at low level in Fig. 1a contours well

the obstacle and the vertical velocity field (Fig. 1b)

highlight a system of well-defined upward-propagating

gravity waves. We notice that the streamfunction in

Fig. 1c follows well the orography, up to at least the

inner-layer scale d(1)5 0:1. For each altitudes below

and around d(1) the streamlines are displaced vertically

over distances that are near the mountain height S, and

FIG. 1. Physical fields predicted by the theory in the hydrostatic case and when J5 4, S5 0.01, d5 0:1. (a) Total

wind vector (z1 u, w). (b) Vertical wind w. (c) Total streamfunction c defined by ›zc5 z1u. (d) Vertical flux of

action Fz (contours) and action flux vector (Fx, Fz). In (b) and (d) the negative values are dashed.
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the vertical velocity when z’ d should scale as

w’ [d(1)/2]S to follow the streamlines. We therefore

propose that the wave amplitude corresponds to the

inviscid case when a uniform flow of amplitude d(1)/2

(the average of the incident wind over the inner-layer

scale) is incident over a mountain of maximum height S.

Far aloft and in the sheared case, the vertical velocity

should therefore scale asw5 0
ffiffiffiffiffiffiffiffiffiffiffiffi

z d(1)
q

=2

� �

S

� 	

, where

the square root corresponds to the 1/2 factor in the ex-

ponent of the inviscid solution [Eq. (14)]. This qualita-

tive argument tells that the amplitude of w should be

around Sd(1)/25 53 1024 at z5 1, which is in qualita-

tive agreement with what is found in Fig. 1b.

We follow this line of qualitative reasoning and pro-

pose as predictor of the wave momentum flux and

mountain pressure drag,

uw(z)5

ð
1‘

2‘

u(x, z)w(x, z) dx, Dr52

ð
1‘

2‘

p(x, h)
›h

›x
dx,

(21)

the inviscid linear hydrostatic pressure drag produced

by a uniform wind of intensity d(1)/2 incident on the

orography given by h(x) in Eq. (6), and which exact

value is

2
d(1)

2

ffiffiffi

J
p

S2
52Dr

GWP
. (22)

Henceforth, we will refer to DrGWP as the gravity

wave drag amplitude predictor. Figure 2 shows that this

predictor is a good estimate for the drag given by the

theoretical model for a very large range of J and slope S.

We conclude that the pressure drag is well controlled by

the inviscid GW dynamics outside of the inner layer, the

GWs being forced by the undulations of the inner layer

produced by the mountain. This picture where the inner

layer forces the (inviscid) dynamics aloft, and that the

pressure drag is ultimately controlled by this inviscid

dynamics follows the general principle of boundary

layer theories that pressure is approximately constant

across the inner layer.

This predictor of the surface pressure drag is never-

theless misleading if we take it as a measure of the effect

of the mountain on the large-scale flow, as is generally

done in mountain meteorology. The reason is that, in a

steady state, our waves are forced indirectly by the dis-

tortion of the inner layer produced by the mountain

rather than directly by the mountain as in the inviscid

case. To establish this, we return to Fig. 1d where we

plotted the waves pseudomomentum flux vector. Aloft

the inner layer this flux clearly points down, as expected

for mountain GWs propagating upward (Durran 1995;

Lott 1998), but within the inner layer, it points very

strongly from the upstream sector toward the down-

stream sector. This is to be contrasted with the inviscid

case where this flux goes through the surface and pro-

duces an exchange of momentum between the fluid and

the solid ground.

This result suggests that the acceleration that balances

the gravity wave drag is not communicated to Earth’s

surface but rather to the inner layer. This last statement

is confirmed in Fig. 3a, where we plot the wave stress as a

function of altitude. The wave stress is null at the sur-

face, increases with altitude before reaching a constant

value at altitudes above z. 5d(1) typically. As is often

the case for viscous boundary layers, the depth over

which dissipation is significant seems to be around 5 times

the inner-layer scale d(1), so we will systematically

make the distinction between the inner-layer scale d(1)

and the inner-layer depth [around 5d(1)]. The flux emitted

at the top of the inner layer [above 5d(1)] is around half

the pressure drag, at least when J ’ 1. Such value stays

comparable to the theoretical drag but suggests that sub-

stantial wave dissipation occurs when the wave travels

vertically through the inner layer [in our scenario where

the waves are forced around d(1)]. This erosion of the

pressure drag toward the gravity wave stress is even more

significant when J increases. This is again consistent with a

qualitative argument: for large values of J, the waves os-

cillate more rapidly in the vertical according to Eq. (14)

and are more affected by viscous dissipation. This diffi-

culty in converting the pressure drag into a momentum

flux as stability increases makes that for J . 4 typically,

there is a minimum in uw in the middle of the inner layer

[between 2d(1) and 5d(1)]: part of the momentum given

to the inner layer near the surface is restored back around

the top of the inner layer.

FIG. 2. Surface pressure drag predicted by theory and normalized

by the amplitude of the inviscid linear mountain gravity wave drag

produced by a mountain of heightH in a uniform flow of intensity

U5 u0[d(L
21)/2] and of stratificationN:UNH2 {in nondimensional

form: [d(1)/2]
ffiffiffiffiffiffiffi

(J)
p

S2; see Eq. (22)}. Gray dots are from the

MITgcm with S 5 0.15.

1688 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 77

Unauthenticated | Downloaded 08/27/22 08:08 PM UTC



To understand what can replace the Reynolds stress

to balance the pressure drag, it is important to return

to the initial Eliassen and Palm’s (1961) paper, where

it is shown that the momentum flux is related to the

pressure force exerted in the horizontal direction on

an undulating surface. In the linear stationary case,

this relation is obtained by multiplying a momentum

equation [Eq. (5a) in our case] by the vertical dis-

placement of streamlines h and after integration by

part over x we get

uw52p ›
x
h2 n (h ›2zu), where z ›

x
h5w . (23)

In the inviscid case the pressure stress equals the

Reynolds stress, but this is no longer true in the viscous

scenario where dissipation plays a nonnegligible role. To

illustrate how dissipation becomes significant for small

slopes, we plot the two terms on the right-hand side

and their sum for three values of J in Fig. 3b. After

verification that the sum in Fig. 3b exactly equals the

Reynolds stresses in Fig. 3a, we see that Reynolds stress

and the pressure drag only coincide well above the inner

layer. Near the surface and in the lower part of the inner

layer, the pressure drag is almost entirely balanced by

the viscous drag.

This erosion of the pressure drag toward the wave

Reynolds stress is summarized in Fig. 4a where we plot

the Reynolds stress emitted in z/‘ normalized by the

predictor DrGWP. As already discussed, the emitted flux

is half the predicted drag, but this result becomes sen-

sitive to the stability J: when J is large, the emitted flux

almost vanishes. This erosion of the pressure drag to-

ward the Reynolds stress for large J is less pronounced

if we consider the minimum values in Fig. 4b. These

minima are in general located in the middle of the inner

layer [i.e., above z5 d(1) and below 5d(1), see Fig. 3a]

such that for large J some GW deceleration should be

applied directly around the top of the inner layer [which

we locate at 5d(1)].

4. Nonseparated blocking and downslope winds

To analyze what occurs in nonlinear situations we

next consider cases where the slope S becomes compa-

rable to the inner-layer scale d(1). As a first example, the

simulation in Fig. 5 corresponds to that in Fig. 1 but with

FIG. 3. (a) Vertical profiles of the normalized wave Reynolds stress uw for S5 0.01. (b) Pressure (black solid) and

viscous (black dashed) stresses as defined on the RHS of Eq. (23).

FIG. 4. (a) Normalized Reynolds stress emitted in the far field

uw(‘). (b) Minimum value of uw(z) for 0, z,‘. Gray dots are

from the MITgcm with S 5 0.15.
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S 5 0.15 instead of S 5 0.01. We readily notice that the

total wind (Fig. 5a) presents an downslope–upslope

asymmetry that is almost absent in Fig. 1a. The verti-

cal velocity is around 30 times larger than in the small

slope case, that is, 3 times larger than what should have

been obtained if we applied a linear ratio of the slopes

(Figs. 5b, 1b). The asymmetry in the winds is also visible

in the streamfunction in Fig. 5c, with a pronounced de-

scent on the lee side. Finally, the largest differences are

maybe in the pseudomomentum flux vector in Fig. 5d.

Now that the obstacle penetrates well into the inner

layer, there is a substantial pseudomomentum flux

across the surface. In opposition to the inviscid case

(Lott 1998) we did not identify clear relations between

this flux and themountain drag, except that the total flux

across the surface is on the same order of magnitude as

the mountain drag when the slope approaches the inner-

layer scale.

To appreciate more systematically the changes oc-

curring when the slope parameter increases as a function

of stability, we plot in Fig. 6 the vertical velocity fields

for different values of S and J. Figures 6a–c are for a

slope that is small compared to the inner-layer scale

[S5 0:02, d(1)] and Figs. 6d–f are for a slope that

compares to it [S5 0:15’ d(1)]. The contour interval

stays the same for all panels with a given slope, consis-

tent with the fact that the kinematic boundary

conditions are independent of J [see Eq. (6)]. Between

Figs. 6a–c and 6d–f where the slope changes, the contour

interval changes with a factor proportional to the slope

ratio, that is, following a linear relation. For the small

slope cases when J increases (Figs. 6a–c), one sees that

the wave amplitude in the far field decreases with J. If we

recall that the vertical scale of variations of our solutions

is inversely proportional to J, larger values of J corre-

spond to cases where the solutions oscillate more in the

vertical direction, these plots are therefore consistent

with the interpretation that with large J the waves are

more dissipated when they travel through the inner

layer. When the slope increases, a second interesting

behavior is worth noticing. When J 5 1 there are little

differences between the patterns in Figs. 6a and 6d,

which means that amplitudes varies linearly with S (re-

member that the contour interval varies linearly with S

between the top and bottom rows). Again, we know

since Lott (2016) and Damiens et al. (2018) that this is

also related to the vertical scale of the waves: strong

nonlinear effects enter the dynamics via the surface

boundary condition and when the vertical wavelength

at the top of the obstacle compares to the vertical

wavenumber, a criteria that corresponds to J. 1. As we

see in Figs. 6e and 6f these nonlinear effects become

substantial: for a given slope the wave amplitude now

increases when J increases. In addition to the enhanced

FIG. 5. As in Fig. 1, but for S 5 0.15.
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emission due to nonlinearities, it is also plausible that

the wave dissipation through the inner layer is less in-

tense because the level of emission is located at a higher

altitude than for smaller slopes. If we return to the

emitted momentum fluxes in Fig. 4, a consequence of

these enhanced emission and reduced dissipation when

the slope increase and for large J is that the inviscid

predictor of the momentum flux DrGWP becomes

more and more accurate (see the gray dotted line in

Figs. 4a and 4b).

If we now return to the total winds in Fig. 7 we also see

that for large slope and large J, the winds along the

upslope flank of the mountain become small compared

to the downslope winds, an asymmetry that increases

with both S and J. More specifically, when J5 1 (Fig. 7a)

the flow contours the obstacle: the flow is upward on the

upwind side and downward on the downwind side with

little asymmetry in amplitudes, a behavior that is little

affected by the increase in the slope in Fig. 7d. When J

increase and still for small slope in Figs. 7b and 7c some

upwind–downwind asymmetry starts to occur but stays

limited: there is still substantial ascent on the upstream

side of the obstacle. This ascent is actually not confined

to the lower layers but extends up to at least twice the

mountain slope. When the slope is larger (Figs. 7e and

7f), the upwind ascent is much smaller than the down-

wind descent. The downwind descent extends well along

the downwind slope whereas along the upwind slope the

total wind is very small. We call this situation a ‘‘non-

separated’’ blocking because it is produced by linear

inflow dynamics.

To quantify the dependence on S and J more sys-

tematically in terms of upstream blocking and down-

slope winds, we plot in Fig. 8 the ratio between the wind

amplitude along the downwind slope and the upwind

slope of the ridge defined as

max
|ffl{zffl}

z,2h/3,0,x,2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(z1 u)2 1w2

q

max
|ffl{zffl}

z,2h/3,22,x,0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(z1 u)2 1w2

q . (24)

This ratio emphasizes more the downslope–upslope

asymmetry than the criteria used in Lott (2016), where

FIG. 6. Vertical velocity for different values of the Richardson number J and of the slope S. Inner-layer depth d(1)5 0.1. Contour intervals

are shown in each panel.
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only the downslope wind amplitude was measured in

relation with the wind at the top of the hill. The reason is

that here the wind at the top of the hill is null so this

measure makes little sense. Here the ratio measures the

upstream flow blocking as much as the downslope wind

intensification and we see that it can easily reach values

around 4 or 5 for slopes near the inner-layer depth

d(1)5 0.1 and when J is sufficiently large. It always stays

near 1 for small slopes and essentially increases with J

and S as expected.

5. Validation with a fully nonlinear model

To validate our results we now use the ocean

Massachusetts Institute of Technology General Circulation

Model (MITgcm) (Marshall et al. 1997) and that solves

the fully nonlinear Boussinesq hydrostatic equations

on a cartesian mesh with a staggered Arakawa C grid.

We set the shape of the topography to a Gaussian

[Eq. (3)] and take L5 1 km andH5 150m, which yield

S 5 0.15. Cells near the bottom are cut with the partial

cells strategy (Adcroft et al. 1997) with hFacmin 5 0.1

(if a fraction of the cell is less than hFacMin, then it is

rounded to the nearer of 0 or hFacMin). The total

domain horizontal size is 60 km with a stretched grid

near the topography: the minimum and maximum grid

size are 60 and 600m, respectively. We use a sponge

layer at the lateral boundaries to relax the dynamic

variables (momentum and temperature) to the pre-

scribed upstream profiles (2). The relaxation time scale

is 100 s in the innermost point of the sponge layer and

10 s in the outermost point of the sponge layer. We also

FIG. 7. Wind vectors around the hill and for different values of the Richardson number J and of the slope S. Inner-layer depth

d(1) 5 0.1.

FIG. 8. Upstream blocking vs downslope windstorm index de-

fined as the ratio between the maximum downslope wind ampli-

tude and the maximum upslope wind amplitude. Gray dots are

from the MITgcm with S 5 0.15.
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use a stretched grid in the vertical with maximum reso-

lution of 5.6m at the topography and 415m at the top of

the domain. The total height of the domain is 50 km, and

we use a sponge layer above 10km with a relaxation

time scale that varies quadratically with aminimum time

scale of 10 s at the uppermost grid point (and infinite

relaxation time scale at 10 km). We use a constant wind

shear (u0z5 1023 s21) and constant vertical temperature

gradient. The temperature is related to the density via a

linear equation of state and we adjust the vertical

stratification N2 to match the nondimensional values of

J: from N2
5 5 3 1027 s22 (J 5 0.5) to N2

5 1.6 3

1025 s22 (J 5 16). We use no-slip boundary conditions

for momentum at the topography and we set the bottom

temperature to T 5 08C (we modified the code to get

a temperature flux at the boundary to ensure that the

temperature at the topography is constant). The hori-

zontal and vertical viscosities for momentum are set to

1m2 s21. The vertical and horizontal coefficients of dif-

fusivity for temperature are set to 2m2 s21. We also

added a horizontal biharmonic damping with a coeffi-

cient of 2 3 103m4 s21 for both the temperature and

momentum in order to damp gridscale noise generated

at the topography. The time step is 0.5 s. The model is

integrated forward in time until we reach a steady state

(usually less than 1 day).

The results for the vertical velocity field in Figs. 9a–c,

reproduce reasonably well the corresponding predic-

tions from the theory in Figs. 6d–f, respectively. The

horizontal scale and vertical variations are well repro-

duced, the amplitudes in the MITgcm are about 10%

smaller near z5 1 than in the theory, a difference we

attribute to numerical dissipations that are not easy

to control. The results for the winds at low level in

Figs. 9d–f are also consistent with those from the theory

in Figs. 7d–f, respectively. The flow in the MITgcm

presents the upstream/downstream symmetry predicted

by theory when J5 1 in Fig. 9a, and stronger downslope

than upslope winds when J5 9 and J5 16. We conclude

that there is a good agreement between the global in-

dexes defined in the theoretical model and the fully

nonlinear model (see for instance the comparison of the

emitted wave fluxes in Figs. 3a and 3b, or of the down-

slope windstorm index in Fig. 8). The only noticeable

difference is on the pressure drag in Fig. 2, the MITgcm

predicts a larger drag than in the theory. We have tried

to understand the causes of the differences, but find it

difficult to correct the error. A reason is that the major

FIG. 9. (a)–(c) Vertical velocities from the MITgcm corresponding to the theory in Figs. 6d–f. (d)–(f) Wind vectors from the MITgcm

corresponding to the theory in Figs. 7d–f.
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differences between the theory and the MITgcm are

essentially located near the surface (not shown), that is,

at places where viscous stress equals the Reynolds stress

and where the stepwise treatment of the lower boundary

can produce gridscale irregularities on these fields. As

such irregularities are likely to be damped out by dissi-

pation as we move away from the surface, we can

speculate that these low-level differences on the velocity

shears and pressure are not significant in the context of

the interactions between the waves and the large-scale

flow at upper levels.

6. Conclusions

In dynamical meteorology and oceanography, solu-

tions with constant viscosity have always been a start-

ing points to understand phenomena that involve the

interaction between the surface and the boundary

layer. Examples are numerous, from the Ekman (1905)

solutions systematically given in textbooks, the Prandtl

(1952) model for katabatic winds, the inclusion of a

boundary layer in the Miles theory for the generation

of oceanic waves (Benjamin 1959), or in theories of

sand ripples and dunes formation (Engelund 1970) (see

also Fowler 2001). In waves and dune theories, the fact

that the near-surface wind profiles play a crucial role

in the dynamics was early recognized (Miles 1957;

Benjamin 1959), and a first difficulty consisted in

solving the fourth-order Orr–Sommerfeld equation

and to introduce a corrugated bottom at the surface

(Fowler 2001). A difficulty arises if one wishes to in-

troduce stratification: the equation to solve becomes of

the sixth order [see Eq. (17)]. This difficulty plus the

facts that a constant eddy viscosity is a crude approxi-

mations of the turbulence in actual boundary layers,

are two reasons why the viscous problem is not often

treated in the stratified case. When it is, the techniques

used are extremely involved [see, for instance, the in-

troduction of ‘‘triple decks’’ in Sykes (1978)], and does

not permit to derive uniform approximations of the

solutions over the entire domain. As this last remark

also holds for more sophisticated eddy viscosity clo-

sure, it is fair to say that theories failed so far in pre-

dicting the vertical profiles of the wave Reynolds

stress, a quantity that is central in mountain meteo-

rology. For these reasons but also because more and

more papers in mountain meteorology call for a better

understanding of the interaction between boundary

layers and mountain waves, we found useful to solve

the viscous mountain wave problem theoretically, and

verify the theory with a fully nonlinear model (here the

MITgcm). Note that in the context of stratified oceanic

boundary layers over corrugated and tilted slopes, a

recent paper by Passaggia et al. (2014) shares the same

concern.

Once given this context, what are the messages that

could be useful in a more realistic context? The first is

probably that pressure drag and wave Reynolds stress

are well predicted by inviscid theory and if we take for

the incident flow, its value averaged over the inner-

layer depth. This depth has a definition that can be

generalized, at least conceptually. For instance, if the

boundary layer scheme uses first-order closure with

vertical diffusion coefficients, the coefficients and

tendencies can be linearized around the large-scale

resolved state. If we consider a small perturbation of

given horizontal scale, the inner-layer depth of in-

terest is that where advection by the resolved wind

equals the disturbance in boundary layer tendency.

These predictions of the drag and waves Reynolds

stress remain valid until the mountain height equals

the inner-layer scale. Our theory does not go beyond

that height. For higher mountains we should probably

average the incident flow over the mountain height to

obtain realistic predictions. Actually, this is what we

find with our model when imposing free slip boundary

condition in z5 h, that is, in an inviscid approximation

where the boundary layer depth is drastically reduced

(not shown).

For large values of the stratification, we also find that a

good fraction of the stress is dissipated near the top of

the inner layer, simply because the waves have shorter

vertical wavelength and are more dissipated there. This

effect is mitigated when the top of the hill is near the top

of the inner-layer scale again, but suggests that a good

fraction of themountain wave drag should be given back

to the flow near the top of the inner layer. Another in-

teresting result concerns the source of the mountain

wave stress. When the mountain is well inside the inner

layer, the wave stress is in good part extracted from the

inner layer itself rather than from the solid earth as in

the inviscid case. When the mountain slope approaches

the inner-layer depth this result is less applicable and a

good part of the pseudo momentum flux is directed to-

ward the surface as in the inviscid case (Durran 1995;

Lott 1998).

Our results could also be used to provide alternative

views concerning the dynamics of upstream blocking

and downslope winds. They occur through a near-

surface critical-level dynamics and without upper-

level wave breaking (remember that our theory is

linear inside the flow) providing that the flow is stable

J . 1, and that the mountain slope is near the inner-

layer scale. This confirms the results in Lott (2016) and

Damiens et al. (2018) who predicted these behaviors

using simpler theories and using simulations with
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WRF including more sophisticated boundary layers.

Another important result concerns the structure of

the inner layer itself: the downslope winds penetrate

well into it, as shown for instance in Fig. 7 when J 5 9

or J 5 16.

Last, for all the results presented here, we have

neglected that the mountain gravity waves necessarily

return to the surface in the constant shear case: they

are all trapped, and this effect should be taken into

account to give a more realistic treatment of the

constant shear case. To take this into account within

our theoretical framework we need to reject the hy-

drostatic approximation and we have to treat the in-

viscid solution in terms of Hankel functions (Keller

1994), a solution we will describe in a future paper.

Note that such subsequent development will also al-

low us to treat the nonstratified situation and de-

scribe the transition from the neutral to the stratified

case. Here we wanted to treat the hydrostatic case

first because an extremely rich dynamics already oc-

cur at the low level and we do not need to attribute

this dynamics to the fact that all the harmonics are

trapped.

In this paper also, the background shear flow is con-

stant, which corresponds to a boundary layer flow of

infinite depth. Hence, even though we insist on using the

terminology that the dynamics introduces an ‘‘inner’’

layer scale, it has to be clearly distinguished from the

plausible presence of a ‘‘boundary layer,’’ where the

incident wind present large curvature. Again, we can

treat such problem with our formalism by imposing

background flow with nonzero curvature, a situation

that can introduced trapped lee waves in the non-

hydrostatic case (Soufflet et al. 2019).
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APPENDIX A

Preconditioning of the Viscous Solution

To evaluate ~w2, ~w3, and ~w4 we proceed as in Lott

(2007), take the asymptotic forms in Eq. (18) when

~z. 5 and integrate down to ~z5 0 with a Runge–

Kutta algorithm. Nevertheless these solutions are ill-

conditioned when it comes to the inversion of the

boundary condition, essentially because ~w3 and ~w4

vary exponentially with altitude [see Eq. (18)]. To

circumvent this difficulty, rather than ~w2, ~w3, and ~w4

we have used 3 solutions ~wa, ~wb, and ~wc, whose as-

ymptotic behavior for ~z/‘ all match the inviscid

solution wI but do not grow exponentially fast

when ~z/ 0:

~w
a
(~z)5 ~w

2
(~z)1 ~a

3
~w
3
(~z)1 ~a

4
~w
4
(~z) , (A1a)

~w
b
(~z)5 ~w

2
(~z)1 ~b

3
~w
3
(~z)1 ~b

4
~w
4
(~z) , (A1b)

~w
c
(~z)5 ~w

2
(~z)1 ~c

3
(k)(~z)1 ~c

4
~w
4
(~z) . (A1c)

The three pairs (~a3, ~a4), ( ~b3, ~b4), and (~c3, ~c4) are

then chosen so that [›~z~ua(0), ›~z~ba(0)]5 (0, 0), [›~z~ub(0),
~pb(0)]5 (0, 0), and [›~z~bc(0), ~pc(0)]5 (0, 0), respectively.

These three solutions are shown in Fig. A1 for J5 1 and

Pr 5 0.5, they show moderate variations with inner al-

titude ~z, the exponential behavior of ~w3 and ~w4 has

clearly been mitigated by adopting finite amplitudes

values for the variables and their derivatives at the

surface. The boundary condition is then satisfied by

writing

w(x,h)’

ð
1‘

2‘

k d(k)[ f
a
(k)~w

a
( ~h)1 f

b
(k)~w

b
( ~h)

1 f
c
(k)~w

c
( ~h)]eik x dk5 0, (A2a)

u(x, h)’

ð
1‘

2‘

[ f
a
(k)~u

a
( ~h)1 f

b
(k)~u

b
( ~h)

1 f
c
(k)~u

c
( ~h)]eik x dk52h(x) , (A2b)

b(x, h)’

ð
1‘

2‘

[ f
a
(k)~b

a
( ~h)1 f

b
(k)~b

b
( ~h)

1 f
c
(k)~b

c
( ~h)]eik x dk52Jh(x) , (A2c)

where ~h(x, k)5 h[x/d(k)]. Once discretized in the

horizontal and spectral domain, the set of Eqs. (20)

corresponds to three linear equations involving nine

matrices [for instance one of the matrices has for

components kjd(kj)~wa( ~hij)e
ikjxidk] and three unknown

vectors [with components fa(kj), fb(kj), and fc(kj)] that

can be inverted with conventional matrix inversion

routines.

Still in this formalism, the uniform approximation of

w in Eq. (19) writes

w(k, z)5 k d(k)ff
a
(k)~w

a
[k, z/d(k)]

1 f
b
(k)~w

b
[k, z/d(k)]1 f

c
(k)~w

c
[k, z/d(k)]g,

(A3)

again with similar expression for u and b.
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APPENDIX B

Numerical Resolution

To solve numerically our problem we always take a

domain of length X5 100 spanned by N 5 1024 points,

which corresponds to a spectral resolution around

dk’ 0:01 and a spatial resolution around dx’ 0:1. In

the vertical we take grids of maximum depth Z5 3 and

smoothly varying vertical resolution. The variable

resolution is such that for z. 10S the grid spacing dz’

0.03 whereas near around and below the mountain top

dz ’ S/10. We will then systematically vary the other

two nondimensional parameters of the problem S

and J.

Concerning the variations in slope S, we have to as-

sume that the mountain is well in the inner layer, a

condition that needs to be satisfied for each harmonics.

Although this pauses a theoretical problem since in the

infinite Fourier integrals k can become extremely large

[and d(k) very small] it can be handled numerically once

fixed the horizontal scale of the domain over which

Fourier series approximate Fourier transform and once

fixed the number of horizontal grid points. More spe-

cifically, if kmax 5Np/X, the condition that the associ-

ated inner-layer depth is larger than the mountain top is

S/d(kmax)’ 1 or less. Nevertheless, and for moderately

large domain lengthX it happens that it is sufficient to

satisfy this condition for the dominant wavenumbers,

that is, to satisfy S/d(1)j1. This guaranties that the

dominant harmonics forced by the obstacle are still well

viscous near the mountain top. In this case, numerical

convergence was found up to around S ’ 0.15.
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