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Abstract

Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma

exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and

to the development of effective therapies has been the lack of a small-animal model for rhinovirus

infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular

adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the

remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and

can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus
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infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of

transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced

exacerbation of allergic airway inflammation. These models have features similar to those

observed in rhinovirus infection in humans, including augmentation of allergic airway

inflammation, and will be useful in the development of future therapies for colds and asthma

exacerbations.

Rhinoviruses cause the common cold, hospitalization of infants1, pneumonia in the

immunosuppressed2 and the majority of acute exacerbations of asthma3–6 and chronic

obstructive pulmonary disease (COPD)7. These diseases generate hundreds of billions of

dollars in healthcare costs8, and the morbidity and mortality attributable to rhinovirus

infections is enormous. No effective treatment is available.

Attempts to develop small-animal models of rhinovirus infection in many species, from

mice to monkeys, have failed, and an intracellular block to rhinovirus replication in mouse

cells was proposed to be the cause9. The lack of small-animal models of rhinovirus infection

has thus severely hampered mechanistic insight into and therapeutic development for

rhinovirus infections over the past 50 years.

Ten percent of the ~100 rhinovirus serotypes make up the minor receptor group of viruses,

which can use both the human and mouse forms of the receptor to enter cells of either

species10. The remaining 90% comprise the major receptor group and use human ICAM-1

for cell attachment and entry11, but these viruses do not bind mouse ICAM-1 (refs. 12,13).

Here we report the development of in vivo mouse models of major- and minor-group

rhinovirus infection and of rhinovirus-induced asthma exacerbation.

RESULTS

A mouse model of minor-group rhinovirus infection

We inoculated BALB/c mice with 5 × 106 50% tissue-culture infective dose (TCID50) of

minor-group rhinovirus-1B, UV-inactivated rhinovirus-1B or major-group rhinovirus-16

(Fig. 1). Only rhinovirus-1B induced rapid neutrophilic inflammation, detectable at 8 h,

peaking 1–2 d after infection (with neutrophils representing 60–70% of total

bronchoalveolar lavage (BAL) cells) and returning to baseline levels by day 4 (Fig. 1a). A

prolonged increase in lymphocytes detectable at day 2 and peaking 4–7 d after infection

(~20% of BAL cells) was also observed only in rhinovirus-1B–infected mice (Fig. 1a).

Macrophage numbers remained unchanged in all groups (Supplementary Fig. 1a online).

Examination of stained lung sections revealed areas of extensive peribronchial and

perivascular cellular infiltration (Fig. 1b) that were not detected in the lungs of control mice.

Induction of mucin-5, subtypes A and C (Muc5AC), and Muc5B mRNA in lung (Fig. 1c,e),

Muc5AC and Muc5B protein in BAL (Fig. 1d,f) and staining for Muc5AC and Muc5B in

bronchial epithelium (Supplementary Fig. 1b) were observed only in rhinovirus-1B–infected

mice, with Muc5AC protein abundance peaking at day 1 and remaining elevated at day 7

and Muc5B elevated throughout days 1–14 after infection. Rhinovirus-1B induced the early

production of the neutrophil chemokines macrophage inflammatory protein-2 (MIP-2) and

KC (Fig. 2a,b) concurrently with the onset of neutrophilia (Fig. 1a) and also induced the

dendritic and T cell chemokine MIP-3α (CCL20, refs. 14,15); Fig. 2c), whereas the T cell

chemokines IP-10 (CXCL10), RANTES (CCL5) and I-TAC (CXCL11) were induced later,

peaking at 1–2 d (Fig. 2d–f) and preceding the lymphocytosis on days 2–7 (Fig. 1a).

Rhinovirus-1B induced the proinflammatory cytokines tumor necrosis factor-α
(Supplementary Fig. 1c), interleukin-6 (IL-6) and IL-1β between 8 and 48 h after infection
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(Fig. 2g,h). Thymic stromal lymphopoietin, IL-4, IL-13 and IL-17 were all undetectable

(data not shown).

The levels of rhinovirus-1B genomic RNA in lung and of infectious virus particles in BAL

from 8 to 24 h after infection were significantly increased compared to those in mice treated

with UV-inactivated virus (Fig. 3a,b). Viral replication was further shown by in situ

hybridization using an antisense RNA probe to detect genomic viral RNA and a sense RNA

probe to detect replicative viral RNA (Fig. 3c). Strong staining for replicative RNA was

detectable in the airway epithelium 8 h after infection (data not shown), peaking at 12 h

(Fig. 3c) and becoming undetectable by 48 h (data not shown), whereas genomic RNA

peaked at 24 h (Fig. 3c) and was observable until 72 h after infection (data not shown).

Rhinovirus-1B induced interferon-α (IFN-α), IFN-β and IFN-λ proteins in BAL fluid (Fig.

3d); IFN-β was produced earliest at 8 h. All IFNs peaked at 24 h, and IFN-α and IFN-β had

returned to baseline by 48 h (Fig. 3d), whereas IFN-λ remained significantly elevated at this

time (Fig. 3d).

IFN-γ production was increased in lung leukocytes from rhinovirus-1B–infected mice

compared to those from rhinovirus-16–infected mice (Fig. 3e). IFN-γ production at day 4

was due to nonspecific activation of leukocytes, as only leukocytes obtained at day 7

produced significantly more IFN-γ when re-stimulated ex vivo with rhinovirus-1B (Fig. 3e),

which is consistent with induction of a virus-specific acquired immune response.

Rhinovirus-1B–specific IgG titers were significantly higher at day 7 than at day 0 and were

further increased at day 10 in rhinovirus-1B–infected mice compared to those in mice

infected with UV-inactivated virus (Fig. 3f).

A transgenic mouse model of major-group rhinovirus infection

We generated a BALB/c mouse strain transgenic for the rhinovirus-binding extracellular

domains 1 and 2 of human ICAM-1 (Supplementary Methods and Supplementary Fig. 2a

online). Rhinovirus-16 infection of transgenic mice, but not rhinovirus-16 infection of

nontransgenic BALB/c controls or UV-inactivated rhinovirus-16 infection of transgenic

mice, resulted in outcomes similar to those observed with the rhinovirus-1B infection model,

including BAL neutrophilia and lymphocytosis (Fig. 4a); increased Muc5B protein in BAL

(Fig. 4b); increased viral RNA levels (Fig. 4c); and induction of IFNs (Fig. 4d), chemokines,

IL-1β (Fig. 4e–g) and virus-specific antibodies (Supplementary Fig. 2b).

Rhinovirus exacerbation of allergic airway inflammation

Finally, to develop a mouse model of rhinovirus-induced asthma exacerbation, we

challenged BALB/c mice sensitized to ovalbumin (OVA) with OVA or PBS control. During

the challenge, mice were also inoculated with either rhinovirus-1B or UV-inactivated

rhinovirus-1B. The combination of OVA challenge and rhinovirus-1B infection (RV-OVA)

resulted in a significant increase in the BAL of neutrophils on day 1 (Fig. 5a) and

eosinophils on day 7 (Supplementary Fig. 3a online), and a prolonged increase in

lymphocytes in BAL from days 3 to 14 (Fig. 5a), compared with mice infected with virus

but not challenged (RV-PBS) and allergen-challenged mice dosed with UV-inactivated virus

(UV-OVA). In addition to increased airway inflammation, RV-OVA mice also showed

significantly enhanced airway hyper-responsiveness on day 1 compared with that observed

in mice infected with virus alone or mice challenged with allergen alone, whether the hyper-

responsiveness was measured non-invasively (Fig. 5b, left) or invasively (Fig. 5b, right).

RV-OVA mice showed significantly increased Muc5AC protein abundance in BAL at day 7

and Muc5B expression at day 14 compared with UV-OVA–treated and RV-PBS–treated

mice (Fig. 5c), as well as significant induction of IL-4 (day 1) and IL-13 (days 1 and 2)

expression compared with UV-OVA controls (Fig. 5d,e), whereas IL-5 abundance
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(Supplementary Fig. 3b) was not significantly increased. Significant induction of virus-

specific IFN-γ was also observed in RV-OVA mice compared to those receiving either viral

or allergen challenge alone (Fig. 5f).

DISCUSSION

Rhinoviruses, the cause of common colds, are the most frequent precipitants of acute

exacerbations of asthma and COPD3–7, as well as causes of other serious respiratory

diseases1,2. The mouse models of minor- and major-group rhinovirus infection reported

herein are characterized by several relevant disease-related outcomes, including airway

neutrophilic and lymphocytic inflammation16,17, mucin secretion (a cardinal symptom of

common colds that is also induced by rhinovirus infection of human airway epithelial cells

in vitro18) and the induction of various chemokines and proinflammatory cytokines induced

in human rhinovirus infections.

Our recent work has highlighted deficient induction of IFN-β and IFN-λ in lung cells from

asthmatic donors in response to rhinovirus infection ex vivo19,20. However, the relative

importance of the IFN subtypes in rhinovirus infections is unknown, and although IFN-λ1

has been shown to have antiviral effects21,22, it has not been known whether IFN-λs are

produced by rhinovirus infections in vivo. Our data suggest that IFN-λ is the most sustained

and abundant IFN subtype induced in the lung by rhinovirus infections.

The absence of pathologic, physiologic or antiviral responses in mice inoculated with UV-

inactivated virus and in nontransgenic mice inoculated with rhinovirus-16 indicates that

these responses were replication dependent. Replication was studied further with in situ

hybridization, which showed early production of negative-sense replicative RNA and

subsequent synthesis of viral genomic RNA in epithelial cells, which is consistent with the

rhinovirus replication cycle. We observed further evidence of viral replication in the

increased levels of rhinovirus-16 RNA in the lungs of transgenic mice compared to those in

control mice and in the induction of type 1 IFN-α and IFN-β and type 3 IFN-λs. The use of

viruses better adapted for replication in mice23,24 or different mouse strains, including those

with deficient IFN responses19,20, may allow for better virus replication in mice.

Because rhinoviruses are the major precipitants of acute exacerbations of asthma3–6, we

studied the interactions between rhinovirus infection and allergic airway inflammation. In

allergen-sensitized and allergen-challenged mice, rhinovirus infection exacerbated

neutrophilic, eosinophilic and lymphocytic airway inflammation, airway hyper-

responsiveness, mucus secretion and production of both T helper type 1 (TH1) and TH2

cytokines. These responses have been associated with rhinovirus-induced exacerbations of

asthma25, including fatal asthma26, and are consistent with either rhinovirus infection

substantially exacerbating allergic airway inflammation or, conversely, allergic airway

inflammation substantially exacerbating rhinovirus-induced inflammation.

The mechanisms involved in the synergistic interaction between virus infection and allergen

exposure to increase the risk of asthma exacerbations are unknown27,28. TH2-mediated

inflammation is clearly implicated in allergic airway inflammation; however, it is not known

whether rhinovirus infection can augment TH2 responses to allergens. Conversely, virus

infection is strongly associated with TH1 responses, but it is not known whether allergic

airway inflammation can augment rhinovirus-induced TH1 responses. We show here that

rhinovirus infection increases production of both IL-4 and IL-13 in response to allergen

challenge, indicating that rhinovirus infection can exacerbate TH2 responses to allergens.

Similarly, allergen challenge increased rhinovirus induction of IFN-γ, confirming that

allergen exposure can enhance TH1 responses to rhinoviruses. Further studies will be
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required to increase our understanding of these possible mechanisms of disease to aid the

development of new therapeutic approaches.

In conclusion, these models of rhinovirus infection should be useful in investigating the

pathogenesis and treatment of the common cold and acute exacerbations of asthma. With

further development, they will probably provide a similar boost to research into

exacerbations of COPD7 and other diseases in which rhinovirus infection is implicated2.

METHODS

Mice and viruses

We purchased 6-week-old female BALB/c mice from Harlan. We generated human-mouse

ICAM transgenic mice in house (Supplementary Fig. 2 and Supplementary Methods online).

We grew major-group rhinovirus serotype 16 and minor-group rhinovirus serotype 1B in

Ohio HeLa cells (European Collection of Cell Cultures). We obtained viruses from the

American Type Culture Collection and passaged them five times in HeLa cells before

purification. We titrated the viruses on HeLa cells by standard methods and inactivated them

by exposing them to UV light at 1,200 mJ/cm2 for 30 min. We lightly anesthetized the mice

with isofluorane and infected them intranasally with 50 μl of rhinovirus.

TaqMan quantitative real-time PCR

We excised the left upper lobe (~15% of total lung) from each mouse, purified the RNA

(RNeasy miniprep kit, Qiagen) and reverse-transcribed 5 μg using random hexamers

(Omniscript RT kit, Qiagen) as primers. We normalized real-time PCR assays to 18S rRNA

with Quantitect Probe PCR master mix (Qiagen) and primers and probe to human 18S

rRNA29. The TaqMan assays for measuring rhinovirus RNA have been described

previously20.

Asthma exacerbation model

We sensitized the mice with 50 μg OVA in 2 mg aluminum hydroxide intraperitoneally in a

volume of 200 μl on day 1. We challenged lightly anesthetized (isofluorane) mice with 50

μg OVA (Calbiochem) in 30 μl of PBS (controls received PBS alone) on three consecutive

days (days 10–12) to induce allergic airway inflammation. While they were under anesthesia

during the third OVA challenge, we infected the mice intranasally with 50 μl rhinovirus-1B

(2.5 × 106 TCID50) or UV-inactivated rhinovirus-1B. We assessed lung function at 24 h

after infection and killed the mice on the indicated days (Fig. 5). for end-point analyses.

Bronchoalveolar lavage

We cannulated mouse lungs through the trachea and then lavaged the lungs. We processed

cellular fractions for differential staining by cytospinning. We analyzed BAL fluid for

interferons, cytokines, chemokines and mucins by ELISA (R&D Systems) according to

manufacturers’ specifications.

Enzyme-linked immunosorbent spot

We carried out ELISpot analysis of IFN-γ production by purified lung leukocytes (harvested

on day 4 or day 7 after infection). We cultured the cells for 3 d with or without ex vivo

rhinovirus-1B stimulation. We read the plates with Leica Q Windows image software,

quantifying the spot number per well.
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Rhinovirus-specific antibody enzyme-linked immunosorbent assay

We coated plates (Maxisorp, Nunc) overnight with purified rhinovirus stock (2 × 108

TCID50/ml). We incubated diluted serum samples for 1 h at 37 °C before detection with

peroxidase-conjugated antibody to mouse IgG (Sigma).

Statistical analysis

All data were normally distributed and are expressed as means ± s.e.m. We analyzed data by

ANOVA and pinpointed differences between groups using Bonferroni’s post-test, with 95%

confidence levels (Prism 4, GraphPad) to determine significant differences. The numbers of

mice used are indicated in the figure legends, and we repeated all experiments at least three

times.

Further details on these and other methods are available in the Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Live minor-group rhinovirus-1B, but not UV-inactivated rhinovirus-1B or major-group

rhinovirus-16, induces airway and lung inflammation and mucin production in BALB/c

mice. Mice were infected with 5 × 106 TCID50 of rhinovirus-1B (RV-1B), UV-inactivated

rhinovirus-1B (UV–RV-1B) or rhinovirus-16 (RV-16). (a) Kinetic analysis of BAL cells

showing neutrophils and lymphocytes at the indicated time points after infection, as assessed

by differential cell counts. Representative of five experiments. Data are means for groups of

four mice ± s.e.m., **P < 0.01 and ***P < 0.001 compared to both control groups. (b)

Representative H&E-stained lung sections in naive mice (left column) or lungs taken at day

2 after infection with UV–RV-1B (center column) or RV-1B (right column). Perivascular

(black arrow) and peribronchial (white arrow) inflammation are indicated. Scale bars, 50

μm. Images shown are typical of three mice. (c) Quantification of Muc5AC mRNA levels in

lung tissue by quantitative RT-PCR. (d) Quantification of Muc5AC protein secretion in

BAL by ELISA. The same analyses were carried out for Muc5B in e and f. Data are means

± s.e.m., **P < 0.01 and ***P < 0.001 compared with UV–RV-1B.
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Figure 2.
Rhinovirus-1B induces neutrophil, dendritic cell and lymphocyte chemoattractant

chemokine production and proinflammatory cytokine production. (a–h) Groups of four

BALB/c mice were infected with 5 × 106 TCID50 of RV-1B or UV–RV-1B. BAL was

collected at 8 h and 1, 2, 4 and 7 days after infection, and cell-free BAL fluid was analyzed

by quantitative ELISA for neutrophil chemoattractant chemokines MIP-2 (a) and KC (b);

dendritic cell chemokine MIP-3α (c); lymphocyte chemokines IP-10 (d), RANTES (e) and

I-TAC (f); and the proinflammatory cytokines IL-6 (g) and IL-1β (h). **P < 0.01 and ***P

< 0.001 for RV-1B compared with UV-inactivated control. Results are expressed as means ±

s.e.m.
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Figure 3.
RV-1B replication and induction of innate (antiviral IFN) and acquired virus-specific

cellular and humoral immune responses in BALB/c mice. Groups of four mice were

inoculated with 5 × 106 TCID50 of RV-1B or UV–RV-1B. (a) Quantification of rhinovirus

RNA in lung homogenates by quantitative RT-PCR. (b) Quantification of rhinovirus viral

load in total BAL, as measured by titration of infectious virus in HeLa cells. (c) In situ

hybridization staining of lung sections from mice infected with RV-1B, RV-16 or UV–

RV-1B. Top row, sections probed with antisense RNA probe to detect genomic viral RNA.

Bottom row, sections probed with sense RNA probe to detect negative-strand replicative

viral RNA. Sections probed with a respiratory syncytial virus M protein–specific probe30

were negative (data not shown). Sections are representative of three mice per group. (d)

Induction of antiviral IFNs α, β and λ in BAL, as measured by quantitative ELISA. (e)

Frequency of IFN-γ–producing lung leukocytes in mice infected with RV-1B assessed at

day 4 (left) or day 7 (right) after infection, cultured with or without RV-1B stimulation ex

vivo. ###P < 0.001 comparing mice dosed with RV-1B to mice dosed with RV-16. At day 7,

induction was virus-specific, +++P < 0.001 for leukocytes stimulated ex vivo with RV-1B

compared to unstimulated cells. (f) Rhinovirus-specific IgG measured by ELISA in serum

collected at the indicated day after infection. All data are expressed as means ± s.e.m., *P <

0.05, **P < 0.01 and ***P < 0.001 for RV-1B compared with UV-inactivated control.
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Figure 4.
Major group rhinovirus-16 infection of transgenic mice expressing a human/mouse ICAM-1

chimeric receptor. Groups of four human-mouse ICAM-1–expressing transgenic BALB/c

mice were dosed intranasally with 5 × 106 TCID50/ml RV-16 (huICAM + RV-16) or UV–

RV-16 (huICAM + UV–RV-16); in addition, transgene-negative wild-type BALB/c mice

were infected with RV-16 (WT RV-16). (a) Kinetic analysis of BAL cells showing

neutrophils and lymphocytes at the indicated time points after infection, as assessed by

differential cell counts. (b) Muc5B protein secretion in BAL, as measured by ELISA. Left,

RV-16–infected transgenic mice compared with transgene-negative mice inoculated with

RV-16. Right, transgenic mice inoculated with live or UV–RV-16. (c) Viral RNA (vRNA)

in lung homogenate, as measured by qRT-PCR. (d–g) Production of IFN-α (d, left), IFN-β
(d, center), IFN-λ (d, right), MIP-2 (e), I-TAC (f) and IL-1β (g) in BAL, as measured by

quantitative ELISA. All data are expressed as means (groups of seven for huICAM + RV-16

and groups of three or four for control groups) ± s.e.m. *P < 0.05, **P < 0.01 and ***P <

0.001 for huICAM + RV-16 groups compared to huICAM + UV–RV-16 controls. +P <

0.05, ++P < 0.01 and +++P < 0.001 for huICAM + RV-16 groups compared to transgene

negative controls dosed with live rhinovirus-16.
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Figure 5.
Rhinovirus exacerbates airway inflammation, airway hyper-responsiveness, mucus

production, and TH1 and TH2 cytokine responses in a model of acute allergic airway

inflammation. OVA-sensitized mice were challenged intranasally with OVA or PBS control

and infected with RV-1B (RV-OVA or RV-PBS) or UV-inactivated virus (UV-OVA or UV-

PBS). (a) Kinetic analysis of BAL cells showing neutrophils (left) and lymphocytes (right)

at the indicated time points after infection, as assessed by differential cell counts. (b) Airway

hyper-responsiveness to increasing doses of methacholine (MCH), as assessed at 24 h after

infection by Penh area under the curve (AUC) analysis (left). Penh results were confirmed

by invasive measures of airway resistance (right). BL, baseline. (c) Muc5AC (left) and

Muc5B (right) protein abundance in BAL, as determined by ELISA. Measurement of TH2

cytokines IL-4 (d) and IL-13 (e) in BAL was performed by quantitative ELISA, and IFN-γ
production by lung leukocytes (f) was assessed by ELISpot. All data are expressed as means

± s.e.m. for groups of four mice. *P < 0.05, **P < 0.01 and ***P < 0.001 RV-OVA

compared to RV-PBS. +P < 0.05, ++P < 0.01 and +++P < 0.001 for RV-OVA compared to

UV-OVA. #P < 0.05 and ###P < 0.001 for allergic groups (RV-OVA and UV-OVA)

compared to controls (UV-PBS).
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