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ABSTRACT

17â-Hydroxysteroid dehydrogenase (17HSD) type
2 efficiently catalyzes the conversion of the high
activity 17â-hydroxy forms of sex steroids into less
potent 17-ketosteroids. In the present study in situ
hybridization was utilized to analyze the cellular
localization of 17HSD type 2 expression in adult
male and female mice. The data indicate that
17HSD type 2 mRNA is expressed in several
epithelial cell layers, including both absorptive and
secretory epithelia as well as protective epithelium.
In both males and females, strong expression of
17HSD type 2 was particularly detected in
epithelial cells of the gastrointestinal and urinary
tracts. The mRNA was expressed in the stratified
squamous epithelium of the esophagus, and surface
epithelial cells of the stomach, small intestine and
colon. The hepatocytes of the liver and the thick

limbs of the loops of Henle in the kidneys, as well as
the epithelium of the urinary bladder, also showed
strong expression of 17HSD type 2 mRNA in both
male and female mice. In the genital tracts, low
17HSD type 2 expression was detected in the
seminiferous tubules, the uterine epithelial cells and
the surface epithelium of the ovary. Expression of
the mRNA was also detected in the sebaceous
glands of the skin. The results indicate that in both
male and female mice, 17HSD type 2 is expressed
mainly in the various epithelial cell types of the
gastrointestinal and urinary tracts, and therefore
suggest a role for the enzyme in steroid inactivation
in a range of tissues and cell types not considered as
classical sex steroid target tissues.
Journal of Molecular Endocrinology (1998) 20, 67–74

INTRODUCTION

17â-Hydroxysteroid dehydrogenases (17HSDs)
catalyze the interconversion between neutral and
phenolic 17â-hydroxy and 17-ketosteroids such as
estrone (E1) and estradiol (E2), androstenedione
(A-dione) and testosterone (T), 5á-dihydro-
testosterone (DHT) and 5á-androstanedione (5á-
A-dione). In general, the 17â-hydroxy forms of
sex steroids have at least one order of magnitude
higher affinity for estrogen and androgen receptors
compared with the corresponding 17-ketosteroids.
Hence, 17HSDs catalyze reactions between highly
potent sex steroids and the far less potent 17-keto

forms. The following evidence indicates that
17HSD enzymes play a significant role in several
steps regulating the availability of the highly active
ligands for receptor binding at the target cells.
(i) Reductive 17HSD activity (17-keto to 17â-
hydroxy) catalyzes one of the last steps in the
biosynthesis of E2 and T in the ovaries and the
testes respectively. (ii) Oxidative 17HSD-activity
(17â-hydroxy to 17-keto) is one of the key
metabolic reactions involved in the inactivation
and excretion of sex steroids from the blood
circulation. (iii) 17HSD enzymes present in steroid
hormone target tissues regulate the relative
concentrations of 17â-hydroxy and 17-keto forms
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of estrogens and androgens locally at the target
tissue level.
At present five distinct 17HSD enzymes have

been identified in rodents (Ghersevich et al. 1994a,
Deyashiki et al. 1995, Normand et al. 1995, Akinola
et al. 1996, Nokelainen et al. 1996, Sha et al. 1996,
Mustonen et al. 1997), and four have been
characterized in humans (Peltoketo et al. 1988, Wu
et al. 1993, Geissler et al. 1994, Adamski et al.
1995). Each of the enzymes possesses unique
enzymatic properties and has a distinct tissue
distribution. Data obtained using rodent and human
tissue specimens and cell lines indicate that
reductive 17HSD type 1 and type 3 enzymes are
principally involved in E2 and T biosynthesis in the
ovaries and testes respectively (Geissler et al. 1994,
Ghersevich et al. 1994a,b, Poutanen et al. 1995,
Andersson et al. 1996, Miettinen et al. 1996). In
contrast, type 2 and type 4 enzymes exclusively
catalyze the opposite reaction, inactivating E2 to E1,
and T to A-dione (Wu et al. 1993, Leenders et al.
1994, Adamski et al. 1995, Normand et al. 1995,
Poutanen et al. 1995, Akinola et al. 1996, Andersson
et al. 1996, Dieuaide-Noubhani et al. 1996,
Miettinen et al. 1996, Mustonen et al. 1997). In
addition, DHT is converted to 5á-A-dione by the
type 2 enzyme (Wu et al. 1993, Elo et al. 1996).
In addition to the oxidation of E2 and T, the type

4 enzyme also catalyzes â-oxidation reactions of
fatty acids and intermediates of bile acid biosynthe-
sis (Dieuaide-Noubhani et al. 1996, Qin et al. 1997).
The enzyme is constitutively expressed in all human
and rodent tissues (Adamski et al. 1995, Mustonen
et al. 1997), and our recent findings suggest that,
when compared with 17HSD type 2, the type 4
enzyme is very inefficient at oxidizing E2 to E1
(Dieuaide-Noubhani et al. 1996, Qin et al. 1997).
The data, hence, suggest that, of the 17HSD
enzymes characterized to date, the type 2 enzyme is
most efficient at converting 17â-hydroxysteroids
into 17-keto forms. Up to now the cellular
distribution of 17HSD type 2 has been only
superficially characterized (Casey et al. 1994, Delos
et al. 1995, Zhang et al. 1996). The present study,
performed by utilizing in situ hybridization, shows
that 17HSD type 2 is particularly expressed in
numerous epithelial cell populations of the gastro-
intestinal and urogenital tracts of both male and
female mice.

MATERIALS AND METHODS

Materials

Radiolabeled [á-35S]dCTP (1300 Ci/mmol) was
purchased from DupontNEN (Boston, MA, USA).

Non-labeled nucleotides (rATP, rGTP and rUTP)
were purchased from Promega (Madison, WI,
USA). Restriction enzymes and DNA-modifying
enzymes were from New England Biolabs (Beverly,
MA, USA) and Boehringer (Mannheim, Germany).
GTG agarose was from FCM BioProducts
(Rockland, ME, USA) and the RNA ladder was
from BRL (Gaithersburg, MD, USA). T7 and SP6
RNA polymerases were from Promega, and pro-
teinase K and tRNA were from Boehringer. Other
reagents not mentioned were purchased either from
the Sigma Chemical Co. (St Louis, MO, USA) or
Merck AG (Darmstadt, Germany) and were of the
highest purity grade available.

Tissue specimens

In this study, formalin-fixed, paraffin-embedded
mouse tissues were used. Tissues excised from adult
BALB/c male and female mice were briefly washed
with PBS, fixed overnight in 4% paraformaldehyde–
PBS, dehydrated and embedded in paraffin (solidi-
fication point 51–53 )C, Merck). Thereafter, 7 µm
sections were cut and collected on glass slides. The
sections were dewaxed with xylene, and before
hybridization, reactive aldehyde groups remaining
after fixation were eliminated by 10-min treatment
in 0·1 M glycine/0·2 M Tris HCl, pH 7·4.

In situ hybridization

A 737 bp fragment (nucleotides 584–1320) of mouse
17HSD type 2 cDNA (Mustonen et al. 1997) was
cloned in pSP72 plasmid (Promega). Sense and
antisense [á-35S]CTP-labeled RNA probes were
transcribed with SP6 and T7 RNA polymerases
using linearized plasmids as templates. Before RNA
transcription, the protruding 3*-overhang produced
by SacI was destroyed by incubating the plasmid
with Klenow DNA polymerase for 15 min at 22 )C.
Specific activities of the synthesized RNA probes
were approximately 5#107 c.p.m./µl.
The in situ hybridization protocol was based on

that described by Chotteau-Lelievre et al. (1997),
with minor modifications. Briefly, the sections were
treated with proteinase K (1 µg/ml in 100 mM Tris
HCl, 50 mM EDTA, pH 8·0) for 15 min at 37 )C.
This was followed by post-fixation (30 min in 4%
paraformaldehyde–PBS), acetylation (10-min treat-
ment in 0·25% acetic anhydride in 0·1 M tri-
ethanolamine, pH 8·0) and dehydration in ethanol.
After drying the sections, 70 µl sense or antisense
RNA probes (20 000 c.p.m. labeled RNA/µl in
50% formamide, 0·3 M NaCl, 20 mM Tris HCl
(pH 8·0), 5 mM EDTA, 100 mM DTT, 0·5 mg
tRNA/ml, 1#Denhardt’s solution and 10% dextran
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sulfate) were applied to the tissues. Coverslips were
added and the slides were incubated at 60 )C
overnight.
The sections were then washed with 4#SSC and

10 mM DTT four times for 15 min each, followed
by a stringent wash for 30 min at 60 )C in 50%
formamide, 0·15 M NaCl, 30 mM Tris HCl, 5 mM
EDTA, pH 8·0. Thereafter the sections were
treated with RNase A solution (20 µg/ml) for 30 min
at 37 )C, washed for 15 min in 2#SSC at 60 )C and
15 min in 0·1#SSC at 60 )C and then dehydrated
with ethanol and air dried. The slides were then
dipped in NTB2 emulsion (Eastman Kodak,
Rochester, NY, USA; diluted 1:1 in 0·6 M
ammonium acetate), and exposed in the dark at 4 )C
for 15 days. The slides were then developed at 12 )C
by treating with D-19 solution (Eastman Kodak) for
2·5 min, rinsed in distilled water, fixed for 5 min in
Unifix (Eastman Kodak), and finally rinsed for
5 min in distilled water. Nuclei were further stained
with Hoechst 33258 (Sigma), after which the
slides were mounted with glycergel (DAKO A/S,
Glostrup, Denmark). Hybridization with a sense
probe was used as a control and no hybridization
signals were detected in any of the tissues analyzed.

RESULTS

By using Northern analysis, two mouse 17HSD
type 2 mRNA transcripts (0·9 and 1·2 kb) are
detected with a constant ratio in various tissues.
Sequencing results of several cDNA clones from a
liver library indicate that the predominant form, the
0·9 kb mRNA, codes for the full length functional
protein (Mustonen et al. 1997). Both of the mouse
mRNAs are identically detected by a cDNA
corresponding to the RNA-probe used in the
present study (nucleotides 584–1320 of the cDNA)
as well as with a full length cDNA probe (data not
shown). All this information indicates that the
present study reports the cellular localization of two
functional mouse 17HSD type 2 mRNAs. Further-
more, our previous results on the tissue distribution
of the mRNAs agree with the present data obtained
with in situ hybridization. In line with our previous
Northern analyses (Mustonen et al. 1997), type
2 mRNA was detected in several epithelial cell
layers of the gastrointestinal and urogenital tracts of
both male and female mice, including absorbtive
and secretory epithelium as well as protective
epithelium. No 17HSD type 2 expression was found
in connective tissues or muscle cell layers in any of
the tissue specimens analyzed. Neither was mRNA
expression detected in any parts of the respiratory
system, including epithelial cells of the trachea and

bronchi, or in the respiratory epithelium of alveolar
sacs. Furthermore, 17HSD type 2 mRNA was not
detected in any of the cell types present in the
pancreas, spleen, heart, brain or adrenals, in
which signals obtained with antisense probe were
indistinguishable from those found by hybridizing
with the sense probe (data not shown).

Male and female gastrointestinal tract and
liver

The localization and intensity of 17HSD type 2
mRNA expression were identical in the gastro-
intestinal tracts of both male and female mice. The
mRNA was expressed in several epithelial cell types
throughout the gastrointestinal tract. Strong expres-
sion of the mRNA was detected in the stratified
squamous epithelium of the esophagus, both in the
thoracic area (Fig. 1A) and at the esophago–gastric
junction (Fig. 1B). Moderate mRNA expression
was found in the surface epithelial cells of the
stomach (Fig. 1C and D), while gastric glands did
not show prominent expression. The mRNA for
17HSD type 2 was also strongly expressed in the
surface epithelium of the small intestine (Fig. 1E)
and colon (Fig. 1F), in which the highest expression
was seen at the tips of mucosal villi. Interestingly,
expression of the mRNA gradually increased
towards the tips of the villi. No expression was
found in the lamina propria or the muscularis
mucosae, or the submucosal layers of the esophagus,
stomach or intestine.
The hepatocytes, which develop from the endo-

dermal epithelium during embryogenesis, showed
equally strong expression of 17HSD type 2 mRNA
in both male and female mice (Fig. 1G and H). In
addition, the mucosal epithelium of the gall bladder
showed slight expression of the mRNA (Fig. 1I).

Male and female urogenital tract

In both male and female kidneys, the mRNA was
detected predominantly in deep layers of the cortex
and outer medulla (cortico–medullary junction),
most probably corresponding to the thick descend-
ing and/or ascending limbs of the loops of Henle
(Fig. 2A). No expression was found in the renal
corpuscles or in the collecting tubules of the
medulla. The transitional epithelium of the urinary
bladder showed a strong hybridization signal for
17HSD type 2 mRNA in both male and female mice
(Fig. 2B). However, the connective tissue and the
muscle cell layers did not show any expression for
the enzyme.
Among the male reproductive organs, hetero-

geneous expression of 17HSD type 2 mRNA was
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 2. Darkfield microscope images of the urogenital tract and skin, showing hybrid-
ization signals for 17HSD type 2. (A) In kidney the mRNA was expressed moderately in
the corticomedullary junction, i.e. in the thick descending and/or ascending limbs of the
loops of Henle, but no expression was found in the collecting tubules of the medulla (m)
or in the proximal tubules of the cortex (c) (arrow=glomerulus). (B) The epithelium of
the urinary bladder showed a strong hybridization signal for 17HSD type 2 mRNA. (C)
Heterogeneous expression of 17HSD type 2 mRNA was seen in the seminiferous tubules
(arrows) of testes. (D) The mRNA for type 2 was only slightly expressed in uterine
epithelial cells. (E) In the ovary, significant expression was found only in surface
epithelial cells (arrow). (F) The enzyme was also expressed in the sebaceous glands of the
skin (arrow). Magnification: A–E#160; F#400; nuclei were stained with Hoechst 33258
(blue color), lu=lumen.

 1. Darkfield microscope images of the gastrointestinal tissues and liver of male mice, showing hybridization
signals for 17HSD type 2. (A) A strong signal was detected in the stratified squamous epithelium of the thoracic
esophagus. (B) mRNA signal in the esophagus was strongest near the esophago–gastric junction (arrow). (C and D) In
surface epithelial cells of the stomach, the strongest expression was detected on the luminal surface, while no signal
was detected in the muscle cell layers (lower right corner in Fig. C). (E) The mRNA for 17HSD type 2 was strongly
expressed in the epithelial cells of mucosal villi of the small intestine. Expression of the mRNA increases gradually
towards the tips of the villi (arrow). (F) Strong expression of the mRNA was also detected in epithelial cells of the
colon. (G and H) A strong signal for 17HSD type 2 was seen in hepatocytes. (I) The mucosal epithelial cells of the
gall bladder showed only weak expression of the mRNA (arrows). Magnification: A–G, I#160; H#400; nuclei were
stained with Hoechst 33258 (blue color), lu=lumen.
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detected in approximately 30% of the seminiferous
tubules (Fig. 2C), suggesting that the enzyme is
expressed either in developing sperm cells or in
Sertoli cells. No detectable expression was found in
the interstitial space (Leydig cells), or in any cell
types of the epididymis, seminal vesicle or prostate.
In females, the mRNA was slightly expressed in
uterine epithelial cells (Fig. 2D). In the ovary, low
expression was found in surface epithelial cells
(Fig. 2E), and none in granulosa or theca cells at
any stage of follicular development. Similarly, the
mRNA was not detectable in corpora lutea.

Male and female skin

Expression of the mRNA was analyzed in female
and male skin, and it was found exclusively only in
sebaceous glands (Fig. 2F).

DISCUSSION

The substrate specificity of 17HSD type 2 is not
fully characterized, but the data available indicate
that the enzyme efficiently inactivates E2, T and
DHT into their corresponding inactive 17-keto
forms (Wu et al. 1993, Akinola et al. 1996, Elo et al.
1996, Miettinen et al. 1996, Mustonen et al. 1997),
while the opposite reductive reaction is not
catalyzed by the enzyme. In line with its enzymatic
activity, the present results indicate that the enzyme
is not expressed in ovarian follicles or testicular
Leydig cells, but it is detectable in ovarian surface
epithelial cells and in the seminiferous tubules of
the testis. Based on these results, together with
those of other recent studies (Wu et al. 1993,
Geissler et al. 1994, Akinola et al. 1996, Miettinen
et al. 1996, Mustonen et al. 1997), it is evident that
the enzyme does not significantly contribute to
E2 and T biosynthesis. However, using RT–PCR,
low amounts of 17HSD type 2 mRNA have
been detected in human corpora lutea (Zhang et al.
1996).
17HSD type 2 was initially cloned from a human

prostate library by using an expression cloning
technique with T as a substrate (Wu et al. 1993).
Northern analyses have, furthermore, shown that,
of the sex steroid target tissues, the enzyme is
expressed at least in benign and malignant human
prostate (Wu et al. 1993, Delos et al. 1995, Elo et al.
1996), and in normal human endometrium (Casey
et al. 1994, Miettinen et al. 1996). Previous data
suggest that in both human endometrium and
prostate the enzyme appears to be present in the
epithelial cells (Casey et al. 1994, Delos et al. 1995).
In line with the results of these studies, the enzyme

has also been detected in certain epithelial-like
cancer cell lines originating from these tissues
(Miettinen et al. 1996). It is likely therefore, that the
enzyme down-regulates sex steroid action locally in
the target tissues by inactivating circulating 17-
hydroxysteroids into their inactive 17-keto forms
(Casey et al. 1994, Elo et al. 1996, Miettinen et al.
1996). However, our recent Northern analyses have
shown that the enzyme is only slightly expressed in
rodent prostate and uterus (Akinola et al. 1996,
Mustonen et al. 1997). This, together with the
results of the present study, suggests a difference
between humans and rodents in 17HSD type 2
expression in the genital tract.
Compared with the uterus and prostate, stronger

expression of 17HSD type 2 mRNA is found in
several human and rodent tissues which are not
considered as classical steroid hormone target
tissues, including intestine, liver, kidney and brain
(Casey et al. 1994, Akinola et al. 1996, Miettinen
et al. 1996, Mustonen et al. 1997). In the present
study, strong expression of the mRNA was localized
in the epithelium of the esophagus, stomach, small
intestine, colon, urinary bladder and thick descend-
ing and/or ascending limbs of the loops of Henle in
the kidney, as well as in hepatocytes. By using
Northern analyses, 17HSD type 2 mRNA expres-
sion has been previously detected also in the brain
as well as in adrenals (Carsol et al. 1996, Mustonen
et al. 1997). However, in the present in situ
hybridization study, the mRNA could not be
detected in any of the sections obtained from
different areas of the brain and adrenals. This
suggests a low homogenous expression of the
mRNA throughout these tissues. Our recent
Northern analyses indicated that in the rat, 17HSD
type 2 mRNA is similarly expressed in both male
and female liver and small intestine, from late fetal
life to 6-week-old animals (Akinola et al. 1997).
This, together with the present findings, indicates
that there are no differences in 17HSD type 2
expression in the various epithelial cell types in male
and female mice. The data, therefore, suggest
constitutive expression of the enzyme in the
gastrointestinal tract, and that 17HSD type 2
expression is not related to the concentration or type
of sex steroid in the blood circulation. However,
estrogen receptors, but not androgen receptors,
have been localized in many of the cell types of the
gastrointestinal and urinary tracts expressing
17HSD type 2 (Riuzeweld de Winter et al. 1991,
Pacchioni et al. 1993, Thomas et al. 1993), and
additional studies are needed in order to character-
ize the role of 17HSD type 2 in the regulation of sex
steroid action locally in the different cell types of the
gastrointestinal tract.
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The expression of 17HSD type 2 in several
luminal epithelial cell types in both the gastro–
intestinal and urinary tracts suggests that the
enzyme could have a role in inactivating sex steroids
and steroid-like compounds found in the intestinal
contents. It is well known that orally administered
E2 and T are readily inactivated, and do not enter
the blood circulation in significant amounts. Hence,
it is likely that 17HSD type 2 is one of the enzymes
involved in the rapid degradation and excretion of
steroids in surface epithelial cells and hepatocytes in
the intestine and liver respectively.
17HSD type 2 is one of the short chain

dehydrogenases/reductases (SDR). In the family of
SDR-enzymes, 17HSD type 2 has the highest
identity (45%) with 11â-HSD (11HSD) type 2
(Baker 1995, Brown et al. 1996). The 11HSD type 2
enzyme possesses a predominant oxidative activity
inactivating cortisol (11â-hydroxy) to cortisone
(11-keto), and the activity of the enzyme has been
shown to be crucial for aldosterone action in
mineralocorticoid target tissues (Edwards et al.
1988, Funder et al. 1988, Mune et al. 1995). It has
been suggested that the 11HSD and 17HSD type 2
enzymes have sufficiently conserved their tertiary
structures such that 17HSD type 2 could also
metabolize a corticosteroid (Baker 1995). Interest-
ingly, the cellular distribution shown for 11HSD
type 2 (Roland & Funder 1996, Smith et al. 1996) is
very close to that resolved for 17HSD type 2 in the
present study. However, in cultured cells, cortisol
does not affect the E2 to E1 conversion catalyzed by
17HSD type 2 (data not shown), indicating that the
putative 11HSD activity of the enzyme is not
significant compared with its 17HSD activity. As
E2 and T have not been shown to possess any
significant affinity towards mineralocorticoid re-
ceptors (Arriza et al. 1987, Alnemri et al. 1991),
the physiological role, if any, of 17HSD type 2
in mineralocorticoid target tissues remains to be
characterized. In conclusion, the localization of
17HSD type 2 in several surface epithelial cells of
the gastrointestinal and urinary tracts suggests a
role for the enzyme in steroid inactivation in a range
of tissues and cell types not considered as classical
sex steroid target tissues.
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