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control methodology for catching a fast moving object with 
a robot manipulator, where visual information is employed 

to track the trajectory of the target, is described here. Sensing, 
planning, and control are performed in real time to cope with 
possible unpredictable trajectory changes of the moving target, 
and prediction techniques are adopted to compensate the time 
delays introduced by visual processing and by the robot control- 
ler. A simple but reliable model of the robot controller has been 
taken into account in the control architecture for improving the 
performance of the system. Experimental results have shown that 
the robot system is capable of tracking and catching an object 
moving on a plane at velocities of up to 700 mm/s and accelera- 
tions of up to 1500 mm/s2. 

Visual Tracking 
Catching a moving object with one hand is one of the most 

difficult tasks for humans as well as for robot systems. In order 
to perform this task, several capabilities are required of a robot 
system, such as smart sensing, object tracking, motion predic- 
tion, trajectory planning, and fine sensory-motor coordination. If 
the moving target is an intelligent being, like a fast insect or a 
little mouse, the problem becomes more difficult to solve, since 
the “prey” may unexpectedly modify its trajectory, velocity, and 
acceleration. In this situation, sensing, planning, and control 
must be performed in real time while the target is moving, so that 
the trajectory of the arm can be modified in time to catch the prey. 

The problem of visual tracking has been widely investigated 
in the robotics literature. Corke et ul. [13], [I41 addressed the 
issue of high performance visual servoing for an arm-mounted 
camera. Feddema et al. [IS], [ 161 investigated the problem of 
feature-based control for the tracking of a moving target by a 
robot-camera system. Papanikolopoulos et al. [2 11 proposed 
some methods for tracking selected features of a moving target 
with a mobile camera. Anderson [7] analyzed the use of visual 
sensing in dynamic environments, i.e., changing at rates compa- 
rable to the rates of the robot system. Weiss e t d .  [23] used visual 
information to control a robot arm for manipulation. In addition 
to tracking capabilities, catching a moving object also requires 
predicting the object motion and local planning of the arm 
trajectory based on sensor information. Hayward et al. [17] 
described a method for obtaining smooth trajectories suitable to 
be tracked by a servo control system, based on sensory preview. 
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Lloyd and Hayward [20] derived a technique for blending path 
segments while controlling the transition shape. Anderson [6] 
designed a trajectory generation system to maximize the manipu- 
lator’s usable performance in a robot Ping-Pong player. The issue 
of high performance hand-eye coordination is also reported in 
111, [SI, [22], where the problem of robot juggling has been 
considered. Grasping a moving target with a robot arm has been 
approached by [2], [3], [8], 1181. Allen et al. split the control 
algorithm in two steps: a filtering and prediction phase, during 
which the robot tracks the object motion with the desired preci- 
sion, and a catching phase, in which the robot is driven toward 
the target as fast as possible. While in Allen’s approach, once the 
grasping phase is started the arm trajectory cannot be modified, 
in the present work, we propose a method for real-time planning 
of grasping trajectory based on sensor information. Moreover, a 
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simple but reliable model of the robot controller has been taken 
into account in the control architecture for improving the system 
response. To address the problem of catching a moving object 
with a robot manipulator, we have initially simplified and for- 
malized the task by making the following assumptions: 

a. The object trajectory lies on a known plane within the robot 
workspace. 

b. The object is free to change the velocity and the acceleration 
of its motion in both directions of the plane, at any time. 

c. The catch is done by trapping the object in a bowl-shaped 
end-effector, with a radius of 40 mm. which is almost equal to 
the object length. 

d. The catch is always performed on the object plane along a 
catching line, parallel to the Y-axis of the robot world reference 
frame, as shown in Fig. 1. This means that the arm trajectory is 
planned to reach a point on the catching line at the same time as 
the moving object. 

Fig. I .  Typical scenario under which all e,ipcvrments were 
perjbmed. 

Assumption a) allows us to localize the 3D object position on 
the plane by a single camera vision system. which is calibrated 
to provide coordinate transformation from the image plane to the 
robot reference frame. 

Assumption b) implies that sensing. planning and control 
must be performed in real time, to cope with the unpredictable 
trajectory changes of the target. This means that the arm path is 
continuously replanned, based on visual information. while the 
robot is moving. 

Assumption c )  allows a Boolean evaluation of the robot 
action. in the sense that, when the robot end-effector reaches the 
table and the object is in the bowl, the catch is considered 
successful, whereas if the object is outside the bowl, the catch is 
considered to be failed. 

Assumption d) implies that. in order to be captured, the 
moving object must cross the catching line in a finite time. 
Moreover, the arm motion can be constrained to lie on the plane 
containing the catching line and perpendicular to the object 
plane. With respect to the absolute robot reference frame shown 
in Fig. 1,  the robot wrist is controlled in real time to translate 
along the Y and the Z axes, and to rotate around the axis passing 
through the wrist and parallel to the X-axis. 

Here our work is focused on prediction-based control meth- 
ods to achieve real-time interaction between visual information 
and robot motion. 

System Architecture 
The robot system used for catching moving objects consists 

of a PUMA 560 robot arm with a bowl-shaped end-effector, a 
fixed CCD camera for object tracking, and an ultrasonic 
transducer for monitoring the system performance [ 121. The 
typical scenario under which all experiments have been carried 
out is illustrated in Fig. 1. 

The computer architecture used for all experiments consists 
of a Unimation Mark 111 controller, and a PC 80386 at 25 MHz, 
which communicates through a RS232 serial line at 19200 Bd 
rate. The image produced by the CCD camera is digitized by an 
Itex Vision-Plus frame grabber connected to the PC bus. The PC 
works as a system supervisor and is used for low level image 
processing as well as for real-time path planning and robot 
control. Reference position values are transmitted from the PC 
to the Mark I11 controller by using the ALTER protocol, which 
allows modification of the robot trajectory every 28 ms. 

Since our attention is focused on real-time visual control for 
hand-eye coordination, rather than scene understanding, image 
processing has been simplified by working in a structured envi- 
ronment, where a white object moves on a dark background. In 
this situation, thresholding and centroid computation are used to 
localize the object in the scene. In order to perform a real-time 
visual control at video rate, centroid computation is performed 
within a small square window, which is moved on the image to 
follow the target. 

The window size is chosen based on the object area at the first 
acquisition, which is performed on the whole image. The next 
position of the scanning window is calculated by estimating the 
object velocity and acceleration from the previous acquisitions. 
If during the centroid computation the object is not found in the 
current window, the object is recursively searched for in a larger 
window, with double side. During this searching procedure, the 
robot decelerates following a smooth trajectory and a rest condi- 
tion is reached if the object is not found. Fig. 2 shows an example 
of window generation when the target is lost. Since the target is 
not found in window w l ,  larger windows, w2 and w3, are 
generated based on the estimated acceleration. When the target 
is found. the window area is reduced to its default dimension. 

w3 

Fi,?. 2 .  Sequence ofscanning windows generated when the target is 
lost. When the target is found in w3, the next window area w14 is 
ruduc~ed to its default dimension. 
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The image resolution used for centroid calculation depends on 
the window size, and it is reduced as the window is enlarged. 
This process is similar to the one used in the pyramid vision 
approach [9] and allows execution of the tracking procedure at 
a constant rate. 

Some of the processes involved in the robot system have 
different periods and critical deadlines, such as the visual acqui- 
sition process, which is a periodic task with a period of 20 ms, 
and the low level robot control, which is a periodic task with a 
period of 28 ms. 

In order to handle concurrent activities with critical time 
constraints and different periods, the Intel 80386 microprocessor 
runs under HARTIK [ 1 11, a hard real-time kemel specifically 
designed for managing periodic and aperiodic tasks under guar- 
anteed execution. HARTIK extends the C language with a set of 
library functions, which provide facilities to execute concurrent 
tasks with explicit time constraints, such as periods and dead- 
lines. 

Acquisition and control processes on the supervisor node 
have been implemented under the HAREMS programming en- 
vironment [lo], a flexible C interface for developing sensor- 
based robot control applications. 

Robot Control 
The robot control design is based on a simplified model of the 

robot dynamics in Cartesian coordinates, described later in this 
section. The wrist rotation a and the robot trajectory along the 
vertical (2) axis are planned by quintic polynomial equations, 
whereas the robot motion along the catching line ( r )  direction is 
performed by tracking the object path through visual feedback. 
Notice that the robot motion along the Y-axis could be controlled 
based on real-time path planning as for the Z-axis. However, in 
our experiments, the velocity of the moving target along the 
Y-axis did not require such a control scheme, and a standard PID 
regulator was proven to be sufficient. 

A block diagram conceming the robot motion control in the 
Z-direction is shown in Fig. 3. Due to the centroid computation 
and to the transformation process from the image plane to the 
robot reference frame, the world coordinates of the moving 
object computed by the visual system are both noisy and delayed 
in time. This would significantly affect the robot motion by 
introducing vibrations as well as compromising system stability. 
To reduce such undesirable effects, we have employed a second- 
order digital filter. with a transfer function in the s-domain: 

Estimation -W Planning -+ Inverse Model 

whereX(s) and Y(s) are the Laplace transforms of the filter’s input 
and output, respectively, and z is a time constant selected experi- 
mentally. Considering that the centroid computation is performed 
on each single field with a rate of 50 Hz, the cutoff frequency of 
the filter has been set to 5 Hz, leading to z = 32 ms. 

The Catching Time Estimation block includes digital filters 
for estimating the object velocity and acceleration, and produces 
as output the estimated time of arrival (ETA) ff of the object on 
the catching line. In order to obtain a smooth motion of the 
end-effector toward the target, the arm trajectory is planned by 
using quintic polynomial equations. 

robot 
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Fig. 3. I/rrtical motion control scheme. 

Based on ETA and on the current robot position and velocity, 
the planner generates a quintic trajectory of duration to drive 
the robot toward the catching line. The quintic trajectory (calcu- 
lated at each step of the control process) is fed forward to the 
inverse model of the robot, in order to partially eliminate the 
effects of the finite delay present in the inner position loop. Since, 
in the present implementation, no joint measurements are avail- 
able, the current end-effector position and velocity are derived 
from the direct model of the robot. 

The horizontal motion of the arm along the Y-axis is control- 
led according to the block diagram shown in Fig. 4. After 
filtering, the object position is used as reference input to a PID 
controller cascaded with a lead compensator based on the robot 
model. 

CCD Centroid 
Camera *~Computatlon -Transformation 

Fig. 4 .  Hor.i:onral morion cwitrol s c h v n t ~  

Trajectory Planning 
As reference trajectories for the vertical motion of the end-ef- 

fector, we have chosen quintic polynomials, since they allow the 
fulfilment of initial and final conditions on position, velocity, and 
acceleration. In this way, it is possible to obtain continuity of the 
acceleration profile also at the boundaries of the trajectory, and 
this results in a limited jerk [6]. 

By solving a linear system, it is possible to obtain the symbolic 
expressions of the coefficients of the trajectory as a function of 
the duration time ?and of the boundary conditions [20]. 

In our case, the initial values to impose as boundary condi- 
tions are the current position, velocity, and acceleration of the 
robot end-effector, the final position is the catching point, the 
final velocity and acceleration are zero, and the duration time is 
equal to estimated catching time ~f: The quintic trajectory is 
planned at video rate (50 Hz), so that it can be modified if the 
object changes its motion. 
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Aproblem that we have found with quintic trajectories, is that, 
for particular values of the catching time, the robot path would 
cross the object plane for reaching the catching point within the 

acceptable in free space motion, it must be absolutely avoided 
when the ending point lies on a rigid plane. 

we have Seen that to maintain the robot trajectory above the 
object plane, a positive jerk must be imposed at time (t; which 
implies the following constraint on the final acceleration af: 

Under the above assumptions, the shortest positive value of the 
arrival time tfis given by: 

(5) 

For very low acceleration, the catching time tfcan be computed 
by assuming a Constant velocity trajectory: 

specified boundary conditions. Although this situation could be d&TZF - l',), 
I f  = ~ 

ani 

.\] = .t',! + l"t/ (6) 

where zi, \'i, and a,  are the current robot position, velocity, and 
acceleration, zfis the ending point on the catching line, and tf is 
the trajectory duration time. 

If the estimated time is too short, Le., the object is moving too 
fast, the velocity or the acceleration required to the robot for 
catching the object could overcome the maximum values allowed 
to the system. In this case, the robot stops moving and gives up 
doing the action. 

On the other hand, when the estimated time is too long, 
meaning that the object is not moving, the arm stops too, waiting 
for the object to approach the catching line. 

Catching-Time Estimation 

D 
f f  = - 

Vnr ( 7 )  

The estimated time ti is used to plan the robot trajectory so 
that the catching point is reached by the end-effector exactly at 
time q. Notice that, in order for the catch to be feasible, the time 
necessary to execute the quintic trajectory must comply with the 
velocity and acceleration limits of the robot. In fact, let us 
consider the case of a robot at height H from the catching line, 
driven along a quintic trajectory with boundary conditions 1, = 
H, and zf= v; = \y = a; = q= 0. If Vmax and Amax are the velocity 
and acceleration limits of the robot, the minimum time needed 
for executing the quintic trajectory is given by: 

To trap the moving object in a point on the catching line, the 

by the end-effector at the same time as the object. This can be 
achieved by observing the object motion and estimating, at any 
instant, the time needed by the object to cross the target line. Note 

robot has to plan a trajectory so that the catching point is reached t h i n  = max ( t f l .  tt;) (8) 

where 

IS H 
If, .  = ___ 

8 ~'",,, 
that, since nothing is assumed on the object trajectory, path 
estimation and time calculation must be performed in real time 

the maximum velocity and acceleration assumed for the object. 
at a proper frequency, depending on the robot bandwidth, and on 

In order to find an algebraic condition under which the catch 
is guaranteed, we assume that the object moves with constant 
acceleration, so that its position x,,, changes in time according to: 

rt, = A , n u  

Therefore, the condition under which the catching is guaranteed 
is given by the following expressions: 

where xd, \',,a, and a d  are the object position, velocity, and 
acceleration at time t = to. Thus, at any instant, the time ?needed 
by the object to reach the catching point .y = s,?,(?) is derived by d~,;, + 20,,D - I ' ~ ~ ,  

(10) 

where (9) applies for negligible object accelerations and ( I O )  

In order to test the efficiency of the catching-time estimation 
algorithm when the acceleration of the target is not constant, we 
have executed the algorithm by simulating a trajectory of an 
object moving with increasing acceleration (at constant jerk). 
The simulation has been carried out assuming a Gaussian noise 
with a standard deviation of 0.31 mm. The results are then 
compared with the case of an object moving with constant 

> t h i n  
imposing: ani 

1 7  
.t-t = .Ynr + I.,,ff + -u,,q 2 (3) applies in the other cases. 

with x,, I", and a, the current object position, velocity, and 
acceleration. Supposing the object at a distance D = -47 - X ~ I  from 
the catching line, measured along the X-axis, it will cross the 
catching line if I" > 0, and 

2 
a,, 2 -% 

2 0  . (4) acceleration. 
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Fig. 5 shows how the arrival time estimation is updated on 
line for two different object trajectories having the same duration 
(1  s), and the same length (500 mm). The continuous reference 
line represents the residual time necessary to complete both 
trajectories. The dashed line is the estimation time generated by 
the a1 orithm for a parabolic trajectory with acceleration of 1000 
mm/s , whereas the dotted line represents the estimation time 
generated for a cubic trajectory with jerk of 3000 mm/s3. An 
acceptable estimation is obtained within ten samples (200 ms) 
for the parabolic trajectory, whereas more than thirty samples 
(600 ms) are required for the cubic one. Thus, thanks to the 
on-line computing, the estimation algorithm succeeds although 
the target violates the assumption of constant acceleration. In 
conclusion, we believe that a good estimation algorithm is nec- 
essary to obtain high performance of the catching system, how- 
ever the robot dynamics also have a strong influence on the 
feasibility of the catch, since higher performance in terms of arm 
velocity and acceleration would be required in case of delayed 
estimation. 

9 

dominating pole of the robot system, and 2T = 56 ms is the finite 
delay in the direct chain. Definingp = KaT= 0.68, the correspond- 
ing discrete-time transfer function results: 

where U ( z )  is ;-transform of the motion command. 
The good reliability of the model has been extensively proved 

by the consistency observed between theoretical simulations 
based on the model and experimental results. The model also has 
been verified for the visual servoing system, while tracking a 
square wave generated by altemating two LEDs at 1 Hz, as in 
[14]. The end-effector position was monitored by an ultrasonic 
transducer attached to the robot wrist. The wrist position along 
the direction of interest was derived by measuring the time of 
flight of a pulse back scattered by a fixed plane target, as shown 
in Fig. 6. 

I '  I I lINl Reference 

I 

- - - - _ _ _ _  - _ _ _ - - - -  us 

I 
Measured distance 

Fig 6 .  Experimental set up used for testing the robot model 

Fig. 5. Perlf"rmanc,e of the estimation algorithm for  a parabolic 
trajectory (dashed line) Mith acceleration of I000 mmls'. and a 
c,uhir trajectory (dotted line) Mith jerk of3000 mmls'. 

By manipulating the discrete-time open-loop transfer func- 
tion and back transforming, the following expression for the 
vector command can be derived: 

Robot Model 
In order to compensate the time delays introduced by the 

Unimation Mark 111 controller as well as the dominating pole of 
the robot system, we employ an inverse robot model to feed 
forward the planned trajectory. The direct model is used to give 
an estimate of the current robot position, since no joint measure- 
ments are available. 

A first-order linearized model of the robot has been identified 
by analyzing the open loop step response with a one-dimensional 
strain gauge force sensor mounted on the robot wrist [4]. A 
"dominating pole" approximation with a pole at -2.2 Hz has been 
used to describe the behavior of the arm along each Cartesian 
direction. The resulting continuous-time transfer function, taking 
into account also the finite delay existing in the loop (about 60 
ms, approximated to 2 samples), is: 

where X ( s )  and Vd(s) are the Laplace transforms of the end-ef- 
fector position and its desired velocity, a = 14 rad/s is the 

x(k  + 3) - (1  + p )  x ( k  + 2) + px(k  + I )  

1 - P  (13) 
u(k) = 

where u = [u ,  uv u,]' is the end-effector velocity command, and 
x = [x y : IT is its position vector. Equation (1 3) represents an 
inverse dynamic model of the robot, which can be used to 
generate a feed-forward command based on the desired trajec- 
tory. This partially compensates for the effects of the finite delay 
present in the inner position loop. In our case, the inverse model 
described by (1 3) is used in combination with on-line trajectory 
planning to control the vertical motion along the z-axis. By 
substituting in the z component of (1  3), the actual position I with 
the desired position z d ,  known from the local trajectory planning, 
the following expression for u; is obtained: 

z& + 3) - (1  + p)  a ( k  + 2) + p Z d ( k  + I )  

I - P  
14:(k) = 

(14) 

Referring to the control scheme shown in Fig. 3, (14) is 
evaluated by the block "PUMA Inverse Model." 
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The block “Lead Compensator” shown in Fig. 4 is charac- 
terized by the following transfer function in the z-domain: 

Cascading C(z)  with the robot model expressed in (12) results 
in a transfer function which is equivalent to an integrator with a 
delay of three samples: 

Experimental Results 
The experiments described here have been carried out with 

the robot system described in the second section, and shown in 
Fig. 1. The CCD camera was mounted approximately 1 m above 
the object plane, pointing down at an angle of about 40” from the 
horizontal plane. The camera was directly calibrated with respect 
to the robot reference frame by using seven reference points 
obtained by displacing a mark on the robot end-effector. With 
this calibration method, the three-dimensional points lying on the 
object plane in the area of interest were determined with an error 
of 2-3 mm. 

In order to meet the real-time requirements, centroid compu- 
tation was speeded up by employing a pyramid-based tracking 
algorithm on thresholded images, as outlined in the second 
section. The measured centroid computation time was found to 
be about 5 ms in a window of 40x40 pixels. corresponding to an 
average area of 50x50 mm2. 

In the experiments, the catching performance of the robot 
system was tested by using a ping-pong ball glued on a rigid stick 
moved by hand on arbitrary trajectories. The ball was moved at 
velocities of up to 700 mm/s, with accelerations of up to 1500 
mm/s2. In addition, we tested the system with a model train 
moving along a curved track, and with a spring-loaded toy 
mouse, capable of reaching faster speeds. In all experiments, the 
bowl-shaped end-effector was standing 160 mm above the catch- 
ing line that was fixed at .y= 120 mm with respect to the robot 
reference frame. 

Fig. 7 shows the trajectory performed by the robot end-effec- 
tor along the Z-axis. in the case of a ping-pong ball starting at 
about 400 mm from the catching line. In all plots, the dotted line 
represents the trajectory of the object in the .Y direction, whereas 
the continuous line represents the vertical motion of the robot. 
As can be seen from the curves, the robot reached the catching 
line at the ame time as the ball ( t  = 2.8 s), trapping it in the 
end-effector. In this test, the ball reached a velocityf’250 mm/s. 

The robot trajectory along the Y-axis is not reported in the 
figures, since the y component of the object speed was not 
significant to ensure that the object remained within the robot 
workspace and within the camera visual field. 

Fig. 8 illustrates a similar experiment, in which the ball 
reached a velocity of 630 mm/s. Notice that the robot reference 
trajectory is replanned in real-time at each control step, thus the 
resulting shape of the robot path can be very different from a 
quintic polynomial. In fact, in the experiment shown in Fig. 8, 
the robot path differs from a quintic substantially, since the object 

E 

Fig. 7. Robot trajectory while catc,hitig an object at on average speed 
of160 mmls (peak veloci5 = 250 “1s). The dotted line represents 
the trajectory of the object in the s direction, u1herea.s the continuous 
line represents the wrtic.al motion oj‘the robot 

Fig. 8. Robot trajectory while catchitq an object at an average speed 
of500 mmls (peak veloc.ity = 650 mnils). Notice hoM. the on-line path 
planning influences the final portion of the robot trajectory. which 
differs from the typical quintic, polynomial. 

increased its velocity between 0.4 s and 0.8 s. On the contrary, 
in the experiment shown in Fig. 7, the object moved with a nearly 
constant speed, hence the robot trajectory is quite similar to a 
quintic polynomial shape. 

Fig. 9 shows an interesting case in which the object was 
unexpectedly stopped during its motion. As visible from the 
curves, at time t = 1.5 s, the prediction module found that the 
catching condition could not be guaranteed, since (4) was not 
satisfied. As a consequence, the robot stopped its motion, by 
switching to a stopping trajectory, until the condition was veri- 
fied. In Fig. 9, the catching condition was verified at time t = 2.1 
s, when the object started moving again. Also in this case, the 
robot found a trajectory to reach the catching line in time to trap 
the object. The results of these experiments are also available on 
a video tape. 

Real Working System 
A methodology for catching a fast moving object by a robot 

manipulator has been presented. Visual information from a fixed 
camera is employed to track the trajectory of the target. The main 
contribution of this work is the successful design and implemen- 
tation of a real working system, in which sensing, tracking, 
motion prediction techniques, planning strategies, and sensor- 
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Fig. 9. End-effector trajectory while catchin!: an object which stops 
and restarts. 

based control algorithms are performed in real-time, and have 
been integrated in a modular control architecture. It is notable 
that all the experiments make use of a single PC 386 at 25 MHz, 
running under the HAREMS flexible programming environment 
[lo], designed for developing hierarchical control loops. 

The prediction algorithm. integrated with the real-time plan- 
ning, allows the system to cope with possible unpredictable 
trajectory changes of the moving target, in spite of the time delays 
introduced by visual processing and by the robot position con- 
troller. 

A simple but reliable model of the robot position loop has 
been taken into account in the control algorithm for improving 
the performance of the system. Due to the fact that no joint 
measurement is available on line from the robot position 
controller, the model also has been used for estimating the 
end-effector position, based on commands history. Although 
such use of the model is beyond its scope, the good results 
obtained testify the reliability of the model itself, and confirm 
the effectiveness of inner-outer loops control schemes in 
multisensor robot systems. Experimental results have shown 
that the robot system is capable of tracking and catching an 
object moving on a plane at velocities of up to 700 mm/s and 
accelerations of up to 1500 mm/s-. 

Future work will concern the implementation of more sophis- 
ticated vision algorithms to recognize objects in a less structured 
environment, and will be addressed on the use of stereo vision 
for extending the approach to the three-dimensional case. 
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