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1  | INTRODUC TION

Fibroblast growth factors (FGFs) are master regulators of develop-

ment and tissue repair, and abnormal expression of FGFs or their 

receptors is associated with a wide variety of human diseases.1-3 

Most of the 22 members of the mammalian FGF family bind 

and activate four receptor tyrosine kinases, designated FGFR1-

FGFR4,3 which exert distinct functions in different tissues and 

organs. In some cases, however, partially overlapping functions 

of FGFRS have been discovered as revealed by a stronger phe-

notype of double- compared with single-knockout mice. This was 

previously demonstrated in our laboratory for the skin through 

generation and characterization of mice lacking FGFR1 or FGFR2 

or both receptors in keratinocytes.4 Whereas mice lacking only 

FGFR1 in this cell type are phenotypically normal, mice lacking 

FGFR2 in keratinocytes develop hair follicle and sebaceous gland 

abnormalities and mild, although progressive skin inflammation.4,5 

Interestingly, loss of both receptors resulted in a strong phenotype 
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Abstract
Fibroblast growth factors (FGFs) are key regulators of tissue development, homeo-

stasis and repair, and abnormal FGF signalling is associated with various human dis-

eases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes 

benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have 

not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for 

mouse skin development, homeostasis and wound repair. However, the defect in the 

epidermal barrier and the resulting inflammatory skin disease that develops in mice 

lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional 

loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 

double-knockout mice and even more in mice lacking all three FGFRs, revealing func-

tional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal 

barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act 

together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 

being the dominant receptor.
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characterized by progressive loss of hair follicles and sebaceous 

glands and development of chronic skin inflammation.4,6,7 This 

finding demonstrates that FGFR1 signalling is unmasked in the ab-

sence of FGFR2, probably through FGF10/FGF22 signalling to the 

b splice variant of FGFR1.2,4 The phenotype of the double mutant 

mice (designated K5-R1/R2 mice) shows many similarities to the 

skin inflammation that occurs in patients with the chronic inflam-

matory skin disease atopic dermatitis (AD).4,6-8 It results from a 

defect in the epidermal barrier that is caused at least in part by 

decreased expression of major tight junction components that are 

under direct control of FGFR signalling in keratinocytes,4,6-8 We 

showed that different types of immune cells are attracted and/

or activated upon establishment of the barrier defect, and growth 

factors and cytokines secreted by immune cells and fibroblasts 

caused keratinocyte hyperproliferation and epidermal thicken-

ing.4,6-8 Nevertheless, the double-knockout mice have a normal 
life expectancy and the inflammatory phenotype remains surpris-

ingly mild under non-challenged conditions. This suggested that 

other FGF receptors or receptors for different growth factors can 

compensate at least in part for the loss of FGFR1 and FGFR2 in 

keratinocytes. As FGFR3, in particular the FGFR3b splice variant, 

is also expressed in the murine epidermis,9 we speculated that loss 

of this receptor in K5-R1/R2 mice would aggravate the phenotype. 

In addition, a phenotype in mice lacking only FGFR3 in keratino-

cytes was anticipated, as activating mutations in the FGFR3 gene 

are the cause of the genetic skin disorder acanthosis nigricans and 

also induce seborrhoeic keratosis and epidermal naevi.10-13 Here, 

we show, however, that loss of FGFR3 in keratinocytes does not 

obviously affect skin morphogenesis, homeostasis or wound re-

pair in mice. Surprisingly, loss of all FGF receptors in keratinocytes 

is compatible with life, but the FGFR3 deficiency further aggra-

vated some of the phenotypic abnormalities seen in K5-R1/R2 

mice. Overall, these results identify FGFR2 as the major functional 

FGF receptor in keratinocytes, whereas FGFR1 and FGFR3 have a 

“back-up” function.

2  | MATERIAL S AND METHODS

2.1 | Mice

Mice lacking FGFR1 and FGFR2 in keratinocytes (K5-R1/R2 mice) 

were previously described.4,6-8,14 To generate mice lacking a func-

tional FGFR3 protein in keratinocytes, we mated mice with floxed 

FGFR3 alleles15 with K5-Cre mice.16 Triple mutant mice were ob-

tained by crossing females with floxed FGFR3 alleles with K5-R1/

R2 males (Figure 1A). The F1 generation was paired inter se until 

K5-R1/R2/R3 mice were obtained as described in Figure 1A. All K5-

Cre mice used for breeding were males, as global deletion occurred 

with females.16 Because of the difficult breeding scheme, each ex-

periment included mice from different litters, but at least 1-2 mice 

from the same litter were used for a direct comparison in all experi-

ments. All mice were in C57BL/6 genetic background. Control mice 

(Ctrl) were mice with floxed FGFR alleles but without Cre recombi-

nase or occasionally K5-Cre mice. They were housed under specific 

pathogen-free conditions and received food and water ad libitum. 

Mouse maintenance and all animal experiments had been approved 

by the veterinary authorities of Zurich, Switzerland (Kantonales 

Veterinäramt Zürich).

2.2 | Establishment and culture of primary mouse 
keratinocytes

Keratinocytes were isolated from single mice as described previ-

ously4 and cultured in defined keratinocyte serum-free medium 

(Invitrogen) supplemented with 10 ng/mL epidermal growth factor 

(EGF), 10−10 mol/L cholera toxin and 100 U/mL penicillin/100 μg/

mL streptomycin (all from Sigma) in keratinocyte medium.17 Plates 

were coated with collagen IV (2.5 g/cm2) prior to seeding of the 

cells.

2.3 | 5-Bromo-2′-deoxyuridine (BrdU) 
incorporation assay

Primary keratinocytes were incubated overnight in keratinocyte 

serum-free medium without EGF. EGF (Sigma) or FGF1 (Peprotech) 

was added to a final concentration of 10 ng/mL and incubated 

for 24 hours. After 20 hours, BrdU (Sigma) was added to the cell 

culture medium at a final concentration of 100 μmol/L followed 

by incubation for 4 hours at 37°C and 5% CO2. Then, cells were 

washed with PBS and fixed with 4% paraformaldehyde for 30 min-

utes at RT. Afterwards, they were permeabilized and DNA was de-

natured using 0.1% Triton X-100 in 2 mol/L HCl for 30 minutes. 

Cells were then incubated in boric buffer (100 mmol/L boric acid, 

75 mmol/L NaCl, 25 mmol/L sodium tetraborate, pH 8.5) for neu-

tralization for 5 minutes and blocked using 1% BSA for 30 minutes, 

F I G U R E  1   Verification of the FGFR3 knockout in the mutant epidermis and in isolated primary keratinocytes A, Breeding scheme for 

the generation of mice lacking FGFR1, FGFR2 and FGFR3 in keratinocytes (K5-R1/R2/R3 mice). He = heterozygous. B, qRT-PCR analysis of 

RNA samples from isolated epidermis of adult Ctrl, K5-R3, K5-R1/R2 and K5-R1/R2/R3 mice for FGFR1, FGFR2, FGFR3 (all isoforms), FGFR3c 

and Cre relative to Rps29 as indicated. C, qRT-PCR analysis of RNA samples from primary keratinocytes derived from 3-day-old Ctrl, K5-R1/
R2 and K5-R1/R2/R3 mice for FGFR1, FGFR2, FGFR3 (all isoforms) and FGFR3c relative to Rps29 as indicated. D, Primary keratinocytes from 

K5-R1/R2/R3 or Ctrl mice were incubated overnight in keratinocyte serum-free medium without EGF and subsequently treated with 10 ng/

mL FGF1 or EGF for 24 hours and analysed for BrdU incorporation. Bars indicate mean ± SE. The mean value of the Ctrl mice was set to 1. 

N = 4-11 per genotype. *P ≤ .05, **P ≤ .01, ***P ≤ .001, ****P ≤ .00 = 1. Mann–Whitney U test
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followed by incubation with a FITC-coupled anti-BrdU antibody 

(11202693001, Sigma) at 4°C overnight. Cells were then washed 

with PBS, and a Cy2-conjugated secondary antibody (1:500, 

Jackson ImmunoResearch Laboratories, Inc) was added to am-

plify the signal. Nuclei were counterstained with Hoechst 33342 
(1:3000, Sigma).

2.4 | Histology

Skin samples were fixed overnight with 4% paraformaldehyde (PFA) 

or 95% ethanol/1% acetic acid prior to paraffin embedding. Sections 

(7 μm) were stained with haematoxylin and eosin (H&E), or using 

the Herovici procedure.18 Visualization of mast cells was carried out 

using toluidine blue staining.4 Stained sections were analysed with 

an Axioskop 2 microscope equipped with a Plan-Neofluar objective 
(20×/0.5NA) and photographed with an Axiocam HRc camera (all 
from Carl Zeiss, Inc). The Axiovision 4.6 software (Carl Zeiss, Inc) 

was used for acquisition of data. Data were analysed using ImageJ 

software. All analyses were performed blinded with regard to the 

genotype of the mice.

2.5 | Immunohistochemistry and 
immunofluorescence analysis

Paraffin sections were dewaxed and rehydrated using a xylene/

ethanol gradient followed by antigen retrieval using citrate buffer 

(10 mmol/L citric acid, pH 6.0) at 95°C for 1 hour and three washes 

with PBST (PBS, 0.1% Tween). Skin sections were then blocked with 

PBS containing 12% BSA for 1 hour at RT, followed by incubation 

with the primary antibodies overnight at 4°C. Cryosections were 

fixed in 1%-4% paraformaldehyde for 10 minutes at RT, washed for 

2 × 5 minutes in PBS and blocked in 5% BSA for 1 hour at room 

temperature, followed by incubation with the primary antibodies 

overnight at 4°C. For bright-field microscopy analysis, a biotin-

conjugated secondary antibody, the Vectastain ABC Kit and the 

DAB peroxidase substrate kit (both from Vector Laboratories) were 

used for visualization. For immunofluorescence staining, slides 

were incubated at room temperature for 1 hour with the Cy2- or 

Cy3-conjugated secondary antibodies (Jackson ImmunoResearch 

Laboratories, Inc) and counterstained with Hoechst 33342 (Sigma). 

The following antibodies were used for immunohistochemistry or 

immunofluorescence:

Antibody Source Identifier

Rabbit anti-Ki67 Abcam, Cambridge, 

UK

Cat#Ab15580; 

RRID:AB_443209

Biotinylated anti-

rabbit IgG

Jackson 

ImmunoResearch

Cat#111-065-003; 

RRID:AB_2337959

Rabbit anti-ker-

atin 6

BioLegend, San 

Diego, CA

Cat#PRB-169P-100; 

RRID:AB_10063923

Antibody Source Identifier

Mouse anti-kera-

tin 10

DAKO, Glostrup, 

Denmark

Cat#M7002

Rabbit anti-kera-

tin 14

BAbCo, Richmond, 

CA

Cat#PRB-155P; 

RRID:AB_292096

Rabbit 

anti-loricrin

BioLegend Cat#PRB-145P; 

RRID:AB_10064155

Rabbit 

anti-vimentin

Abcam Cat#ab92547; 

RRID:AB_10562134

Anti-rabbit Cy3 Jackson 

ImmunoResearch

Cat#711-165-152; 

RRID:AB_2307443

Anti-mouse Cy3 Jackson 

ImmunoResearch

Cat#715-165-150; 

RRID:AB_2340813

Anti-rabbit Cy2 Jackson 

ImmunoResearch

Cat#111-225-003; 

RRID:AB_2307385

2.6 | Analysis of transepidermal water loss (TEWL)

Mouse back skin was shaved one day before TEWL analysis. TEWL 

was determined using a Tewameter (Courage and Khazaka Electronic 

GmbH) as described previously.6 Twenty-five consecutive measure-

ments were taken from four different places on the back on different 

days.

2.7 | Isolation of RNA from mouse skin

Mice were killed, shaved, and epidermis from mouse back skin was 

separated from the dermis after heat shock treatment (30 seconds at 

60°C in PBS followed by 1 minute at 4°C in PBS). Isolated epidermis 

and dermis were immediately frozen in liquid nitrogen. For RNA iso-

lation, we used TRIzol® according to the manufacturer's instructions 

(Cat# 15596, Life Technologies).

2.8 | Real-time RT-PCR

RNA was reverse-transcribed using the iScript™ cDNA Synthesis Kit 
(Cat# 1708890, Bio-Rad). Quantitative real-time RT-PCR (qRT-PCR) 

was performed as described in the manual of the Light Cycler 480 

II (Roche). The reverse transcription product obtained from 25 ng 

RNA was used together with 5.5 μL of SYBR Green Reaction Mix 

including 0.45 μmol/L forward and reverse primer mix. The reaction 

was performed in 50 cycles (95°C for 10 minutes for initial denatura-

tion; 95°C for 10 seconds, 60°C for 20 seconds and 72°C for 20 sec-

onds for each cycle). Samples were analysed in duplicates. Data were 

quantified using second derivative maximum analysis and gene ex-

pression represented as relative to the mRNA encoding ribosomal 
protein S29 (Rps29).

The following primers were used for qRT-PCR:

info:x-wiley/rrid/RRID:AB_443209
info:x-wiley/rrid/RRID:AB_2337959
info:x-wiley/rrid/RRID:AB_10063923
info:x-wiley/rrid/RRID:AB_292096
info:x-wiley/rrid/RRID:AB_10064155
info:x-wiley/rrid/RRID:AB_10562134
info:x-wiley/rrid/RRID:AB_2307443
info:x-wiley/rrid/RRID:AB_2340813
info:x-wiley/rrid/RRID:AB_2307385
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Target gene Forward sequence 5′→3′ Reverse sequence 5′→3′

Cldn1 CTTCTCTGGGATGGATCG GGGTTGCCTGCAAAGTACTGT

Cldn3 GCGGCTCTGCTCACCTTAGT GACGTAGTCCTTGCGGTCGTA

Cldn8 TCAGAATGCAGTGCAAGGTC AGCCGGTGATGAAGAAGATG

FGFR1 CAACCGTGTGACCAAAGTGG TCCGACAGGTCCTTCTCCG

FGFR2 ATCCCCCTGCGGAGACA GAGGACAGACGCGTTGTTATCC

FGFR3 total (exons 2/3) GTG GCT GGA GCT ACT TCC GA ATC CTT AGC CCA GAC CGT GG

FGFR3c ACT CAA GAC TGC AGG CGC TA GTC CTC AAA GGT GAC ATT GTG C

FGFR4 TTG GCC CTG TTG AGC ATC T GCC CTC TTT GTA CCA GTG ACG

Fst AGGGAAAGTGTATCACAAAGT GAGTTGCAAGATCCAGAATG

Il36b GCCTGTCATTCTTAGCTTGAT TGTCTACTTCCTTAAGCTGC

Inhba GGA GAA CGG GTA TGT GGA GA ACA GGT CAC TGC CTT CCT TG

Ocln TTG AAG TCC ACC TCC TTA CAG A CCG GAT AAA AAG AGT ACG CTG G

Rps29 GGTCACCAGCAGCTCTACTG GTCCAACTTAATGAAGCCTATGTCC

S100a8 GCCGTCTGAACTGGAGAAG GTGAGATGCCACACCCACTTT

S100a9 CGCAGCATAACCACCATCAT AAGATCAACTTTGCCATCAGC

Tgfb1 AGC CCG AAG CGG ACT ACT AT TCC ACA TGT TGC TCC ACA CT

Tgfb3 CTC TGG GTT CAG GGT GTT GT AAC CTG GAG GAG AAC TGC TG

Cre AAC ATG CTT CAT CGT CGG TTC GGA TCA TCA GCT ACA CC

2.9 | Isolation of skin cells for flow cytometry

Mice were killed, shaved, and the back skin was harvested. The 

subcutaneous fat was scraped off. Epidermis and dermis were sep-

arated using 0.25% dispase (Gibco) for 50 minutes at 37°C under 

continuous shaking. The epidermis was treated with 100 Kunitz U/

mL DNase (Sigma) in RPMI supplemented with P/S, 10% FBS and 
20 mmol/L HEPES for 45 minutes at 37°C under continuous shaking. 

The dermis was cut into small pieces and treated with 0.25 mg/mL 

TL Liberase in RPMI supplemented with P/S and 20 mmol/L HEPES 

for 1 hour at 37°C under continuous shaking. Single cell suspensions 

were prepared by passing mixtures through 70-μm cell strainers, and 

cells were washed 3x with 1x PBS.

2.10 | Flow cytometry

Unspecific binding sites were blocked using a CD16/CD32 anti-

body. Dead cells were stained with Zombie Aqua™ dye (BioLegend). 
The antibodies used for flow cytometry analysis are listed below. 

Stained cells were quantified using a BD Fortessa machine and BD 

FACSDivaTM 6.0 software (both from BD Biosciences). FlowJo v10 

software (FlowJo) was used for data analysis. Compensation was 

performed with single-colour controls. Compensation matrices were 

calculated using FlowJo v10 software and applied. Doublets and 

dead cells were excluded from the analysis. Fluorescence minus one 

(FMO) controls were used for gating analyses to distinguish posi-

tively from negatively stained cell populations.

The following dyes and antibodies were used for flow cytometry 

analysis:

Antigen Clone Fluorophore Dilution Source

CD45 30-F11 PB 1:400 BioLegend

Fc block 

(CD 

16/32)

2.4G2 NA 1:100 BD 

BioSciences

CD3 17A2 BV785 1:300 BioLegend

I-A/I-E M5/114.15.2 PE 1:2000 BD 

Biosciences

TCRδ GL3 FITC 1:400 BD 

Biosciences

2.11 | Wound healing experiments

Female K5-R3 and Ctrl mice (9-11 weeks of age) were anaesthe-

tized by intraperitoneal injection of ketamine/xylazine (100 mg 

ketamine/5-10 mg xylazine per kg bodyweight). After shaving 

of the back skin, four full-thickness excisional wounds of 5 mm 

diameter were generated using a biopsy punch, two wounds on 

each side of the dorsal midline. Wounds were allowed to heal 

without dressing. Mice were killed by CO2 inhalation at different 

time points after wounding, and paraffin sections from the mid-

dle of the wounds were used for histological/histomorphometric 

analysis.

2.12 | Statistical analysis

Analysis of mouse skin sections was performed blinded by the 

investigators. Statistical analysis was performed with PRISM 
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software v5 (GraphPad Software Inc). Mann–Whitney U test was 

used for comparison between two different groups. *P > .05, 

**P > .01, *P > .001.

3  | RESULTS

3.1 | FGF receptors 1, 2 and 3 are  
expressed in the epidermis and in cultured 
keratinocytes

To determine whether the loss of FGFR1 and FGFR2 in keratino-

cytes can be partially compensated by other FGF receptors, we 

first analysed published data for FGFR1, FGFR2, FGFR3 and FGFR4 

expression levels. RNA sequencing data of FACS-isolated cells from 
mouse skin at embryonic day 14.5 (E14.5) or postnatal day 5 (P5)19 

revealed low expression levels of FGFR1 in the epidermis, whereas 

FGFR3 is expressed at intermediate levels and FGFR2 at high levels. 

FGFR4 expression was not detectable in the embryonic or neonate 

epidermis (Figure S1A,B). In addition, various FGF ligands are ex-

pressed in embryonic and neonate mouse skin, in particular FGF2, 

FGF7, FGF10 and FGF18.19 These data are consistent with single-cell 

RNA sequencing data of cells from adult mouse epidermis.20 The 

relatively high expression of FGFR3 in the epidermis suggests that 

this type of receptor may function alone or redundantly with FGFR1 

and FGFR2 in keratinocytes.

3.2 | Loss of FGFR3 in keratinocytes does not affect 
epidermal homeostasis and wound healing

To determine the functional relevance of FGFR3 in keratino-

cytes, we generated mice lacking FGFR3 in this cell type (desig-

nated K5-R3 mice). Mice with floxed FGFR3 alleles15 were mated 

with transgenic mice expressing Cre recombinase in keratino-

cytes under control of the keratin 5 (K5) promoter16 to generate 

K5-Cre, Fgfr3f/f mice (designated K5-R3 mice). K5-R3 mice were 

viable and fertile and did not exhibit macroscopically visible ab-

normalities (Figure S2A). Histological analysis of the skin did not 

reveal obvious differences between K5-R3 and Ctrl mice, with 

the exception of a slight increase in dermal thickness in some 

older FGFR3-deficient mice (Figure S2B). There was no signifi-

cant difference in the dermal thickness in 12-week-old mice 

(Figure S2C), and the density of the dermal matrix and the thick-

ness of the adipose tissue were similar in mice of both geno-

types at all ages (Figure S2B). As FGFR3 was specifically deleted 

in keratinocytes, we quantified the epidermal thickness and the 

number of proliferating keratinocytes in the epidermis (Ki67-

positive cells), but did not find a significant difference between 

genotypes (Figure S2D,E). Remarkably, even the healing of full-

thickness excisional wounds proceeded normally and there was 

no significant difference in wound closure or wound diameter 

(Figure S2F).

3.3 | Generation of mice lacking all FGF receptors in 
keratinocytes

We next determined whether loss of FGFR3 aggravates the phe-

notype of mice lacking FGFR1 and FGFR2 in keratinocytes by gen-

eration of triple conditional knockout mice (K5-R1/R2/R3 mice; see 

breeding scheme in Figure 1A). K5-R1/R2/R3 mice were born with 

the expected Mendelian ratio. qRT-PCR analysis of RNA from iso-

lated epidermis of K5-R1/R2/R3 mice confirmed the expression of 

Cre recombinase in the mutant mice and the efficient deletion of all 

three receptors (Figure 1B). The Cre-mediated deletion of the Fgfr3 

floxed alleles results in loss of the IIIc exon and the exon encoding 

the transmembrane domain,15 and we confirmed the efficient dele-

tion using primers that hybridize to this part of the mRNA. The major 
FGFR3 splice variant in the epidermis, however, is FGFR3b, which 

differs from FGFR3c in the second half of the third immunoglobulin 

(Ig)-like domain and thus has different ligand-binding specificities.21 

The FGFR3 knockout mice may still express a truncated RNA includ-

ing the exon IIIb coding sequences, which, however, cannot give rise 

to a functional receptor because of the lack of the transmembrane 

domain. However, we also observed an efficient down-regulation 

of FGFR3 mRNA in K5-R3 and K5-R1/R2/R3 mice using a primer 
hybridizing to exons 2/3, which should be present in such a trun-

cated RNA. Therefore, such transcripts are most likely unstable. The 
strong reduction in FGFR3 mRNA levels also suggests that keratino-

cytes are the predominant producers of this receptor in the epider-

mis and that the expression in epidermal immune cells is negligible.

Efficient deletion of all FGF receptors was confirmed with 

cultured primary keratinocytes from the different mutant mice 

(Figure 1C). The loss of FGFR1, FGFR2 and FGFR3 did not result in a 

compensatory up-regulation of FGFR4, and the mRNA levels of this 
receptor remained below the detection limit in mice of all genotypes. 

There was no compensatory up-regulation of FGFR3 in K5-R1/R2 

mice, but rather a reduced expression of this receptor (Figure 1B). 

Surprisingly, expression levels of FGFR3 were highly variable in ke-

ratinocytes with wild-type FGFR3 alleles (Figure 1B) but this did not 

correlate with obvious phenotypic differences.

The complete loss of FGFR signalling in cultured keratinocytes 

from K5-R1/R2/R3 mice was confirmed by proliferation studies 

with FGF1, which activates all FGFR variants.22 Whereas cells 

from control mice incorporated BrdU in response to FGF1 and to 

epidermal growth factor (EGF)—used here as positive control—

keratinocytes from K5-R1/R2/R3 mice only responded to EGF 

(Figure 1D).

3.4 | Loss of FGFR3 in keratinocytes 
does not aggravate the macroscopic and histological 

phenotype of K5-R1/R2 mice

K5-R1/R2/R3 mice were macroscopically similar to K5-R1/R2 

mice, including the progressive hair loss and the small body size 

(Figure 2A). Furthermore, K5-R1/R2 and K5-R1/R2/R3 mice had 
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F I G U R E  2   Loss of FGFR3 in keratinocytes does not aggravate the macroscopic phenotype of K5-R1/R2 mice. A, Representative 

photographs of K5-R1/R2/R3 mice and their control littermates lacking Cre recombinase (R1/R2 mice). B, Bodyweight of Ctrl, K5-R1/R2 

and K5-R1/R2/R3 mice at the age of 12 weeks. N = 4 per genotype. C, Representative photomicrographs of haematoxylin/eosin (upper 
panel)- and Herovici-stained (lower panel) paraffin sections from back skin of 9-month-old mice and their control littermates (left panel) and 

quantification of epidermal thickness (right panel). Magnification bars: 100 μm. D: dermis; E: epidermis, HF: hair follicles. D, Representative 

images of Ki67-stained paraffin sections from back skin of 9-month-old mice and their control littermates (left panel) and quantification of 

Ki67-positive cells per length epidermis (right panel). Magnification bars: 100 μm. D: dermis; E: epidermis, HF: hair follicles. Bars indicate 

mean ± SE in all graphs. N = 4-6 per genotype. **P ≤ .01, ***P ≤ .001. Mann–Whitney U test
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a similar reduction in bodyweight compared with control mice 

(Figure 2B).

Histological analysis of the skin showed the characteristic 

phenotype of K5-R1/R2 mice with epidermal thickening.4 Again, 

this was not obviously aggravated by the additional loss of FGFR3 

(Figure 2C). In addition, keratinocyte proliferation and differentia-

tion as revealed by Ki67 immunohistochemistry (Figure 2D) or im-

munofluorescence analyses for differentiation-specific proteins 

(Figure S3) were similar in K5-R1/R2/R3 and K5-R1/R2 mice. As pre-

viously shown,4 K5-R1/R2 mice exhibited interfollicular expression 

of keratin 6 (K6), a sign for abnormal keratinocyte differentiation 

and enhanced proliferation.23 This was also not further aggravated 

by the loss of FGFR3 and also not detected in mice lacking FGFR3 

alone, and the other differentiation-specific keratins as well as the 

late differentiation marker loricrin were normally expressed in K5-

R3, K5-R1/R2 and K5-R1/R2/R3 mice (Figure S3).

3.5 | Loss of FGFR3 further aggravates the 
epidermal barrier deficiency of K5-R1/R2 mice

A hallmark of the phenotype of K5-R1/R2 mice is the defect in 

epidermal barrier function, which results at least in part from re-

duced expression of tight junction proteins and which causes a 

chronic inflammatory skin disease.4,6-8 The transepidermal water 

loss (TEWL), which reflects the integrity of the inside-out barrier, 

was indeed significantly higher in K5-R1/R2/R3 compared with 

K5-R1/R2 mice (Figure 3A). This was associated with a mild, but 

non-significant reduction in the mRNA levels of the tight junction 
proteins claudin 1 (Cldn1) and occludin (Ocln), whereas Cldn3 and 

Cldn8 were expressed at equally low levels in mice of both geno-

types (Figure 3B).

Flow cytometry analysis demonstrated that the number of total 

immune cells, Langerhans cells (MHCII-positive cells in the epider-

mis) and epidermal γδ T cells (dendritic epidermal T cells (DETC)) 

was equally low in control vs. K5-R3 mice (Figure 3C, and Figure 

S4 for flow cytometry), and the number of toluidine blue–positive 

mast cells was even mildly reduced by the loss of FGFR3 (Figure 3D). 

These immune cells were analysed, because their numbers are 

strongly increased in K5-R1/R2 vs control mice4,6,7 (Figure 3C). 

With the exception of a significant increase in epidermal γδ T cells 

in K5-R1/R2/R3 vs K5-R1/R2 mice, the additional loss of FGFR3 

did not further affect the number of the other immune cell types 

(Figure 3C). Consistent with the similar number of immune cells in 

K5-R1/R2 and K5-R1/R2/R3 mice, the genes encoding the pro-in-

flammatory cytokines IL-36β (=IL1-F8) (Il1f8), S100A8 (S100a8) and 

S100A9 (S100a9) were expressed at similar levels in mice of both 

genotypes (Figure 3E).

3.6 | FGFR deficiency in the epidermis causes 
dermal fibrosis

An additional hallmark of the phenotype of K5-R1/R2 mice, which 

we had previously not characterized, is the development of skin fi-

brosis. This is reflected by the enhanced dermal thickness and the 

presence of a dense connective tissue characterized by high levels 

of collagen, which had replaced the adipose tissue (Figure 4A). The 

fibrotic phenotype was particularly pronounced in K5-R1/R2/R3 

mice, and there was a further significant increase in dermal thick-

ness compared with K5-R1/R2 mice (Figure 4B). The percentage 

of dermal area that stained positive for vimentin was also higher 

in K5-R1/R2/R3 compared with K5-R1/R2 mice (Figure 4C), sug-

gesting an increase in the number of mesenchymal cells in the 

dermis. Consistent with this finding, the number of dermal cells 

expressing the proliferation marker Ki67 was higher in K5-R1/R2 

compared with control mice and further increased in K5-R1/R2/

R3 mice (Figure 4D).

Overall, these findings suggest that the defect in the epidermal 

barrier affects the fibroblast phenotype, possibly through release of 

pro-fibrotic factors. To test this possibility, we analysed the expres-

sion of Tgfb1, Tgfb3, Inhba and Fst, which give rise to the secreted 

factors TGF-β1, TGF-β3, activin A and the activin antagonist folli-

statin. Whereas expression of the pro-fibrotic factors Tgfb1, Tgfb3, 

and Inhba was even moderately reduced in K5-R1/R2 and K5-R1/

R2/R3 mice, Fst expression was strongly down-regulated in mice of 

both genotypes, indicating a potential increase in biologically active 

activin (Figure 4E).

Taken together, these results demonstrate that loss of FGFR1/

R2 in keratinocytes causes skin fibrosis, which is further aggravated 

upon loss of FGFR3.

4  | DISCUSSION

Epidermal FGFR signalling plays a key role in skin homeostasis, 

repair and disease, but the contribution of the individual FGF re-

ceptors to different skin functions has remained largely unknown. 

F I G U R E  3   Loss of FGFR3 in keratinocytes mildly aggravates the barrier function defect of K5-R1/R2 mice. A, Transepidermal water 

loss (TEWL) on the back skin of 9-week-old Ctrl, K5-R1/R2 and K5-R1/R2/R3 mice (in g/h/m2). Measurements were repeated on the same 

mice 2 and 7 days later. N = 4 mice per genotype. B, qRT-PCR analysis of RNA samples from the epidermis of Ctrl, K5-R1/R2 and K5-R1/
R2/R3 mice for Cldn1 and Cldn3 relative to Rps29. N = 4-6 per genotype. C, Flow cytometry analysis of dissociated epidermal cells from Ctrl, 
K5-R3, K5-R1/R2 and K5-R1/R2/R3 mice for quantification of total CD45+ immune cells, MHCII+ Langerhans cells and γδ T cells (DETCs). 

N = 5-7 per genotype. D, Representative images of toluidine blue–stained paraffin sections from back skin and quantification of toluidine 
blue–stained mast cells/ mm dermis. The dotted white line indicates the basement membrane. Magnification bars: 50 μm. D: dermis, E: 

epidermis, HF: hair follicle. E, qRT-PCR analysis of RNA samples from the epidermis for Il1f8, S100a8 and S100a9 relative to Rps29. N = 4-6 
per genotype. Bars indicate mean ± SE in all graphs. *P ≤ .05, **P ≤ .01. Mann–Whitney U test
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Here, we show that FGFR2 is the major FGFR in the murine epi-

dermis, whereas FGFR3 has only a minor supporting role. FGFR3 in 

keratinocytes is even dispensable for wound healing, in spite of its 

up-regulation in wounded mouse skin.24 This is surprising, as acti-

vating mutations in this type of receptor cause acanthosis nigricans, 

seborrhoeic keratosis and epidermal naevi.10-13 However, our find-

ings are consistent with data from human keratinocytes demonstrat-

ing that knock-down of FGFR3 does not affect normal keratinocyte 

growth in vitro,25 even though this receptor is strongly expressed 

in the human epidermis.26 These results point to a minor role of 

F I G U R E  4   Loss of FGFR signalling in keratinocytes causes dermal fibrosis. A, Representative images of Herovici-stained sections of 

3-month-old Ctrl, K5-R1/R2 and K5-R1/R2/R3 mice. Magnification bars: 100 μm. Note the replacement of adipose tissue by fibrous tissue 
in the FGFR double and triple mutant mice. Squares indicate the area where the high magnification image was taken (lower panel). B, 

Quantification of dermal thickness in Ctrl, K5-R1/R2 and K5-R1/R2/R3 mice. N = 4 per genotype. C, Quantification of the percentage of 
vimentin-positive skin area in Ctrl, K5-R1/R2 and K5-R1/R2/R3 mice. Epidermal area was excluded. N = 3-4 per genotype. D, Quantification 
of Ki67-positive cells in the dermis and subcutis of Ctrl, K5-R1/R2 and K5-R1/R2/R3 mice. N = 4-8 per genotype. E, qRT-PCR analysis 
of RNA samples from the epidermis of Ctrl, K5-R1/R2 and K5-R1/R2/R3 mice for Tgfb1, Tgfb3, Inhba and Fst relative to Rps29. N = 4 per 
genotype. Mean expression in Ctrl mice was set to 1. Bars indicate mean ± SE in all graphs. *P ≤ .05, **P ≤ .01, ***P ≤ .001. Mann–Whitney U 
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wild-type FGFR3 in keratinocytes, at least under non-challenged 

conditions.

Keratinocytes mainly express the IIIb splice variants of all FGF 

receptors, including FGFR3,21 and FGFR36 is rather poorly acti-

vated by most FGFs.22 By contrast, FGFR2b is strongly activated 

by FGF7 and FGF10, which are highly expressed in the skin.19,24,27 

This provides a likely explanation for the particularly important role 

of FGFR2 vs FGFR1 and FGFR3 in keratinocytes. The unique role 

of FGFR2 is also reflected by the skin abnormalities seen in mice 

lacking only this receptor in keratinocytes,4,5 which are aggravated, 

however, upon additional deletion of FGFR1.4

Our results further demonstrate that the loss of one FGF recep-

tor in keratinocytes can be partially compensated by the other FGF 

receptors. Thus, FGFR1, FGFR2 and FGFR3 act together to maintain 

epidermal integrity, although the individual contributions are differ-

ent. Finally, we show that loss of all FGF receptors in keratinocytes 

is compatible with life and with in vitro growth of keratinocytes. 

Therefore, other growth factor receptors are likely to compensate 

for the loss of FGFR signalling.

In spite of the keratinocyte-specific deletion of FGF receptors, 

dermal fibrosis was seen in K5-R1/R2 mice and was more severe in 

K5-R1/R2/R3 mice. This may well be a consequence of the increase 

in immune cells that occurs in K5-R1/R2 and also in K5-R1/R2/R3 

mice. However, additional loss of either mast cells or γδ T cells, two 

immune cell populations that are strongly increased in K5-R1/R2 and 

in K5-R1/R2/R3 mice, did not affect the dermal or epidermal phe-

notype in K5-R1/R2 mice.6,7 These findings suggest that fibroblasts 

are activated as a consequence of the epidermal abnormalities. 

Consistent with this assumption, it has been shown that a defect in 

the epidermal barrier results in up-regulation of cytokines, such as 

S100A8, S100A9 and S100A12,28-30 which in turn cause fibroblast 

activation and fibrosis. S100A8 and S100A9 are also up-regulated in 

K5-R1/R24,8 and to a similar extent in K5-R1/R2/R3 mice, and these 

cytokines likely contribute to the dermal fibrosis. Furthermore, we 

show here that expression of follistatin is strongly down-regulated in 

the epidermis of K5-R1/R2 and K5-R1/R2/R3 vs control mice, which 

is likely to result in higher levels of bioactive activin, a potent pro-fi-

brotic factor.31,32 Therefore, the epidermal abnormalities seen in our 

FGFR mutant mice and also in patients with atopic dermatitis are 

likely to contribute to the development of skin fibrosis. Thus, ame-

lioration of the epidermal alterations and the resulting inflammation 

is of crucial importance for the prevention of fibroblast activation, 

and activation of FGFR signalling in keratinocytes may be a promis-

ing strategy to improve the epidermal barrier and even to prevent/

ameliorate the resulting dermal fibrosis.
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