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data. This may affect the reproducibility of mouse micro-

biota studies and their conclusions. Hence, future studies 

should take these into account to truly show the effect of 

diet, genotype or environmental factors on the microbial 

composition.
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Introduction

In adult life, a healthy human may harbor several hundreds 

of different microbial species in their intestine, which col-

lectively encode more than 100-fold more non-redundant 

genes than there are in the human genome [1–3]. The com-

position of the intestinal microbiota is driven by factors such 

as diet, antibiotic therapy, maternal microbiota and genotype 

[4–9]. Since the intestinal tract is the main point of contact 

of the host immune system and microorganisms, the role 

of microbiota in both local and systemic immune function 

plays an important role in immunity and health [10]. Early 

comparative analyses of the intestinal microbiota of human 

and other animals have shown that each mammalian species 

harbors a distinct microbial composition and can be grouped 

based on their microbial community and diet [11]. Carni-

vores, omnivores and herbivores could be distinguished by 

increasing microbiota diversity, which probably reflects the 

large variety of plant-derived carbohydrates in the diet of 

herbivores. The differences in composition and diversity of 

intestinal tract microbiota in these animal groups indicate 

that both diet and host collectively affect the microbial com-

position [11–13].

Studies of the local microbiota at different locations along 

the human intestinal tract require rather invasive sampling 
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methods. Pioneering studies have used these and provided 

the first molecular biogeography of the human intestinal 

microbiota by addressing colonic and ileal sites [14, 15]. 

However, these approaches cannot be scaled for practical 

and ethical reasons. While ethical considerations nowadays 

also apply to rodent models, these provide an easy way to 

collect many samples from different sites, allow multiple 

comparisons at large scale, and have the great advantage 

to offer a wide range of different genotypic backgrounds. 

Moreover, rodents and specifically mice have become the 

most studied disease models for pharmaceutical research 

[16]. Mice models have also been used to study the interac-

tion of intestinal microbes and its host since the early days 

when large scale studies became feasible due the develop-

ment of molecular and high throughput approaches [17]. Ini-

tially, most attention has focused on germ-free mice models 

and provided basic insights in initial host–microbe interac-

tion [18]. However, increasingly mice are used as models to 

study dietary effects, disease development, and the impact of 

microbial therapies. However, in order to translate such gen-

erated knowledge from mouse to man, the similarities and 

differences between their intestinal microbiota need to be 

considered and these are reviewed here with specific atten-

tion to the historic development of inbred mouse models, the 

impact of genomics and the difference in intestinal anatomy.

History of mouse models

The majority of presently employed murine strains, i.e., 

strains belonging to the species Mus musculus, have a com-

mon origin that goes back over 100 years ago and derive 

from Asian or European fancy mice, usually yellow, white 

or with another appealing color, that had been developed as 

pets as early as 1200 BC in China (Fig. 1). The best recorded 

example of an anecdotal development is that of Miss Abbie 

E.C. Lathrop who started breeding mice in the early 1900s 

in Granby MA, USA [19]. In a couple of years, her busi-

ness had grown into an operation with over ten thousand 

mice that were used to be sold as pets but also provided 

laboratories in the area for scientific studies. Subsequently, 

she also started inbreeding mice, avoiding mixing her mice 

with wild mice [20, 21]. These inbred mice are the ances-

tors of the most commonly used strain C57BL/6 created in 

William Castle’s lab (Fig. 1). Since around 1910, these mice 

were inbred, with over two generations per year; thus, many 

of the presently available mice have been inbred for over 

150 generations on average [22]. Also the 129, C3H and 

BALB/c have a similar origin, where the latter two were a 

cross between progenitors of the C57 line and Bagg albino’s 

from H. Bagg (Fig. 1). Some strains were developed much 

later, like the NOD inbred strain, which was derived from an 

outbred colony of Swiss Webster mice. Ohtori developed the 

inbred CTS strain from this colony [18]. And in 1980, the 

F6 of the CTS strain selected for diabetes was taken sepa-

rate and the F20 developed spontaneous insulin-dependent 

diabetes, and named NOD [23]. The advantages of using 

mice models appealed to many scientists, from that time 

till now, since they are relatively small, easy to maintain in 

large numbers, and can be inbred or genetically modified 

to be used as models to study human diseases. It has been 

estimated that presently over 90% of the rodents used for 

pharmaceutical research are mice [16].

The mouse versus the human genome

Lineages of men and mouse are separated by more than 

90 million years of evolution, yet more than 85% of the 

genomic sequences between mouse and human are still 

Fig. 1  A simplified family 

tree of the main mouse strains 

used in intestinal microbiota 

research. Solid lines indicate 

inbreeding and dotted lines indi-

cated outbreeding of a mouse 

line. When lines are connected a 

cross or a new line was created 

by selection. Data adapted from 

[20, 21]
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conserved [24, 25]. One of the major divergences that 

occurred in the genomes in the course of this evolutionary 

time span is found in the primary sequence of regulatory ele-

ments. Recent detailed genomic and transcriptomic analysis 

revealed that half of the transcription factor binding sites 

of the murine genome does not appear to have orthologous 

sequences present in the human genome [26]. However, the 

regulatory networks among transcription factors are highly 

conserved between mice and humans [27]. In contrast, the 

overall gene expression and its regulation were found to be 

considerably different between the two species. However, it 

should be emphasized that most human functional studies 

have been performed with cell lines and it is known that 

their expression patterns may differ from the large variety of 

tissue-specific expression in the human body. Comparative 

genomic studies do not suffer from that bias and have shown 

that the immune system and its regulation has dramatically 

changed during evolution, indicating a rapid but species-

specific adaption of this system in the different species [28]. 

As the intestinal tract is the site of the majority of innate and 

adaptive immune interactions, these large immune differ-

ences between mice and man may provide a perspective on 

failing extrapolations of many mouse studies on inflamma-

tory and immune diseases [29].

Comparative physiology of the intestinal tract 

in mouse and man

Nowadays, mice belonging to the species M. musculus are 

often used to systematically study the roles of the diet, path-

ogens and/or the influence of the host genotype on microbial 

diversity in GI tract and to relate this back to the human 

situation [22].

Mice are exclusive herbivores, while humans can be her-

bivores, carnivores and everything in between, depending on 

culture, food supply and many other factors. It appears that 

there are considerable anatomical, histological and physi-

ological features of the intestinal tract that are shared. The 

main difference is the size of the intestinal tract in relation 

to the total size of the species but there are many distinct 

differences throughout the intestinal tract, which should be 

considered during experimental design and interpretation 

(Fig. 2).

One of the most remarkable differences to be noted at the 

beginning of the tract, is the presence of a non-glandular 

forestomach in mice that is absent in humans. This fores-

tomach is lined with keratinizing squamous mucosa and 

covers two-thirds of the entire stomach. The forestomach 

has no secretory activity and is used for food storage [30] 

and is covered with a biofilm comprised of strains of various 

Lactobacillus spp. [31, 32]. Although Lactobacillus reuteri 

and Lactobacillus johnsonii are found throughout the mouse 

intestinal tract, there is a strong indication that the forestom-

ach is their main habitat and that the cecal populations are 

composed of cells that have descended from the forestomach 

populations [33]. Comparative genomic analysis has shown 

that the murine L. reuteri strains are very different from 

those found in humans and have urease genes to cope with 

low pH and a variety of rodent-specific genes which, when 

inactivated, affects their persistence in mice [34].

The remaining third of the mouse stomach is the glan-

dular stomach, which is similar to that of man. However, 

there are major differences in the fate of food in the stomach. 

Gastric emptying in humans proceeds linearly, with a half 

Fig. 2  Comparison of the intes-

tinal tract features of human and 

mouse. The main similarities 

and differences are listed in a 

Venn diagram [37–39]
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time of 30 min (empting rate of 1.64% per min), whereas 

gastric emptying of the mouse has an exponential decay 

with a decay constant of 77 ± 17 min and a half time of 

34 min. Differences in eating behavior, feeding patterns 

and biorhythms between mouse and human can explain this 

difference since mice forage and feed almost continuously 

at night while humans consume most of their foods during 

daytime when their stomach is empty. Hence, in the mouse 

stomach, freshly eaten food particles are constantly mixed 

with gastric fluids diluting the present bolus [35]. This might 

be the reason why the range of pH is smaller in the mouse 

stomach, from pH 2.7–4.1, while in humans it can go down 

to pH 1. This relatively high pH in the mouse stomach prob-

ably also enables the formation of biofilms of Lactobacillus 

spp., while in humans the stomach is colonized by mainly 

Streptococci, Prevotella spp. and Helicobacter pylori, that 

are likely to be acid adapted [36].

The small intestine is the longest part of the GI tract, 

approximately 33 cm in mice and 700 cm in humans and is 

divided in three regions. There are various ways to compare 

the impact of these size differences and while these can be 

related to length, body surface or blood volume, in most 

cases the simplest comparison is that with the weight. A 

mouse weighs around 0.02 kg while the weight of an average 

human being is ~70 kg; so the length of the small intestine 

per kg is in mice 1500 cm per kg and humans 10 cm per kg 

(Fig. 2). The duodenum is the most proximal region, where 

bile and secretory products of the pancreas enter the intes-

tinal lumen. The next part of the small intestinal tract is 

the jejunum followed by the ileum. The outer mucosa layer 

of the small intestine differs the most between human and 

mouse. The overall appearance of the mouse mucosal sur-

face is smooth, while the human mucosal contains circular 

folds, known as plicae circularis, to increase the surface area 

[37]. This specific anatomy of the human small intestine 

provides a niche for mucus-associated bacteria, which is not 

present in mice and hence could, therefore, be an important 

difference, influencing microbial composition. Similarly, the 

architecture of the villi varies through the small intestine 

with distinct differences in mice and man. In both the duo-

denal villi have a leaf-like structure but in mice these change 

to a more cylindrical shape in the jejunum and ileum. In 

contrast, in the human jejunum the villi become taller with 

a more frond-like structure and they become thinner and 

sparser in the ileum.

The large intestine is up to 14 cm long in mice and 105 cm 

in humans and can be divided into the cecum and colon. The 

cecum of mice is relatively large, being 3–4 cm in length, 

and functions as a microbial fermentation vessel, while in 

humans it is 6 cm and of minor importance. Expressed per 

kg of body weight the length of the large intestine is in mice 

700 cm per kg and humans 1.5 cm per kg, while the cecum 

is in mice 175 cm per kg and in humans 0.086 cm per kg 

(Fig. 2). This illustrates that, relative to body weight, the 

large intestine is a much larger organ in mice than in man. 

Both humans and mice have a cecal appendix, although 

it is not a pronounced separate section in mice as it is in 

humans [38]. Moreover, the human colon is segmented, with 

pouches called haustra, while the mouse colon has a smooth 

serosal appearance. The proximal colon of the mouse has a 

mucosa with transverse folds. Halfway, the colonic mucosa 

is flat and in the distal colonic mucosa there are longitudinal 

folds, while the human colonic mucosa has transverse folds 

throughout the colon [39].

The overall intestinal transit time is known to affect the 

intestinal microbiota. After human consumption of a meal, 

the transit takes 14–76 h, a wide range due to dietary and 

population differences. The type of diet has a major impact 

on the transit time, and resistant starch increases transit time 

by almost 20 h compared to fully digestible starch [40]. In 

mice the total transit time is only between 6 and 7 h, up to 

ten times as fast as humans. This is compatible with the total 

metabolic rate that is approximately seven times higher in 

mice as compared to man when corrected for body weight 

(see below).

The mucus layer is important for the protection of the 

intestinal tract. It forms a physical network, providing a bar-

rier between bacteria and host, minimizing contact between 

bacteria and epithelial cells [41]. Defects in the mucus layer 

have been linked to various human diseases, such as inflam-

matory bowel disease (IBD), and the mucosa of IBD patients 

harbors a higher number and different species of bacteria 

than that of healthy subjects [42–44]. Notably in this respect 

is the increase of potential pathogenic Ruminococcus tor-

ques and Ruminococcus gnavus at the cost of Akkermansia 

muciniphila in IBD mucosa [45]. It has been shown that 

mucus layer thickness is compromised in IBD and that this 

may impact on its functional organization. A recent com-

parative study addressed mucus thickness, penetrability, 

and proliferation rate using live tissue explants of human 

and mouse colon in a perfusion chamber [46]. The mucus 

growth rate was shown to be higher in the human colon 

(240 ± 60 µm per h) as compared to that in the murine colon 

(100 ± 60 µm per h). Furthermore, the final mucus layer was 

demonstrated to be thicker in the human (480 ± 70 µm) as 

compared to the mouse colon (190 ± 40 µm). Mucus pen-

etrability was similar in mice and humans, since fluorescent 

beads with a diameter of 1 µm in both species penetrated the 

outer 40% of the colonic mucus layer, while the inner 60% 

was impenetrable for the beads [46]. However, it is possible 

that specific intestinal microbes adapted to the mucus behave 

differently than on these model beads and it has been found 

that A. muciniphila, a well-established mucus utilizer, may 

have a size as small as approximately 0.5 µm depending on 

the growth medium [47].
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The major structural Muc proteins in the inner and outer 

mucus layers are the same in mouse and man, represented 

by Muc2 in the small and large intestine and Muc5AC in 

the stomach. The outer mucus layer is looser than the inner 

layer, because of proteolytic cleavages due to host proteases 

and microbiota in mice and men [41]. However, there are 

some noticeable differences between mice and humans in 

mucin composition at the molecular level. Specifically, the 

monomeric Muc2 protein has a different size in human and 

mice (5179 versus 2680 residues, respectively). It possesses 

a large and a small domain, both of which are rich in proline, 

threonine and serine (and are therefore called PTS domains), 

but while the human large PTS domain consists of an almost 

perfectly tandem repeat of 23 amino acids, that of the mouse 

is not repetitive [48]. Disulphide bonds amplify the size 

of the mucin monomers while O-glycosylation results in 

O-glycan molecules extending in all directions of the PTS 

domain, making the molecules look like a bottle brush and 

giving mucin its gel-forming properties through high capac-

ity of binding water. Obviously, this post-translational gly-

cosylation and hence biophysical properties differ between 

the Muc2 molecules from mice and man but their details 

have not been addressed as there are hundreds of different 

glycan structures. What is known is that the primary glyco-

syltransferases involved in the extending and branching of 

the O-glycan molecules differ and involve the core 1 β1,3-

galactosyltransferase (C1galt1) in mice and the core 3 β1,3-

N-acetylglucosaminyltransferase (C3GnT) in humans [49]. 

Apart from these core enzymes that differ between mouse 

and man, it is likely that other glycosyltransferases may also 

vary as do the sialidation and sulfonization processes that 

are particularly prominent in the colon where they protect 

the mucus from rapid microbial degradation. These modi-

fications mask the glycan profile which is reflected by the 

blood group status, which is evident in the stomach and 

small intestine. The reason for this could be that the glycan 

composition is important for the selection of commensal 

microbiota [50]. Fucosylation, however, is a glycan modifi-

cation which is known to occur in mice and man in a similar 

manner [51]. In humans fucosylation is determined by the 

FUT2 gene, the expression of which is affected by the gut 

microbiota, especially during colonization [52]. Genetic 

polymorphisms that affect fucosylation have an impact on 

the microbiota in human, particular on the bifidobacterial 

composition as well as on the abundance of Bifidobacterium, 

Bacteroides and Akkermansia spp., all potentially mucus-

degrading bacteria [53, 54]. Bacteria often carry adhesins 

that can bind mucins, which serve as an adhesion substrate 

and nutrient source [49]. This could be an explanation of 

the difference of mucus-associated bacteria between humans 

and mice. However, A. muciniphila, a specialized mucus-

utilizing bacterium is almost identical in mice and humans 

[55], indicating that even though there are differences in the 

mucus, this species, and probably others, do not need to be 

very different to proliferate on varying mucus compositions.

Overall mice show lower intestinal pH values, oxygen 

tension levels and a different glycan profile in the mucus 

than humans, aspects that are likely to be, at least partially, 

responsible on the observed differences in microbial com-

position [56–58] (see also below).

Energy saving strategies

Small animals, with a high metabolic turnover rate, need 

to digest more food per body mass than larger animals and 

it has been calculated that an average adult mouse has an 

approximately sevenfold higher metabolic turnover rate 

as compared to the average adult human [59]. Mice eat, 

therefore, around the clock, but mostly during the night, 

which is their active time, exposing intestinal tissue to dif-

ferent microbes and metabolites as the day goes by and 

hence affecting the circadian rhythm of the host [60]. With 

obviously different synchronicity this may also occur in 

human where links between circadian rhythm and intesti-

nal microbes have been suggested in a longitudinal study 

[61]. Because of their higher energy demands, small ani-

mals need to have a short retention time of foods, especially 

when the digestibility of the food is low. The generation 

interval of gut microbiota (human or murine) needs to be 

0.69 times the retention time to maintain a population of 

the same numerical size and to prevent washout [59]. Some 

rodent species depend on separation mechanisms to main-

tain microbiota in their cecum, but allow food particles to 

pass on quickly [62]. In mice, a slight delay of flow of fluid 

digesta is observed compared to particle digesta. A sepa-

ration mechanism depending on mucus, called “the mucus 

trap”, is present in the mouse. The mucus trap is folds in the 

proximate colon, that creates a furrow, where a mixture of 

bacteria and mucus can be transported back to the cecum 

[63]. So it appears that mice partly recycle their microbiota 

as a sort of colonic transplantation. An ultimate form of this 

recycling is found in coprophagy, the behavior by which 

feces is re-ingested. This is practiced by mice and contrib-

utes to the nutritional value of their diet by ensuring that 

vitamin K, some B vitamins, and short chain and other fatty 

acids that are produced by microbiota in the cecum, are not 

lost by defecation, but re-enter the murine intestine to be 

absorbed [63]. Coprophagy is known to affect the intesti-

nal microbiota within litters and can be avoided by cages 

equipped with grids, but coprophagy is still considered as an 

important difference between human and mice [64].
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Murine versus human microbiota

The phylogenetic makeup of the bacterial communities in 

both human and mouse seems to be similar at phylum level, 

where the two main bacterial phyla of the murine intestinal 

tract are the Bacteroidetes and the Firmicutes [65, 66]. How-

ever, this also applies to many other mammals, herbivores 

and carnivores alike [65, 66]. Several obvious differences 

between the intestinal tract of mouse and man received 

considerable attention. The murine intestinal tract was 

found to harbor large amounts of members of the phylum 

Deferribacteres, which in human are only found in minute 

amounts in the stomach [36], and the main species of this 

phylum is Mucispirillum schaedleri [67], which colonizes 

the mucus layer in mice. Moreover, mice harbor a specific 

member of the Firmicutes with an unusual morphology, the 

segmented filamentous bacteria (SFB), also termed ‘Candi-

datus arthromitus’ [68], which have a pronounced effect on 

the maturation of the innate immune system [69–71]. SFB 

have been thought to be lacking in humans but a recent very 

deep analysis provided support for their presence in some 

human infants during the first 3 years of life, although no 

functional studies have yet been performed that would sup-

port a similar role in immune maturation as for their murine 

counterparts [72].

A recent comparative survey of the phylogenetic compo-

sition of 16 human subjects and 3 often used mouse lines 

indicated that their microbiota looks alike but is quantita-

tively very different [73]. Around 80 microbial gut genera 

were reportedly shared between mouse and man, and this 

number was recently confirmed in a comparison of murine 

and human 16S rDNA datasets [74]. However, there are 

considerable variations in the genera that were observed in 

the mouse data sets and for instance Faecalibacterium, Suc-

cinivibrio and Dialister were not found in some laboratory 

mice [73, 75], while they were detected in other more com-

prehensive study [74]. A trivial but important explanation 

for this is the use of different mouse strains and providers 

(see below), but other reasons for the observed discrepan-

cies are differences in analysis and specifically its depth 

since different approaches were used to address the micro-

bial composition, including different 16S rRNA gene-based 

primers, targeted variable regions and sequencing platforms 

[74]. Hence there is a need to assess these and other differ-

ences between the human and mouse microbiota with large 

datasets that are generated using exactly the same protocols.

Recently, an extensive mouse microbiome catalog was 

made available through deep metagenome sequencing, 

which obviates some issues associated with phylogenetic 

approaches [76]. Moreover, these mouse metagenomic data-

sets can be easily compared with the human metagenome 

baseline that has been collected in recent years [76]. This 

comparison confirmed that the human and mouse intestinal 

microbiota show considerable similarity at the genus level 

but reveal large quantitative differences (Fig. 3). Moreover, 

a total of 60 genera were detected in the mouse gut microbi-

ome core, of which 25 were shared with the core genera in 

the human gut microbiome, where the core was here defined 

as genera being present in all samples. When the mouse 

microbial genes were compared with that found in human, 

only 4% were found to share 95% identity and a coverage of 

90%. Remarkably, almost 80% of the annotated functions 

were common between the two datasets, indicating signifi-

cant functional overlap. However, while over 1500 species 

Fig. 3  Major different human and murine intestinal genera. Only genera are shown that showed consistent differences in relative abundance 

between humans and mice [73, 74, 76]
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have been isolated from the human gut, from which over 

half have been deposited [77, 78], only around 100 species 

have been cultured from mice strains and deposited, most 

only very recently [79]. Hence, the majority of mouse gut 

bacteria remain to be cultured and characterized. It should 

be noted, however, that strain analysis is the next level that 

needs to be addressed as mouse and human strains of the 

same species may differ considerably, as is exemplified by 

the strains of L. reuteri that appear very different between 

mice and man as indicated above.

Currently used mouse strains

A large number of different strains of mice are available, 

especially when considering the number of genetically mod-

ified mice. Over 400 inbred strains have been described and 

their genealogies categorized (reviewed in [22]). Most of 

the widely used model strains can be traced back to the last 

century (Fig. 1). The advantage of the inbred strains is their 

genetic similarity that contributes to the reproducibility of 

the experimental approaches. Most inbred strains originate 

from either the Mus musculus domesticus or M. musculus 

musculus and show considerable genetic and phenotypic 

similarity [20, 80]. However, the inbred strains are very dif-

ferent from wild-derived mice and the microbiota from the 

wild wood mice Apodemus sylvaticus has been shown to be 

subject to strong seasonal shifts in gut microbial community 

structure, potentially related to the transition from an insect- 

to a seed-based diet [81]. Such fluctuating environmental 

factors do not affect captive mice that receive a similar diet 

over time.

Microbiota in mouse strains—impact of diet

In most studies with disease models, germ-free systems or 

dietary interventions, use is made of inbred strains. Some 

have specific properties, such as the C57BL/6 mice that 

develop an obese phenotype, together with obesity-related 

diseases, after several weeks of a high-fat diet. Hence 

C57BL/6 mice are often used in studies related to diet-

induced obesity, type 2 diabetes and atherosclerosis [82, 83]. 

It was the C57BL/6 mice that were used in the pioneering 

study where the intestinal microbiota of obese mice together 

with the corresponding phenotype could be transferred to 

germ-free C57BL/6 mice, providing the first evidence for a 

causal contribution of the intestinal microbiota on obesity 

[84]. Humanizing these mice with human microbiota seemed 

quite successful: 88% of the genus-level taxa were found in 

the mice and in the donor samples [85]. Humanized mice 

obtained using this technique have been applied not only 

to study obesity but also for instance metabolic disorders, 

alcoholic liver disease and infectious diseases [85–87]. To 

the best of our knowledge, this experimental approach has 

not been reproduced in other mouse strains and consider-

ing the large variety in mouse strains and their microbiota, 

it should be kept in mind that extrapolation to the human 

system is a considerably larger step than reproducing this 

in other mouse lines. A highly relevant study revealed that 

the intestines of BALB/c and NIH Swiss mice, which differ 

markedly in behavior, show different microbial composition, 

which could be transferred by microbiota transplantation to 

germ-free derivatives. Remarkably, these mice adopted not 

only the microbiota but also the behavior from the donor 

strain as was evident from stress tests [88].

An important confounder has shown to be the housing 

of mice. In some cases, complete phenotypes disappeared 

after a mouse house was renovated or renewed. In some 

cases, this could be tracked down to the microbiota that had 

changed and apparently was involved in the phenotype as 

reported recently [89]. The housing effect seems even to be 

larger than the effect of the genetic background [76, 90, 91]. 

However, what the effect the birth mother has on microbiota 

composition is at the moment under debate since in some 

studies the genotype (mouse strain) of the mouse had a more 

pronounced effect on the microbiota development than the 

genotype of the birth mother [90, 92].

So far only a few studies have shown difference in micro-

bial abundances between different mouse strains. Two 

independent studies showed the abundance of the genera 

Akkermansia, Alistipes and Lactobacillus to be significantly 

different in C57BL/6, BALB/c and NOD mice, although to 

a different extent [74, 76]. However, the number of stud-

ies comparing the microbiota between mouse strains is still 

limited and would benefit from more comparative studies. 

Efforts to diminish the genotype effect on gut microbiota in 

mice by intercrossing inbred strains resulted in high inter-

individual variation of the microbiome after 4 generations 

but the inter-individual variation became less after ten gen-

erations [93].

There is not a specifically recommended mouse model 

for dietary interventions and often use is made of strains 

for which there is in-house experience or that are easily 

commercially sourced. This may not be a desirable situ-

ation since recent studies have shown that environmental 

factors and the genetic background of mice have a signifi-

cant impact on the microbial composition [75]. To illus-

trate the effect of genotype, cohort, provider and housing 

facilities on the gut microbiota of mice we have carefully 

analyzed eight different mouse studies with dietary inter-

ventions [44, 94–100]. The microbiota was analyzed using 

an identical microbiota analysis pipeline based on a phylo-

genetic microarray developed and benchmarked previously 

[101]. This closed system enabled us to compare multiple 

studies over time in exactly the same way and provide a 
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read out at the species level. The mice in this analysis 

came from nine different studies (cohorts) where feces was 

collected and included three inbred strains—C57BL/6J, 

BALB/c and 129Sv—both genders, young and old mice 

and were housed in four different facilities. This analysis 

showed a larger effect of the cohort than the genotype of 

the mice, the provider, gender or the housing facility (Sup-

plementary Fig. S1). To address whether the same effect 

occurs at genus level, the same samples were analyzed in 

redundancy analysis [102]. This revealed a clear effect of 

the facility and provider (Fig. 4; details in Supplementary 

Fig. S2A and S2B). In conclusion, this study provides an 

unbiased indication that cohort and facility have a larger 

effect on the microbiota than the mouse genotype, con-

firming recent murine metagenome analyses by Xiao et al. 

[76]. It also indicates that all used mouse strains are good 

candidates for dietary interventions.

Conclusions

Mice are often used to systematically study the impact of 

the diet and other environmental factors as well as the host 

genotype on microbial diversity in intestinal tract and to 

relate this back to the human situation. While mice and 

humans have many similar anatomical, histological and 

physiological features in their intestine, there are very 

large differences in size, metabolic rate and dietary habits. 

Hence, it is no surprise that there are large differences in 

the intestinal microbiota not only in the qualitative repre-

sentation of taxa but notably in their quantitative contribu-

tion. Altogether, only a few percent of the bacterial genes 

are shared between mice and man, and a notable example 

is the presence of the biofilm of Lactobacillus spp. in the 

forestomach of mice. In view of these results, one may 

wonder why mouse models are used so often for transla-

tion to human and the simple answer could be that there is 

no better alternative.

It also has been shown that there are considerable dif-

ferences in microbial composition between mouse strains. 

Hence, it is striking to note that many dietary interventions 

or pioneering studies have not been reproduced in other 

mouse strains. Our analysis and other recent studies clearly 

indicate that the provider and housing conditions are also 

important factors to take into account, especially when 

results of other studies are compared [76, 103]. Hence, 

extreme care should be taken when comparing results of 

mouse studies from mice of different providers and han-

dled in different facilities. Future studies should focus on 

reproducing microbial differences at different locations 

with different mouse strains to truly show a robust effect of 

the diet, genotype or environmental factors on the micro-

bial composition. Since the human intestinal microbiota 

is so different from that of mice, such robustness checks 

should precede any extrapolation to human.

Fig. 4  Redundancy analysis of the large intestine samples of seven 

studies, containing a total of 244 samples [44, 94–100]. Genotype, 

facility and provider are taken along as variables for the analysis and 

explain 43.5% of the data. Colors 1–7 are per cohort, black triangles 

indicate the centers of the different mouse genotype variables and 

pink triangles indicate the centers of providers and facilities varia-

bles. Here the level of clustering per cohort is less than on probe level 

(Supplementary Fig. S1) and the facility Wageningen University and 

different providers (Supplementary Fig. S2A) explain a significant 

proportion of the data over the effect of the strain C57BL/6J (Sup-

plementary Fig. S2B), which comes fourth in percentage that it can 

explain as a variable in the data. In Table 1 are the significant vari-

ables shown

Table 1  Significant variables of the redundancy analysis

P values are calculated by Monte Carlo permutation, variables are 

ordered by importance of percentages of variation they can explain

Variable name: Percentage of variation 

explained

P value

Facility WUR 13.1 0.002

Provider Harlan 7 0.002

Provider Maastricht 6.9 0.002

Strain B6 4.5 0.002

Provider Charles River 3.5 0.002

Facility UMCG 2.7 0.002

Strain Ercc1KO 2.2 0.002

Strain Ercc1WT 1.4 0.002

Strain BalbC 1.3 0.002

Strain 129SV 0.7 0.01
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