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Abstract

In recent years it has become clear that the therapeutic properties of bone marrow-derived mesenchymal stromal cells
(MSC) are related not only to their ability to differentiate into different lineages but also to their capacity to suppress the
immune response. We here studied the influence of MSC on macrophage function. Using mouse thioglycolate-elicited
peritoneal macrophages (M) stimulated with LPS, we found that MSC markedly suppressed the production of the
inflammatory cytokines TNF-a, IL-6, IL-12p70 and interferon-c while increased the production of IL-10 and IL-12p40. Similar
results were observed using supernatants from MSC suggesting that factor(s) constitutively released by MSC are involved.
Supporting a role for PGE2 we observed that acetylsalicylic acid impaired the ability of MSC to inhibit the production of
inflammatory cytokines and to stimulate the production of IL-10 by LPS-stimulated M. Moreover, we found that MSC
constitutively produce PGE2 at levels able to inhibit the production of TNF-a and IL-6 by activated M. MSC also inhibited the
up-regulation of CD86 and MHC class II in LPS-stimulated M impairing their ability to activate antigen-specific T CD4+ cells.
On the other hand, they stimulated the uptake of apoptotic thymocytes by M. Of note, MSC turned M into cells highly
susceptible to infection with the parasite Trypanosoma cruzi increasing more than 5-fold the rate of M infection. Using a
model of inflammation triggered by s.c. implantation of glass cylinders, we found that MSC stimulated the recruitment of
macrophages which showed a low expression of CD86 and the MHC class II molecule Iab and a high ability to produce IL-10
and IL-12p40, but not IL-12 p70. In summary, our results suggest that MSC switch M into a regulatory profile characterized
by a low ability to produce inflammatory cytokines, a high ability to phagocyte apoptotic cells, and a marked increase in
their susceptibility to infection by intracellular pathogens.
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Introduction

Bone marrow-derived mesenchymal stromal cells (MSC) are

pluripotent adult stromal cells able to differentiate into different cell

types such as osteoblasts, chondrocytes and adipocytes [1]. These

cells preferentially home to damaged tissues and therefore they have

attracted scientific attention as potential therapeutic tools for tissue

repair [1–3]. Studies performed in the last years, however,

demonstrated that MSC exert potent immunomodulatory effects

and support the notion that the therapeutic potential of MSC is not

only related to their ability to differentiate into different lineages but

also to their capacity to suppress the immune response [4,5].

A larger number of studies mainly performed in vitro have

shown that MSC display immunomodulatory capacities. MSC

inhibit the differentiation of monocytes and CD34+ haematopoi-

etic progenitor cells into dendritic cells (DC) [6,7]. They suppress

the maturation of DC and the ability of DC to produce

inflammatory cytokines as well as T helper-type 1 (Th1)-

promoting cytokines such as IL-12p70 [6–9]. MSC inhibit

cytotoxicity and production of interferon-c by NK cells [10,11],

and also exert a potent immunosuppressive effect on T cells. They

suppress T-cell proliferation induced by alloantigens, mitogens

and soluble antigens [12–14]. Interestingly, this inhibition appears

to be not MHC restricted as it can be induced by either autologous

or allogeneic MSC. Other immunosuppressive effects mediated by

MSC on T cells include down regulation of T-CD8+-mediated

cytotoxicity [15] and expansion of regulatory T cells [16]. MSC

are also able to regulate B cell function, suppressing both,

proliferation of B cells in response to anti-Ig antibodies, soluble

CD40, and cytokines, and antibody production [17,18]. The

mechanisms underlying the immunosuppressive effects mediated

by MSC are not fully defined, but they appear to be largely

mediated by a number of soluble factors produced by MSC, either

constitutively or in response to paracrine signals derived from
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leukocytes. These soluble mediators include transforming growth

factor-b1 (TGFb1), hepatocyte growth factor, PGE2, indoleamine

2,3-dioxygenase (IDO), haem oxygenase-1, soluble HLA-G5, IL-

10 and IL-6 [4,5,14].

Little is known about the effect of MSC on macrophages, a

critical player of the innate immune response involved in almost all

immune-mediated diseases. In the present study we analyzed this

subject. We show here that MSC turns activated macrophages into

a regulatory profile characterized by a low ability to produce

inflammatory cytokines, a high ability to phagocyte apoptotic cells,

and a dramatic increase in their susceptibility to infection with the

parasite Trypanosoma cruzi (T. cruzi).

Materials and Methods

Mice
All experiments were conducted using 2-mo-old virgin female

C57BL/6 mice or ovalbumin (OVA)-specific, MHC II-restricted,

T-cell-receptor transgenic mice (OT-II mice). OT-II mice carry a

transgenic CD4 TCR specific for the MHC class II-restricted

OVA peptide aa 323–339. Mice were housed six per cage and kept

at 2062uC under automatic 12-h light-dark schedule. All animal

experiments were performed according to the NIH Guide for the

Care and Use of Laboratory Animals and approved by the ethical

committee of the ‘‘Instituto de Leucemia Experimental’’ (ILEX)

(Academia Nacional de Medicina, Buenos Aires, Argentina).

Mouse MSC cultures
MSC were isolated and cultured using standard protocols [19].

Bone marrow cells from C57BL/6 mice were collected by flushing

the femurs and tibias from 8–12-week-old mice with RPMI medium

supplemented with 5% heat-inactivated fetal calf serum (FCS)

(Invitrogen, CA, USA). Erythrocytes-depleted bone marrow cells

were plated at a density of 46106 cells per cm2 in RPMI medium

supplemented with 10% FCS, 100 IU/ml penicillin and 100 mg/ml

streptomycin (Invitrogen). Culture medium was changed at day 2 to

remove nonadherent cells. Whole medium was subsequently

replaced weekly. The cells were grown for 3–4 weeks until almost

confluent. Adherent cells were then detached by 0.25% trypsin-

EDTA and replated using a 1:3 dilution until passage 2. Subsequent

passaging and seeding of the cells were performed at a density of

5,000 cells per cm2. MSC were used after 4–7 passages.

Analysis of MSC
Osteogenic and adipogenic differentiation assays were per-

formed as previously described [20]. For standard osteogenic

differentiation, confluent monolayers of MSC were incubated in

medium supplemented with 1028 M dexamethasone, 50 mM

ascorbic acid, and 10 mM b-glycerol phosphate (Sigma-Aldrich,

Buenos Aires, Argentina) with changes of medium every 5 days.

After 30 days the cultures were fixed with 70% cold ethanol for 1 h

at room temperature, and incubated with Alizarin Red S (2%

aqueous solution, pH 4.1–4.3, adjusted with ammonium hydrox-

ide) for 30 min. Excess stain was removed by washing four times

with water. For standard adipogenic differentiation, confluent

monolayers of MSC were incubated in medium supplemented

with 1028 M dexamethasone and 1024 M L-ascorbic acid 2-

phosphate (Sigma-Aldrich) with changes of medium every 5 days.

After 30 days, the cultures were fixed in 3% formaldehyde in PBS

for 10 minutes and stained with Oil Red O.

The phenotype of MSC was analyzed by flow cytometry using a

FACScan flowcytometer (BD Biosciences, NJ, USA). The

following mAb were used: fluorescein isothiocyanate (FITC)-

labeled anti-CD3, anti-B220, anti-CD31, anti-TER119, anti-

SCA-1, anti-CD90, phycoerythrin (PE)-labeled anti-CD11b,

anti-GR1, anti-CD45, anti-CD11c, anti-Ly6C, and anti-CKIT

(BD Biosciences). Isotype controls were used in all cases. To block

unspecific antibody binding cells were pre-treated for 30 min at

4uC with saturating concentrations of anti-mouse Fcc receptor

blocking antibodies purified from 24G2 hybridoma supernatants.

Inflammatory peritoneal macrophages
Thioglycolate-elicited peritoneal macrophages (M) were obtained

as previously described [21]. Briefly, 30 g of dehydrated Brewer

thioglycolate medium powder (Sigma-Aldrich) was dissolved in

1000 mL deionized water and autoclaved for 20 minutes at 15

pounds of pressure (121uC). The preparation was kept in the dark

under sterile conditions at room temperature for at least 6 months

before use. Peritoneal exudate cells were elicited by i.p. injection of

2 ml of 3% sterile thioglycolate. Cells, consisting mostly of

macrophages (over 90%), were harvested by peritoneal lavage using

5 ml RPMI medium supplemented with 5% FBS, 4 days after

intraperitoneal injection of thioglycolate. Cells were plated in 48-well

flat-bottom culture plates at 56105 cells/well in RPMI medium

supplemented with 10% fetal bovine serum, 100 IU/ml penicillin

and 100 mg/ml streptomycin. After 2 h of incubation at 37uC

nonadherent cells were removed by vigorous washing. The purity of

macrophage preparations (over 98%) was assessed by flow

cytometry using FITC-labeled IgG anti-CD11b (BD Biosciences).

The phenotype of macrophages was analyzed using FITC- or PE-

labeled mAb directed to CD86, Iab, CD40, H2Db, CD36, CD14,

and Toll-like receptor 2 (TLR2) (BD Biosciences). Isotype controls

were used in all cases. To block unspecific antibody binding, cells

were pre-treated for 30 min at 4uC with saturating concentrations of

anti-mouse Fcc receptor blocking antibodies purified from 2.4G2

hybridoma supernatants. When indicated, macrophages were

treated with a blocking antibody directed to the IL-10 receptor

(10 mg/ml, 1B1.3a, BD Biosciences).

Co-culture of macrophages and mesenchymal stromal
cells
MSC and M were suspended in RPMI medium supplemented

with 10% heat-inactivated FCS, 100 IU/ml penicillin and 100 mg/

ml streptomycin. MSC were plated in 48-well flat-bottom plates at

56103 cells/cm2. Once cells reached confluence, 56105 macro-

phages were added to each well (MSC: M ratio ,1:10). Controls

include M and MSC cultured alone. Cells were cultured overnight

and then incubated for an additional period of 18 h with or without

LPS 30 ng/ml. For generation of MSC-conditioned medium, MSC

grown to confluence were incubated for 24 h at 37uC. Supernatants

were then collected and stored at 220uC until use.

Analysis of cytokine production by ELISA
M, MSC, and M plus MSC cultured overnight were incubated

for an additional period of 18 h with or without LPS, and the

presence of the follow cytokines in the supernatants was evaluated

by ELISA: TNF-a, IL-6, IL-12p70, IL-23, IL-12p40, IFN-c (e-

Bioscience,CA, USA), and IL-10 (BD Biosciences), following

manufacturer’s instructions. Production of prostaglandin E2

(PGE2) in the supernatants of MSC was evaluated by ELISA

(Cayman Chemical). When indicated, cells were incubated in the

presence of acetylsalicylic acid (ASA) or PGE2 (Sigma-Aldrich).

Analysis of cytokine production by intracellular staining
and flow cytometry
To establish the cellular source of the cytokines released in the

co-cultures of M and MSC, the production of TNF-a and IL-10
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was also analyzed by intracellular staining and flow cytometry. In

these experiments, M, MSC, and M plus MSC cultured overnight,

were incubated for 18 h with or without LPS. Brefeldin A (10 mg/

ml) was added during the last 6 h of culture to inhibit the release of

cytokines. Cells were detached with cold-PBS, resuspended in

RPMI medium supplemented with 5% FCS, and incubated with

saturating concentrations of anti-mouse Fcc receptor blocking

antibodies purified from 2.4G2 hybridome supernatants. Cells

were then stained with FITC-labeled antibodies directed to

CD11b, washed, fixed, permeabilized and stained with PE-labeled

antibodies directed to TNF-a or IL-10 (BD Biosciences).

Proliferation of OT-II TCD4+ cells induced by OVA-primed
macrophages
Thioglycolate-elicited peritoneal macrophages (M) (16105 cells/

100 ml) were cultured overnight in 96 well-flat bottom plates with

culture medium alone or MSC-conditioned medium. After

washing, cells were treated with LPS (30 ng/ml) in the absence

or presence of OVA (500 mg/ml) for 18 hs. After this period, M

were washed and fresh culture medium was added. Spleen T

CD4+ cells from OT-II mice were purified by negative selection

using a T CD4+ cell isolation kit (Miltenyi). Purified T CD4+ cells

(.95% purity) were labeled with carboxyfluorescein diacetate

succinimidyl ester (CFSE, Molecular Probes) (5 mM, 15 min at

37uC). Cells were washed and analyzed by flow cytometry to be

sure that all the cells showed a single fluorescence peak.

Macrophages and CFSE-labeled OT-II T CD4+ cells were

cultured together (M:T cell ratio 1:5) for 72 h. Cells were then

harvested and stained with PE-labeled anti-CD4 mAb (BD

Pharmingen). Proliferation of the CFSE-labeled T CD4+ cells

was analyzed by flow cytometry.

Quantification of cellular apoptosis and viability by
fluorescence microscopy
Quantification was performed by fluorescence microscopy, as

previously described [22], using the fluorescent DNA-binding dyes

acridine orange (Sigma-Aldrich) (100 mg/ml, to determine the

percentage of cells that had undergone apoptosis) and ethidium

bromide (Sigma-Aldrich) (100 mg/ml; to differentiate between

viable and non-viable cells). With this method, non-apoptotic cell

nuclei show ‘structure’, i.e. variations in fluorescence intensity that

reflect the distribution of euchromatin and heterochromatin. By

contrast, apoptotic nuclei exhibit highly condensed chromatin that

is uniformly stained by acridine orange. In fact, the entire

apoptotic nucleus are present as bright spherical beads. To assess

the percentage of cells showing morphological features of

apoptosis, at least 200 cells were scored in each experiment.

Phagocytosis of apoptotic thymocytes by macrophages
Thymuses were obtained from 6–8-week-old C57BL/6 mice

and minced to yield a single-cell suspension. Thymocytes were

labeled with carboxyfluorescein diacetate succinimidyl ester

(CFSE) (5 mM, 15 min at 37uC). To induce apoptosis, thymocytes

were cultured in RPMI medium supplemented with 5% FCS and

2 mM dexamethasone at a concentration of 56106 cells/ml for

8 h. This treatment yields a population with more than 80% of

apoptotic thymocytes and a low degree of contamination by late

apoptotic or necrotic cells. M were plated in 48-well flat-bottom

culture plates at a concentration of 56105 macrophages per well,

and incubated overnight in RPMI medium supplemented with

10% heat-inactivated FCS, 100 IU/ml penicillin and 100 mg/ml

streptomycin, in the absence or presence of MSC (M: MSC ratio

10:1). Apoptotic tymocytes were then added (M: thymocyte

ratio = 1:10), and cells were incubated for 1 h at 37uC. Cultures

were then washed extensively with RPMI and detached with cold

PBS. The number of apoptotic thymocytes inside each macro-

phage was determined by fluorescence microscope using PE-

labeled IgG anti-CD11b. At least 200 macrophages were scored in

each experiment.

Phagocytosis of zymosan particles by macrophages
M were plated in 48-well flat-bottom culture plates at a

concentration of 56105 macrophages per well, and incubated

overnight in RPMI medium supplemented with 10% heat-

inactivated FCS, 100 IU/ml penicillin and 100 mg/ml streptomy-

cin, in the absence or presence of MSC (M: MSC ratio 10:1).

FITC-zymosan (250 mg/ml) was added and phagocytosis of

zymosan particles by M was analyzed after 1 h of incubation at

37uC, using PE-labeled IgG anti-CD11b and flow cytometry.

Infection of macrophages by Trypanosoma cruzi
Macrophages (2.56105/well), were cultured overnight in the

absence or presence of MSC (M: MSC ratio = 10:1) in 8-

chamber-slides (Nunc TM, PA, USA). Then, cells were infected

with bloodstream trypomastigotes of the T. cruzi strain RA [23] at

M: T. cruzi ratio of 1:5 for 3 h at 37uC. The cultures were washed

five times to remove free parasites and the cells were cultured for

an additional period of 45 h at 37uC under 5% CO2. Cells were

then washed, fixed (4% paraformaldehyde in PBS for 20 min at

room temperature) and permeabilized (0.1% Triton X-100 in

PBS). Fcc receptors were blocked using saturating concentrations

of anti-mouse Fcc receptor blocking antibodies purified from

2.4G2 hybridoma supernatants, and the infection of M was

determined by analyzing the presence of intracellular amastigotes

by immunofluorescence assays using a rabbit polyclonal serum

directed to T. cruzi and FITC-labeled goat anti-rabbit IgG

(Sigma-Aldrich) and PE-labeled antibodies directed to CD11b.

Cells were mounted onto microscopic slides using 10% glycerol

containing the anti-fade reagent paraphenylenediamine. At least

twenty random microscopic fields (400X) and 1000 cells per

culture were acquired using a Spot RT digital camera attached to

a Nikon Eclipse 600 fluorescence microscope (Nikon Inc),

supplied with the adequate excitation and emission filters. Cell

quantification was performed with the ImageJ open source

software developed at the National Institutes of Health (NIH,

USA).

Mice infection by T. cruzi
Two-months old C57Bl/6 female mice were infected by

intraperitoneal (IP) route with 16105 bloodstream trypomastigotes

of the lethal pantropic/reticulotropic RA strain of Trypanosoma

cruzi, as previously described [24]. This parasite strain is routinely

maintained by weekly passages in CF1 mice. MSC (2.56106/

500 ml pyrogen-free PBS) or PBS (controls) were inoculated by

intraperitoneal route at days 4 and 10 post-infection. Parasitemia

was measured after the tenth day post-infection. Blood was

obtained from a small cut at the end of the tail. The blood was

diluted fivefold in red blood cell lysis buffer (150 mM NH4Cl,

0.1 mM EDTA, and 10 mM KHCO3, pH 7.4), and parasitemia

was measured in a Neubauer chamber. Mouse deaths were

recorded on a daily basis.

Inflammatory response induced by s.c. implantation of
glass cylinders
A model of chronic inflammation was carried out in C57BL/6

mice, as previously described [25]. Briefly, glass cylinders of 2 cm

Macrophages and MSC
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long, 8 mm wide and around 200 ml internal volume were

implanted s.c. into 8-to 12-week-old C57BL/6. It has been shown

that the cylinders cause a strong inflammatory process that leads to

their infiltration predominantly by macrophages and also to the

close of both ends of the cylinders by fibrotic tissue [25]. Two and

7 days after the cylinders were implanted in the mice, 26105 MSC

in 50 ml of pyrogen free-PBS or 50 ml pyrogen-free PBS alone

(controls) were inoculated inside the cylinders, using a 22 g needle.

After 15 days the liquid content of the cylinders was aspirated

using a 22 g needle, centrifuged and the levels of the cytokines

TNF-a, IL-12p70, IL-12p40 and IL-10 were determined by

ELISA. Cylinders were removed, washed with saline and placed in

cold PBS (4uC) for 30 min. Using a specially designed scraper,

adherent cells were then removed from the interior of each

cylinder (.90% macrophages) to obtain a single cell suspension.

The phenotype of adherent macrophages was analyzed by flow

cytometry.

Statistical analysis
Student’s paired t test was used to determine the significance of

differences between mean values, and p,0.05 was determined to

indicate statistical significance. Differences in the survival of mice

infected by T. cruzi were analysed by means of the Kaplan-Meier

test followed by log-rank (Mantel-Haenszel) test.

Results

MSC characterization
Mouse MSC were obtained from bone marrow of adult

C57BL/6J mice by adherence to plastic culture flasks as previously

described [19]. Cells had been passaged from 4 to 7 times were

used in all the experiments. Flow cytometric analysis demonstrated

that MSC were devoid of typical hematopoietic and endothelial

markers. MSC did not express CD11b, CD45, CD31, CD34,

CD11c, Gr-1, c-kit, TER-119, B220, CD3, but express MSC-

associated antigens such as Sca-1 (stem cell antigen-1) and CD90.2

(Figure 1A). Morphologically, these cells had a spindled,

fibroblast appearance after expansion (Figure 1B). Culture in

adipocyte-differentiation media induced the differentiation of

MSC into cells containing drops of fat revealed by the colorant

Oil Red O, while the culture of MSC in osteogenic-differentiation

media results in the formation of calcium containing precipitates

which were visualized by staining with Alizarin Red S

(Figures 1C and D).

MSC turns inflammatory macrophages into a regulatory
profile
In a first set of experiments we examined the ability of MSC to

modulate the production of cytokines by thioglycolate-elicited

Figure 1. Characterization of bone marrow-derived mesenchymal stromal cells (MSC). MSC were isolated from bone marrow of adult
C57BL/6J and cultured using standard protocols. (A) Analysis of the phenotype of MSC by flow cytometry. Grey histograms represent isotype controls
(B) Morphology of MSC. (C) Culture of MSC in adipocyte-differentiation media showing cells containing drops of fat revealed by Oil Red O. (D) Culture
of MSC in osteogenic-differentiation media showing the formation of calcium containing precipitates stained by Alizarin Red S. A representative
experiment is shown.
doi:10.1371/journal.pone.0009252.g001
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peritoneal macrophages (M). M were harvested as described under

Materials and Methods, and they were cultured overnight in the

absence or presence of MSC (M: MSC ratio = 10:1). Cells were

then washed and incubated for an additional period of 18 h with

or without LPS (30 ng/ml), and the presence of the cytokines

TNF-a, IL-6, IL-12p70, IL-23, IL-12p40 and IL-10 was evaluated

in the supernatants by ELISA. The results obtained are shown in

Figure 2A. Little or no production of cytokines was observed in

the cultures of M, MSC or M plus MSC performed in the absence

of LPS. Addition of LPS did not stimulate the production of

cytokines by MSC but triggered a burst of cytokine production by

M. Interestingly, MSC markedly suppressed the production of the

proinflammatory cytokines TNF-a, IL-6, and IL-12p70 while

increased the production of both IL-12p40 and the anti-

inflammatory cytokine IL-10. No production of IL-23 was

detected in any condition.

To evaluate the possible contribution of MSC to the production

of cytokines observed in co-cultures of M and MSC stimulated by

LPS, the presence of TNF-a and IL-10 was analyzed by

intracellular staining and flow cytometry. Activation by LPS

resulted in the stimulation of TNF-a and IL-10 production by M

but not by MSC and, consistent with the analysis of cytokines

performed by ELISA in culture supernatants, intracellular staining

of M showed that MSC inhibit the production of TNF-a while

increased the production of IL-10 (Figure 2B).

Interferon-c (IFN-c) plays a critical role in innate and adaptive

immunity. It is the key cytokine to induce the activation of

macrophages by increasing the expression of MHC class II and

costimulatory molecules and the production of inflammatory

mediators enabling macrophages to display a high anti-microbial

and tumoricidal activity [26,27]. IFN-c is typically produced by

NK cells, NKT cells, TH1 cells and T CD8+ cells [26,27]. A

number of studies have proposed that macrophages are also able

to produce IFN-c [28-31]. Our results showed in Figure 2C

indicated that M produced substantial amounts of IFN-c upon

activation by LPS, and also that the production of IFN-c was

markedly diminished by MSC. While this result reinforces the

notion that MSC suppress the production of inflammatory

cytokines, the cellular source of IFN-c in the cultures of M

remains uncertain. It should be noted that our preparations of

macrophages collected from peritoneal exudates contained

between 1.0 and 2.0% of contaminant lymphocytes, and previous

studies challenging the assumption that myeloid cells produce

IFN-c demonstrated that the production of IFN-c by inflamma-

tory peritoneal macrophages could be accounted by the presence

of minute numbers of contaminating lymphocytes (,0.4%), some

of which express myeloid markers and hence, are not easily

distinguishable from macrophages [32,33].

Experiments were then designed to determine whether the

modulation exerted by MSC on the production of cytokines by M

was dependent on cell-to-cell contact and/or was mediated by

soluble factors released by MSC. To this aim, MSC grown to

confluence were cultured alone for 24 h and the supernatants were

collected. Figure 3 shows that supernatants from MSC (50% v/v)

exerted a modulatory action similar than MSC. In fact, MSC

supernatants inhibited the production of the pro-inflammatory

Figure 2. MSC inhibit the production of inflammatory cytokines and enhance the production of IL-10 by thioglycolate-elicited
peritoneal macrophages (M). M were cultured overnight in the absence or presence of MSC (M: MSC ratio = 10:1). Cells were then washed and
incubated for 18 h with or without LPS (30 ng/ml), and cytokines were analyzed in cell-supernatants by ELISA (A and C) or by intracellular staining
and flow cytometry (B). (A and C) Results are expressed in pg/ml and represent the arithmetic mean 6 SEM of 5–6 experiments. (B) Representative
dot-plots (n = 4) are shown. Inside the circle MSC. *, p,0.05 for M+MSC+LPS vs M+LPS.
doi:10.1371/journal.pone.0009252.g002
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cytokines TNF-a, IL-6, IL-12 p70, and IFN-c while increased the

production of IL-12p40 and IL-10 by LPS-activated M. The

ability of MSC supernatants to inhibit the production of TNF-a

and to stimulate the production of IL-10, however, was lower in

comparison with the effect mediated by MSC (see Figure 2A)

perhaps reflecting the short half life of the mediator(s) released by

MSC and/or the participation of cell-to-cell contact-dependent

mechanisms.

Data in Figure 4 showed that the ability of MSC to down-

regulate the production of inflammatory cytokines and up-regulate

the production of IL-10 by LPS-stimulated M was strongly

inhibited when co-cultures of M and MSC were performed in the

presence of acetylsalicylic acid (ASA), a cyclo-oxygenase inhibitor.

This suggests that MSC regulate the cytokine profile of activated

M through the release of PGE2, one of the major immunomod-

ulator factors produced by MSC [4,5,14]. We then analyzed

whether MSC constitutively produce PGE2. MSC were grown to

confluence and cultured for an additional period of 24 h.

Supernatants were collected and the levels of PGE2 were

determined by ELISA. MSC supernatants contained 4.361.2

ng/ml of PGE2 (mean 6 SEM, n= 4). Interestingly, data showed

in Figure 4B indicated that these concentrations of PGE2 were

able to significantly inhibit the production of TNF-a and IL-6 by

LPS-stimulated M. On the other hand, since data in Figure 2A

showed that MSC constitutively produce low levels of IL-10 we

performed another set of experiments using blocking antibodies

directed to the IL-10 receptor to determine whether IL-10

secreted by MSC could contribute to the inhibition of the

production of inflammatory cytokines by LPS-stimulated M. We

observed that treatment of macrophages with anti-IL-10 receptor

antibodies (10 mg/ml) did not impair the ability of MSC

supernatants to inhibit the production of IL-6 and IL-12p70 by

activated macrophages (data not shown).

Not only the production of cytokines but also the phenotype of

activated M was regulated by MSC. Results shown in Figure 5A

indicated that MSC significantly impaired the up-regulation in the

expression of both, the costimulatory molecule CD86 and MHC

class II (Iab) induced by LPS, without affecting the expression of

CD40 and the class I molecule H2Db. Similar results were

observed with supernatants collected from MSC cultures (data not

shown). The ability of MSC to prevent the up-regulation of CD86

and Iab in LPS-stimulated M supports the notion that MSC might

impair the ability of M to act as an antigen-presenting cell. This

hypothesis was analyzed using T CD4+ cells isolated from the

spleen of OT-II mice, which bear a transgenic ab T cell receptor

specific for the MHC class II-restricted OVA 323–339 peptide. In

these experiments, M were cultured overnight in 96 well-flat

Figure 3. MSC regulate the profile of cytokines produced by
activated M through the release of soluble factor(s). MSC grown
to confluence were cultured alone for 24 h and the cell-supernatants
were then harvested. M were cultured for 18 h with or without LPS
(30 ng/ml) in the absence or presence of MSC supernatants (50% V/V)
and cytokines were analyzed in cell-supernatants by ELISA. Results are
expressed in pg/ml and represent the arithmetic mean 6 SEM of 5
experiments. *, p,0.05 for M+Sn+LPS vs M+LPS.
doi:10.1371/journal.pone.0009252.g003

Figure 4. Acetylsalicylic acid (ASA) impairs the ability of MSC
to modulate the profile of cytokines produced by M. (A) M were
cultured overnight in the absence or presence of MSC (M: MSC
ratio = 10:1) with or without ASA (0.5 mM). Cells were then washed and
incubated for 18 h with LPS (30 ng/ml), in the absence or presence of
ASA (0.5 mM) and cytokines were analyzed in cell-supernatants by
ELISA. (B) M were cultured overnight in the absence (controls) or
presence of different concentrations of PGE2. Then, cells were
incubated for 18 h with LPS (30 ng/ml) and cytokines were analyzed
in cell-supernatants by ELISA. Results are expressed in pg/ml and
represent the arithmetic mean6 SEM of 4–5 experiments. *, p,0.05 for
M+MSC+ASA vs M+MSC, and for M+LPS+PGE2 vs M+LPS.
doi:10.1371/journal.pone.0009252.g004
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bottom plates with culture medium alone or MSC-conditioned

medium (50% V/V) (Sn). After washing, cells were treated with

LPS (30 ng/ml) in the presence of OVA (500 mg/ml) for 18 hs.

Then, M were washed and incubated with CFSE-labelled OT-II

T CD4+ cells for 72 h. Cells were stained with PE-labeled anti-

CD4 mAb, and the proliferation of the CFSE-labelled T CD4+

cells was analyzed by flow cytometry. Figure 5B shows a

representative experiment (n = 5) indicating that supernatants

from MSC markedly suppress the ability of LPS-activated M to

induce the proliferation of OTII T CD4+ cells (% inhibi-

tion= 59614, n = 5, p,0.05 vs controls).

MSC stimulate phagocytosis of apoptotic thymocytes by
inflammatory macrophages
In the last few years it has become clear that, like dendritic cells

and T cells, macrophages display remarkable plasticity. Upon

activation they can differentiate into different profiles according

the microenvironment stimuli [34–37]. The profile of cytokines

produced by M cultured with MSC support the notion that M

differentiate into a regulatory or alternative profile under the

influence of MSC. Since regulatory macrophages might contribute

to the resolution of inflammatory processes, not only by releasing

anti-inflammatory cytokines but also by promoting the clearance

of apoptotic cells [37,38], we analyzed whether M cultured in the

presence of MSC displayed a higher ability to phagocyte apoptotic

cells. Experiments were performed by incubating M and MSC (M:

MSC ratio = 10:1) with apoptotic thymocytes (M: thymocyte

ratio = 1:10), for 1 h at 37uC. Phagocytosis was evaluated by

fluorescence microscopy using thymocytes labeled with the green

fluorescent dye CFSE and macrophages stained with PE-labeled

IgG antibodies directed to CD11b. Results in Figure 6A–C show

that MSC stimulated phagocytosis of apoptotic thymocytes by

macrophages. Interestingly, a similar enhancing effect was found

using supernatants collected from MSC grown to confluence

during 24 h (Figure 6D), supporting that stimulation of

phagocytosis of apoptotic cells is mediated by the release of

factor(s) constitutively produced by MSC. On the other hand, the

fact that M cultured with MSC showed no stimulation in their

ability to phagocytize zymosan particles (Figure 6E) strongly

suggests that the increased ability to phagocytize apoptotic cells do

not merely reflect a higher endocytic ability of M cultured with

MSC. Recognition of apoptotic cells by phagocytes involves a

number of receptors able to recognize ‘‘eat-me signals’’ expressed

on the surface of apoptotic cells [39]. Among these receptors

expressed by macrophages the scavenger receptor CD36 and the

glycosylphosphatidylinositol-anchored LPS receptor CD14 appear

to play an important role [39,40]. To analyze whether the ability

of MSC to stimulate phagocytosis of apoptotic thymocytes by

macrophages was related to an increased expression of receptors

able to recognize apoptotic cells we analyzed the expression of

CD36 and CD14 in M cultured overnight with MSC superna-

tants. Results in Figures 6 F and G show that MSC supernatants

did not increase the expression of CD36 and CD14 by

macrophages, but rather, they significantly reduced the expression

of both receptors.

MSC markedly increase the susceptibility of
macrophages to infection with the parasite Trypanosoma
cruzi
Infection with the protozoan flagellate parasite T. cruzi causes

Chagas’disease, a widely distributed infection which represents a

major health problem in many Latin American countries.

Macrophages are one of the most important targets of T. cruzi

infection [41]. A large body of evidence indicates that classically

activated macrophages play an essential role in host defense

against T. cruzi by virtue of their ability to destroy intracellular

Figure 5. MSC inhibit the up-regulation of CD86 and MHC class
II (Iab) in M stimulated by LPS and impairs antigen presenta-
tion to T CD4+ cells. (A) M were cultured overnight in the absence or
presence of MSC (M: MSC ratio = 10:1). Cells were then washed and
incubated for 18 h with or without LPS (30 ng/ml), and the expression
of CD86, MHC class II (Iab), CD40 and MHC class I (H2Db) in M was
analyzed using FITC-labeled antibodies directed to CD11b and PE-
labeled antibodies directed to CD86, Iab, CD40, and H2Db, in the gate of
CD11b-positive cells. Results are expressed as the mean fluorescence
intensity (MFI) values and represent the arithmetic mean 6 SEM of 4-5
experiments. *, p,0.05 for M+MSC+LPS vs M+LPS. (B) M (1x105 cells/
100 ml) were cultured overnight in 96 well-flat bottom plates with
culture medium alone or MSC-conditioned medium (50% V/V). After
washing, cells were treated with LPS (30 ng/ml) in the presence of OVA
(500 mg/ml) for 18 hs. After this period, M were washed and fresh
culture medium was added. Spleen T CD4+ cells from OT-II mice were
purified and labeled with CFSE, as described under Materials and
Methods. Macrophages and CFSE-labeled OT-II T CD4+ cells were
cultured together (M:T cell ratio 1:5) for 72 h. Cells were stained with
PE-labeled anti-CD4 mAb, and the proliferation of the CFSE-labeled T
CD4+ cells was analyzed by flow cytometry. A representative
experiment is shown (n= 5). No proliferation was observed when LPS-
stimulated M were cultured without OVA.
doi:10.1371/journal.pone.0009252.g005
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parasites via the production of nitric oxide, a cytotoxic mediator

produced by macrophages under the influence of interferon-c and

TNF-a [42,43]. By contrast, regulatory or alternatively activated

macrophages, for example those activated by IL-4, fail to control

the infection being super-infected [44]. Because our results support

the notion that macrophages differentiate into a regulatory-like

profile under the influence of MSC, we examined whether MSC

increased the susceptibility of M to T. cruzi infection. In these

experiments, M cultured overnight alone or in the presence of

MSC were infected by exposure to T. cruzi trypomastigotes (M: T.

cruzi ratio = 1:5) for 3 h. Cells were then washed, and cultured for

an additional period of 48 h. Then, cells were fixed, permeabi-

lized, stained and intracellular amastigotes were identified by

fluorescence microscopy. Results in Figure 7A–C show that the

culture of M with MSC resulted in a marked increase (.5-fold) in

the percentage of infected M. Supernatants collected from MSC

grown to confluence during 24 h failed to reproduce this effect

(data not shown). We conclude that MSC turn inflammatory

macrophages into cells highly susceptible to T. cruzi infection.

Previous studies have shown that the resistance of macrophages to

the infection by T. cruzi is strongly dependent on the expression of

toll-like receptors (TLRs) 2 and 9 which recognize T. cruzi derived

molecules such as GPI anchors and DNA CpG motifs, respectively

[45,46]. To analyze whether MSC might increase the susceptibil-

ity of M to T. cruzi infection by inhibiting the expression of TLRs,

M were cultured overnight in the absence or presence of MSC and

the expression of TLR2 was then analyzed by flow cytometry. A

representative experiment is shown in Figure 7D. A marked

reduction in the expression of TLR2 was observed in M cultured

with MSC compared with M cultured alone: % inhibition in the

expression of TLR2= 78616 (n= 4, p,0.05 vs controls). This

suggests that the increased susceptibility of M cultured with MSC

to the infection by T. cruzi may be related to a decreased

expression of TLRs.

Additional experiments were performed to analyze whether the

ability of MSC to make macrophages more susceptible to T. cruzi

infection might have an impact in vivo. To this aim, we studied the

effect of MSC on the course of T. cruzi infection in a murine

model. Mice were infected by i.p route with 16105 bloodstream

trypomastigotes of the lethal pantropic/reticulotropic RA strain of

T. cruzi. Four and eight days post-infection MSC (2.56106/500 ml

pyrogen-free PBS) or PBS (controls) were inoculated by intraper-

Figure 6. MSC stimulate the uptake of apoptotic thymocytes by M. M were cultured overnight in the absence or presence of MSC (M: MSC
ratio 10:1). Apoptotic thymocytes labeled with CFSE were then added (M: thymocyte ratio = 1:10), and cells were incubated for 1 h at 37uC. The
number of apoptotic thymocytes inside each macrophage was analyzed by fluorescence microscopy using PE-labeled IgG anti-CD11b. At least 200
macrophages were scored in each experiment. (A) Results are expressed as the number of thymocytes internalized per macrophage and represent
the arithmetic mean6 SEM of five experiments. *, p,0.05 for M+MSC vs M. (B) Representative images of phagocytosis of apoptotic thymocytes by M
cultured alone (B) or in the presence of MSC (C). (D) MSC grown to confluence were cultured alone for 24 h and the cell-supernatants were then
harvested. M were cultured overnight with or without MSC supernatants (50% V/V). Apoptotic thymocytes labeled with CFSE were then added (M:
thymocyte ratio = 1:10), and cells were incubated for 1 h at 37uC. The number of apoptotic thymocytes inside each macrophage was analyzed as
described above. Results represent the arithmetic mean 6 SEM of four experiments. *, p,0.05 for M+Sn vs M. (E) M were cultured overnight in the
absence or presence of MSC (M: MSC ratio 10:1). FITC-labeled zymosan particles (250 m/ml) were then added and phagocytosis was evaluated after 1
h of incubation at 37uC, using PE-labeled IgG anti-CD11b and flow cytometry, in the gate of CD11b-positive cells. Grey histogram represents the
fluorescence of M cultured without zymosan particles. It was similar for M cultured in the absence or presence of MSC. A representative experiment
(n = 4) is shown. (F and G) MSC grown to confluence were cultured alone for 24 h and the cell-supernatants were then harvested. M were cultured
overnight with or without MSC supernatants (50% V/V). Cells were washed and the expression of CD36 and CD14 was analyzed by flow cytometry.
Results are expressed as the mean fluorescence intensity (MFI) values and represent the arithmetic mean6 SEM of 4 experiments. *, p,0.05 for M+Sn
vs M.
doi:10.1371/journal.pone.0009252.g006
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itoneal route. Blood parasitemia was analyzed at days 10, 14, and

17 post-infection, while mouse deaths were recorded on a daily

basis. The results obtained are showed in Figures 7E and F.

They indicated that administration of MSC modified neither

parasitemia nor the mortality rate of infected mice.

MSC promote the recruitment of macrophages and their
differentiation into a regulatory-like profile in vivo
The lack of effect of MSC on the course of T. cruzi infection

prompted us to investigate their ability to modulate the profile of

macrophages in another experimental model in which MSC were

close together with macrophages at the inflammatory foci. To this

aim we used a non-infectious model of inflammation induced by

s.c. implantation of glass cylinders [25]. These cylinders induce a

strong inflammatory response that leads to both, macrophage

infiltration and the rapid close of both ends of the cylinders by

fibrotic tissue [25, and Isturiz M, personal communication]. One

cylinder was implanted in each mice, and 2 and 7 days later 26105

MSC in 50 ml of PBS or PBS alone (controls) were inoculated

inside the cylinders. After 15 days, the liquid content inside the

cylinders were harvested and the levels of TNF-a, IL-12p70, IL-

12p40 and IL-10 were determined by ELISA. At this time,

cylinders were removed from the mice, washed and adherent cells

(.90% macrophages) were detached with a cell scraper at 4uC,

counted, and characterized by flow cytometry. Figure 8A show

that MSC enhanced the infiltration of the cylinders by

macrophages. In fact, MSC-treated cylinders contained a number

of macrophages at least 3-fold higher compared with untreated

cylinders. Moreover, these macrophages expressed lower levels of

the class II molecule Iab and CD86 compared with macrophages

from untreated cylinders (Figures 8B and C). The analysis of

cytokines in the liquid harvested from the inside of the cylinders

(Figure 8D) revealed that MSC-treated cylinders contained lower

levels of IL-12 p70 and higher levels of IL-10 and IL-12p40,

compared with untreated cylinders. Low levels of TNF-a were

detected in both untreated and MSC-treated cylinders.

Discussion

Mesenchymal stromal cells have emerged as a promising

therapeutic tool in regenerative medicine. Although little is known

about the in vivo behavior of MSC, they have been introduced in

the clinic with encouraging preliminary results [2,5,47]. The

mechanisms underlying the therapeutic properties of MSC are not

well defined. They have been classically related to the stem-cell-

like properties of MSC. Recent findings, however, suggest that the

therapeutic properties of MSC in a variety of settings are due to

their anti-inflammatory and immunomodulatory abilities

[2,4,5,47]. In fact, the immunomodulatory effects of MSCs have

Figure 7. MSC turn M into cells highly susceptible to T. cruzi infection.Mwere cultured overnight in the absence or presence of MSC (M: MSC
ratio 10:1). T. cruzi trypomastigotes (M: T. cruzi ratio = 1:5) were then added and incubated for 3 h. Cells were then washed, and cultured for 45 h.
Finally, cells were fixed, permeabilized, stained and the presence of intracellular amastigotes was analyzed by fluorescence microscopy as described
under Materials and Methods. (A and B) Representative images of intracellular amastigotes in M cultured overnight in the absence (A) or presence (B)
of MSC. (C) Results are expressed as the percentage of infected macrophages and represent the arithmetic mean 6 SEM of five experiments. *,
p,0.05 for M+MSC vs M. (D) M were cultured overnight in the absence or presence of MSC (M: MSC ratio 10:1). Cells were then washed and the
expression of TLR2 in M was analyzed using PE-labeled antibodies directed to TLR2, in the gate of CD11b(FITC)-positive cells. Grey histogram
represents the isotype control. A representative experiment (n = 4) is shown. (E and F) Two-months old C57Bl/6 female mice were infected by
intraperitoneal (IP) route with 16105 bloodstream trypomastigotes of the lethal pantropic/reticulotropic RA strain of T. cruzi. MSC (2.56106/500 ml
pyrogen-free PBS) or PBS (controls) were inoculated by intraperitoneal route at days 4 and 10 post-infection. (F) Parasitemia was measured at days 8,
14, and 17 post-infection and the results are expressed as the number of T cruzi/ml blood (n = 10 for each experimental group). (E) Mouse deaths
were recorded on a daily basis. Results are expressed as survival percent (n = 10 for each experimental group).
doi:10.1371/journal.pone.0009252.g007
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been validated not only in vitro, but also in vivo, in a number of

animal models related to either alloreactive immunity, autoim-

munity or anti-tumor immunity [2,4,5,47].

Many studies have been performed to characterize the

immunomodulatory effects mediated by MSC. These studies have

mainly focused on the action exerted on T and B lymphocytes,

dendritic cells, and NK cells [4–18]. Little attention has been paid

to the analysis of macrophage function. Two recent studies have

analyzed this subject. Németh, K et al. [48] showed that

administration of MSC to mice before or shortly after inducing

sepsis by cecal ligation and puncture reduced mortality and

improved organ function. The beneficial effect of MSC was

eliminated by macrophage depletion or by blocking antibodies

directed to the cytokine IL-10 or the IL-10 receptor. This supports

that the therapeutic action mediated by MSC is induced through

the stimulation of IL-10 production by macrophages. The authors

also showed, in vitro, that MSC increased the production of IL-10

by LPS-stimulated macrophages and demonstrated that this effect

is mediated by PGE2 released by MSC. Moreover, Gupta et al.

[49] showed that intrapulmonary delivery of bone marrow-derived

mesenchymal stromal cells improves survival and attenuates

endotoxin-induced acute lung injury in mice. The analysis of

cytokines in bronchoalveolar lavage and plasma of endotoxin-

challenged mice revealed in MSC-treated mice, lower concentra-

tions of TNF-a and MIP-2 and higher concentrations of IL-10

compared with untreated mice. No differences were found in the

levels of PGE2. Because alveolar macrophages are the prominent

source of cytokines in this model of acute inflammation the authors

also analyzed in vitro whether MSC were able to modulate the

production of cytokines by alveolar macrophages stimulated by

LPS. They found that MSC exert a low but significant inhibitory

effect on the production of TNF-a without affecting the

production of MIP-2, while the levels of IL-10 were undetectable.

Together, the studies carried out by Németh [48] and Gupta [49]

in two different models of acute inflammation support the notion

that MSC are able to inhibit the inflammatory response mediated

by macrophages through PGE2-dependent or independent

mechanisms.

Our observations showing that MSC suppress the production of

TNF-a by inflammatory-peritoneal macrophages stimulated by

LPS are consistent with the results reported by Németh [48] and

Gupta [49], and also by Yang et al. [50]. We also found that other

inflammatory cytokines such as IL-6, IL-12p70 and IFN-c are

suppressed under the influence of MSC while the production of

IL-10 was significantly enhanced. Of note, the ability of MSC to

inhibit the production of the cytokines IL-12p70 and IFN-c

Figure 8. MSC stimulate ‘‘in vivo’’ the recruitment of macrophages and direct their differentiation into a regulatory-like profile. A
Glass cylinder of 2 cm long, 8 mm wide and around 200 ml internal volume was implanted s.c. into 8-to 12-week-old C57BL/6 mice. Two and 7 days
after the cylinders were implanted in the mice, 26105 MSC in 50 ml of pyrogen free-PBS or PBS alone (controls) were inoculated inside the cylinders,
using a 22 g needle. After 15 days the liquid content of the cylinders was aspirated and the levels of the cytokines TNF-a, IL-12p70, IL-12p40 and IL-10
were determined by ELISA (D). Cylinders were removed, washed with saline and placed in cold PBS (4uC) for 30 min. Adherent cells (.90%
macrophages) were removed from the interior of each cylinder to obtain a single cell suspension. The number of the macrophages recruited in each
cylinder was measured (A), and their expression of Iab and CD86 was analyzed by flow cytometry (B-C). Results represent the arithmetic mean6 SEM
(n = 12 for each experimental group). *, p,0.05 for Controls (CT) vs MSC.
doi:10.1371/journal.pone.0009252.g008

Macrophages and MSC

PLoS ONE | www.plosone.org 10 February 2010 | Volume 5 | Issue 2 | e9252



suggest that MSC might be able to suppress inflammation not only

by inhibiting the production of pro-inflammatory cytokines during

the early step of the inflammatory process, but also by suppressing

the induction of Th1 responses which are mainly dependent on

IL-12p70 and IFN-c. We also observed that MSC markedly

increase the production of IL-12p40 by LPS-activated M. The p40

chain is the common subunit of IL-12p70 and IL-23, but it also

secreted as a p80 homodimer [51]. We did not detect any

production of IL-23 by M. This observation together with our

results indicating that MSC profoundly inhibits the production of

IL12p70 suggests that a large proportion of the p40 produced by

LPS-activated M under the influence of MSC might be secreted as

a p80 homodimer. Interestingly, it has been suggested that the p80

homodimer binds to the IL-12 receptor and acts as a potent IL-

12p70 antagonist [52,53].

Our results suggest that MSC switch the macrophages to an

anti-inflammatory profile not only by suppressing the production

of inflammatory cytokines enhancing the production of IL-10, but

also by stimulating the phagocytosis of apoptotic cells, a novel

mechanism through which MSC might contribute to ameliorate

tissue injury. Interestingly, all these effects were induced by either

MSC or supernatants collected from unstimulated MSC cultured

alone, indicating that the modulatory action exerted by MSC on

macrophage function is largely mediated by factors constitutively

produced by MSC. This contrasted with previous studies directed

to characterize certain immunomodulatory effects mediated by

MSC on T and B lymphocytes, since they appeared to require

some degree of MSC activation [4,5,14].

The clearance of apoptotic cells plays a critical role in the

resolution of inflammatory processes [54]. In fact, inflammation

usually involves the local recruitment of large number of

leukocytes which undergo apoptosis at the inflammatory foci. If

apoptotic cells are not efficiently removed they release intracellular

constituents able to further increase the course of inflammation,

among them, ATP, K+ ions, uric acid, high-mobility group box 1

protein (HMGB1) and several members of the S100 calcium-

binding protein family [55]. The mechanisms through which MSC

increase phagocytosis of apoptotic thymocytes by macrophages

remain to be determined. MSC were completely unable to

increase the uptake of zymosan particles by macrophages,

supporting that the increased ability of macrophages to phagocy-

tize apoptotic cells is not due to an improved efficiency of their

phagocytic machinery. Moreover, two important receptors

involved in the recognition of apoptotic cells, CD36 and CD14,

were down-regulated in M cultured under the influence of MSC.

It should be noted, however, that the uptake of apoptotic cells by

professional phagocytes depends, besides CD36 and CD14, on a

complex system of receptors [39,40], some of which might be up-

regulated in macrophages under the influence of MSC.

Of note, we found that MSC induce a marked increase in the

susceptibility of macrophages to infection with the protozoan

flagellate parasite T. cruzi the etiologic agent of Chagas’disease

[41]. The mechanisms responsible for the inherent relative

resistance of macrophages to infection by T. cruzi appear to be

linked to the production of the inflammatory cytokines TNF-a, IL-

12p70, and IFN-c which drive nitric oxide production [41–44].

Our results showing that MSC down-regulated the production of

all of these cytokines in LPS-stimulated macrophages suggest that

a diminished ability to produce inflammatory cytokines might be

the reason for the increased susceptibility to infection. Interest-

ingly, and contrasting with the suppression of inflammatory

cytokines found in LPS-stimulated macrophages, we observed that

supernatants from MSC failed to increase the susceptibility of

macrophages to T. cruzi-infection (unpublished results) suggesting

that cell-to-cell contact-dependent mechanisms are involved.

Previous studies have shown that when macrophages and T. cruzi

are co-incubated in vitro, macrophage resistance to infection

requires the expression of TLRs 2 and 9 which recognize T. cruzi-

derived pathogen-associated molecular patterns (PAMPs) leading

to the activation of potent microbicidal mechanisms [45,46]. We

did not study the expression of TLR9 but found that MSC

induced a marked decrease in the expression of TLR2 which

might explain, at least in part, the enhanced macrophage

susceptibility to T. cruzi infection. On the other hand, in the

experiments directed to evaluate whether the adoptive transfer of

MSC to T. cruzi infected mice resulted in a more aggressive course

of infection, we failed to detect any effect. Not only parasitemia

levels but also the rates of death of infected mice were similar in

untreated and MSC-treated mice. Since MSC appear to enhance

the susceptibility of macrophages to T. cruzi infection by cell-to cell

contact-dependent mechanisms, this results might reflect the

inability of MSC to reach the major sites of parasite multiplication

such as the spleen and the liver.

Guided by this presumption, we then analyzed in vivo the

immunomodulatory activity of MSC in another experimental

model in which MSC were close together with macrophages

during the course of an inflammatory response. Subcutaneous

implantation of glass cylinders induces a strong inflammatory

response leading to both, macrophage infiltration in the interior of

the cylinders and the rapid occlusion of both ends of the cylinders

by fibrotic tissue [25], thus favoring the retention of transferred

MSC inside the cylinders. In this model, we found that MSC

enhanced the infiltration of the glass cylinders by macrophages.

Consistent with our in vitro observations, these macrophages

showed low levels of the class II molecule Iab and CD86.

Moreover, the analysis of the liquid content of the cylinders

revealed that MSC-treated cylinders contained lower levels of IL-

12 p70 and higher levels of IL-10 and IL-12p40, compared with

untreated cylinders. Low levels of TNF-a were found in both

untreated and MSC-treated cylinders. Together, these results

support the notion that during the course of an inflammatory

response MSC might favor the resolution of inflammation via the

recruitment and differentiation of macrophages into a regulatory-

like profile.

Our results show that MSC impose dramatic changes in the

function of macrophages inhibiting the production of anti-

inflammtory cytokines, promoting their ability to phagocytize

apoptotic cells and enhancing their susceptibility to T. cruzi

infection. Interestingly, each of the changes appears to involve, at

least partially, different mechanisms. Experiments performed with

ASA and PGE2 support a relevant role for PGE2 in the ability of

MSC to modulate the cytokine profile of activated macrophages.

By contrast, PGE2 does not appear to be involved in the

stimulation of the phagocytosis of apoptotic cells by macrophages.

In fact, previous studies have already shown that PGE2 did not

modify [56] or significantly suppress [57], the uptake of apoptotic

cells by macrophages. Consistent with these observations, we

found that PGE2 did not increase the uptake of apoptotic

thymocytes by macrophages (Maggini J, unpublished observation).

Finally, the enhanced susceptibility of macrophages to T cruzi

infection induced by MSC appeared to be mainly dependent on

mechanisms that require the physical interaction between MSC

and macrophages. Thus, our results suggest that MSC display

different mechanisms to modulate the functional profile of

macrophages.

Not only dendritic cells and T cells, but also macrophages,

display a remarkable plasticity and can dramatically change their

physiology in response to environmental stimuli. Mosser and
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Edwards [37] have recently proposed three major populations of

macrophages based on three different homeostatic activities; host

defense (classically-activated macrophages), wound healing

(wound-healing macrophages) and immune regulation (regulatory

macrophages). Our results support the notion that under the

influence of MSC, classically activated macrophages turn into

wound-healing or regulatory macrophages, suggesting a novel

mechanism through which MSC might modulate the course of the

immune response.
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Experimental Chagas’ disease: electrophysiology and cell composition of the
neuromyopathic inflammatory lesions in mice infected with a myotropic and a
pantropic strain of Trypanosoma cruzi. Clin Immunol Immunopathol 73:
69–79.

25. Barrionuevo P, Beigier-Bompadre M, Ilarregui JM, Toscano MA, Bianco GA, et
al. (2007) A novel function for galectin-1 at the crossroad of innate and adaptive
immunity: galectin-1 regulates monocyte/macrophage physiology through a
nonapoptotic ERK-dependent pathway. J Immunol 178: 436–445.

26. Farrar MA, Schreiber RD (1993) The molecular cell biology of interferon-c and
its receptor. Annu Rev Immunol 11: 571–611.

27. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an
overview of signals, mechanisms and functions. J Leuk Biol 75: 163–189.

28. Puddu P, Fantuzzi L, Borghi P, Varano B, Rainaldi G, et al. (1997) IL-12
induces IFN-gamma expression and secretion in mouse peritoneal macrophages.
J Immunol 159: 3490–3497.

29. Munder M, Mallo M, Eichmann K, Modolell M (1998) Murine macrophages
secrete interferon gamma upon combined stimulation with interleukin (IL)-12
and IL-18: A novel pathway of autocrine macrophage activation. J Exp Med
187: 2103–2108.

30. Frucht DM, Fukao T, Bogdan C, Schindler H, O’Shea JJ (2001) IFN-gamma
production by antigen-presenting cells: mechanisms emerge. Trends Immunol
22: 556–560.

31. Darwich L, Coma G, Peña R, Bellido R, Blanco EJ, et al. (2009) Secretion of
interferon-gamma by human macrophages demonstrated ate the single-cell level
alter costimulation with interleukin (IL)-12 plus IL-18. Immunol 126: 386–393.

32. Schleicher U, Hesse A, Bogdan C (2005) Minute numbers of contaminant CD8+
T cells or CD11b+CD11c+ NK cells are the source of IFN-c in IL-12/IL-18
stimulated mouse macrophage populations. Blood 105: 1319–1328.

33. Bogdan C, Schleicher U (2006) Production of interferon-c by myeloid cells-fact
or fancy? Trends Immunol 27: 282–290.

34. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:
23–35.

35. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev
Immunol 5: 953–964.

36. Kreider T, Anthony RM, Urban JF Jr, Gause WC (2007) Alternatively activated
macrophages in helmint infections. Curr Opin Immunol 19: 448–453.

37. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage
activation. Nat Rev Immunol 8: 958–969.

38. Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-
inflammatory and proresolving lipid mediators and pathway. Annu Rev
Immunol 25: 101–137.

39. Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a
good meal. Nat Rev Immunol 7: 964–974.

40. Erwig LP, Henson PM (2008) Clearance of apoptotic cells by phagocytes. Cell
Death Differ 15: 243–250.

41. Moncayo A, Ortiz Yanine MI (2006) An update on Chagas disease (human
American tripanosomiasis). Ann Trop Med Parasitol 100: 663–677.
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