
684 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

MOUSETRAP: High-Speed Transition-Signaling
Asynchronous Pipelines

Montek Singh and Steven M. Nowick

Abstract—An asynchronous pipeline style is introduced for high-
speed applications, called MOUSETRAP. The pipeline uses stan-
dard transparent latches and static logic in its datapath, and small
latch controllers consisting of only a single gate per pipeline stage.
This simple structure is combined with an efficient and highly-con-
current event-driven protocol between adjacent stages. Post-layout
SPICE simulations of a ten-stage pipeline with a 4-bit wide data-
path indicate throughputs of 2.1–2.4 GHz in a 0.18- m TSMC
CMOS process. Similar results were obtained when the datapath
width was extended to 16 bits. This performance is competitive
even with that of wave pipelines [40], [19], without the accompa-
nying problems of complex timing and much design effort. Addi-
tionally, the new pipeline gracefully and robustly adapts to variable
speed environments. The pipeline stages are extended to fork and
join structures, to handle more complex system architectures.

Index Terms—Asynchronous, clocked CMOS, gate-level
pipelines, latch controllers, micropipelines, pipeline processing,
transition signaling, wave pipelining.

I. INTRODUCTION

A
NEW asynchronous pipeline style, called MOUSETRAP,

is introduced for high-speed applications. The pipeline

uses standard blocks of static logic for processing data and

simple level-sensitive D-latches to separate data items.

An asynchronous, or clockless, circuit style [38] was chosen

for several reasons. First, while synchronous designers are cur-

rently capable of achieving multi-gigahertz clock distributions,

the task involves the ever-increasing challenges of design time,

verification effort, clock skew, and power management, and in-

terfacing with different timing domains. Second, since an asyn-

chronous pipeline has no global clock, it has a natural elasticity

[35]: the number of data items in the pipeline, and the speeds

of the external interfaces, can vary dynamically. As a result, the

pipeline can gracefully interface with environments operating

at different rates, including those subject to dynamic voltage

scaling, thus facilitating modular and reusable design. Finally,

Manuscript received June 18, 2004; revised June 22, 2006. This work was
supported by the National Science Foundation (NSF) under Award CCR-97-
34803, by the NSF ITR under Award CCR-00-86036, by the NSF ITR under
Award CCR-00-86007, by a grant from the New York State Microelectronics
Design Center (MDC), by a gift from Sun Microsystems, Inc., by a UNC Ju-
nior Faculty Development Award, by a grant from UNC University Research
Council, and by an IBM Faculty Development Award.

M. Singh is with the Department of Computer Science, University of North
Carolina, Chapel Hill, NC 27599 USA (e-mail: montek@cs.unc.edu).

S. Nowick is with the Department of Computer Science, Columbia Univer-
sity, New York, NY 10027 USA (e-mail: nowick@cs.columbia.edu).

Digital Object Identifier 10.1109/TVLSI.2007.898732

the localized control of asynchronous pipelines is an excellent

match for very high throughput fine-grain datapaths.
The new pipeline is characterized by the simplicity of its

structure and operation, as well as by ease of design. The
datapath uses standard transparent latches which are small and
fast, and, for a basic linear pipeline, the asynchronous control
consists of only a single gate per pipeline stage. Pipeline stages
communicate only with immediate neighbor stages, and the
timing constraints are all local, simple, and one-sided.

While the proposed pipeline style has general applica-
bility, a special focus of this paper is to target extremely high
throughput. In particular, fine-grain, or “gate-level,” pipelines
are proposed, where the function logic in each stage is only
one gate deep. At this granularity, very short cycle times are
obtained: e.g., the critical cycle consists of a path through
a single level of function logic plus two latch delays and a
small amount of control logic. As an additional optimization,
this critical cycle can be further shortened by merging to-
gether logic and storage elements, using a circuit style called
clocked-logic, or clocked-CMOS (C MOS) [2]. In each case,
a new, highly-concurrent protocol is used; as a result, a basic
MOUSETRAP pipeline without logic has a cycle time of only
5–6 CMOS gate delays (three components).

The pipeline builds on, and extends, the more conservative
approaches proposed in [7], [22], and [35]. In comparison, the
MOUSETRAP pipeline generates an earlier completion signal,
and new templates are proposed to handle complex pipelining
(forks/joins). In addition, several novel optimizations are pro-
posed: a “waveform shaping” strategy to speed up the critical
path; an inverter elimination strategy using dual-rail control
logic; and the use of a clocked-CMOS logic style.

The name MOUSETRAP stands for minimal-overhead ultra-
high-speed transition-signaling asynchronous pipeline. There is
another reason why our pipelines are so called: the latching
action is somewhat analgous to that of a mousetrap. When a
pipeline stage is waiting for data, its latch remains transparent;
as soon as data enters the stage, it is captured by closing the latch
behind it. While there have been other asynchronous pipelines
that have used this kind of latching action [7], [35], each has its
own limitations. In effect, our goal in this paper has been to build
a “better mousetrap.” Post-layout simulations using SPICE are
quite encouraging: a 2.10–2.38 GHz1 throughput in a TSMC
0.18- m process.

The paper is organized as follows. Section II introduces the
new pipeline, including its structure and operation, some perfor-
mance-oriented optimizations, and extensions to handle forks
and joins. Section III presents previous work on synchronous

1Strictly speaking, when referring to the throughput of asynchronous designs,
the unit “gigahertz” should actually be interpreted as “giga items per second.”

1063-8210/$25.00 © 2007 IEEE

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 685

Fig. 1. Basic MOUSETRAP pipeline without logic processing.

and asynchronous pipelines, and then Section IV provides an

in-depth comparison of MOUSETRAP with relevant previous

approaches. Simulation results are presented in Section V and

Section VI gives conclusions.

II. THE MOUSETRAP PIPELINE

This section first introduces the basic structure and operation

of the MOUSETRAP pipeline (Sections II-A and II-B). Then,

several implementation issues are discussed in detail and perfor-

mance and timing constraints are derived (Sections II-C–II-E).

In addition, an optimization is introduced that improves

pipeline performance under steady-state operation by carefully

“shaping” the controller output so as to reduce critical pipeline

delays (Section II-F). Finally, the basic linear pipelines are

extended to handle forks and joins (Section II-G).

Initially, to simplify discussion, Sections II-A and II-B focus

on a basic pipeline without logic processing, i.e., a simple first-

input, first-output (FIFO) queue. Later, Section II-C shows how

logic processing is easily added.

A. Basic Pipeline Structure: A Simple FIFO

Fig. 1 shows the structure of the basic pipeline without logic

processing. Three pipeline stages are shown. Each stage consists

of a data latch and a latch controller. Adjacent stages commu-

nicate with each other using “requests” (req’s) and “acknowl-

edgments” (ack’s).

The data latch is a standard level-sensitive D-type transparent

latch. The latch is normally transparent (i.e., enabled), allowing

new data to pass through quickly.

A commonly-used asynchronous scheme, called bundled

data [26], is used to encode the datapath: a control signal,

indicates arrival of new data at stage ’s inputs. This

approach, which has been successfully used in commercial

chips by Philips [12], allows existing synchronous-style blocks

to be reused in an asynchronous system without concerns for

hazards, as long as the associated request signal is generated

with appropriate timing. In particular, a simple one-sided timing

requirement must be satisfied for correct operation: must

arrive after the data inputs to stage have stabilized. (When

logic processing is added to the pipeline, the request signal

in each stage is typically delayed by an amount that matches

the latency of the associated function block, i.e., by a matched

delay. This is discussed in more detail in Section II-C.) Once

Fig. 2. Aternate view of a basic MOUSETRAP pipeline stage.

new data has passed through stage ’s latch, is pro-

duced, which is sent to its latch controller, as well as to stages

and .

The latch controller enables and disables the data latch. It

consists of only a single XNOR gate with two inputs: the done

from the current stage, stage , and the ack from stage .

An alternate view of the basic pipeline is shown in Fig. 2. The

latch inside a stage is shown separated into two parts: 1) a single

bit latch that receives the incoming request and produces

and the outgoing request and 2) the remainder

of the latch which captures the data bits. In this representation,

the bit latch and the XNOR together form the entire control cir-

cuit that generates and receives the handshake signals from the

neighboring pipeline stages on the left and the right, and also

produces the latch enable signal , which is internal to the

stage, for controlling the latching action on the datapath.

B. Pipeline Operation

1) Overview: The operation of the pipeline of Fig. 1 is quite

simple. Initially, when the pipeline is empty, all its latches

are transparent and all the done, req and ack signals are low.

When the first data item flows through successive stages of

the pipeline, it flips the values of all these signals exactly once

(high). Subsequently, the second data item flips all these signals

once again (low). This method of signaling is called transition

signaling [35]. Each transition, whether up or down, represents

a distinct event: the arrival of a new data item.

Once a data item passes through stage ’s latch, three ac-

tions take place in parallel: 1) the data is passed forward to the

next stage for further processing, along with the corresponding

request, ; 2) an acknowledgment, , is sent to the

previous stage, freeing it up to process the next data item; and, fi-

nally, 3) stage ’s latch itself is quickly made opaque to protect

the current data from being overwritten by new data produced

by stage . Subsequently, when an acknowledgment,

is received from stage the latch in stage is reenabled

(i.e., made transparent).

686 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

Note that while transition signaling is used to signal the flow

of data (one transition on each req/done/ack per data item) the

latches themselves require two transitions per data item: one to

capture (make opaque), and one to release (make transparent).

The first transition takes place when data passes through stage

’s latch (changes value); the second when the same

data passes through stage ’s latch (changes value).

Thus, the XNOR gate acts like a phase converter: it converts the

transition signaling done’s and ack’s into level control for the

transparent latches.

There is another interpretation of the behavior of the latch

controller, which is useful for understanding the pipeline opera-

tion: the XNOR gate is simply an “equality tester.” When stages

and have the same data item, stage is effectively

“empty,” and its latch is enabled (made transparent). When the

stages have distinct data items, stage is effectively “full,” and

its latch is disabled (made opaque).

The latching action by a pipeline stage is analogous to the

operation of a household mousetrap: latches remain transparent

before data arrives; they are closed (i.e., made opaque) as soon

as data passes through. It is important to note that this behavior

is very different from that of most synchronous, and many asyn-

chronous, pipelines in which latches are opened only after new

data arrives.

2) Detailed Operation: A key local timing constraint must

be satisfied for correct operation. Since a transition on

is also a transition on , there is a race condition between

the disabling of stage ’s latch and the reception of new data

from . To ensure that the contents of stage are not cor-

rupted, stage ’s latch must be disabled fast enough, i.e., before

the stage can provide new data. This is a simple one-sided

timing constraint that can easily be satisfied in practice. (For a

more detailed analysis, see Section II-D2.)

Note that the choice of a hybrid protocol—transition sig-

naling for the handshake signals, and level signaling for the

latch enable signal—combines the advantages of both signaling

schemes: 1) much less handshaking overhead, using transition

signaling, since there is no wasteful “return-to-zero” phase and

2) use of small and fast transparent latches, since they are level

controlled. The benefit of a single round-trip handshake per

communication (two signaling events), compared to the more

common two round-trip handshakes with four-phase commu-

nication (four signaling events), is especially important when

function blocks communicate over long-latency interconnects,

such as long-haul on-chip wires or off-chip buses. While several

transition signaling schemes have been proposed—some with

phase conversion [7], [35] and others without [42]—the pipeline

presented here has much less overhead. (Refer to Section IV for

a detailed comparison.)

The operation of a pipeline stage can be formally specified

in the form of a signal transition graph (STG) [6], as shown in

Fig. 3. Transitions and represent the enabling and

disabling of the latch. The remaining STG transitions—

, and —represent transitions (i.e., tog-

gling) of the respective handshake signals. The directed arcs rep-

resent the dependencies between pairs of transitions. Thus, for

example, must be asserted high and the incoming request

must transition before the outgoing request transitions. One arc,

Fig. 3. Formal specification of stage controller.

from to , is shown dotted; it represents a dependence

that is not directly implemented by the controller, but instead

must be satisfied by timing.

In summary, the new pipeline protocol is very simple and the

operation quite fast. The forward latency of an empty pipeline

is low because all the latches are initially transparent. The cycle

time of the pipeline is short because the pipeline is highly con-

current: as soon as data enters stage stage is freed up

for its entire next cycle.

C. Pipeline Implementation: Adding Logic Processing

So far, only pipelines without logic processing, i.e., simple

FIFOs, have been considered. It is now shown how logic pro-

cessing can easily be added to the pipeline.

1) General Pipeline Implementation: Fig. 4 shows how basic

logic processing can be added to the pipeline. Blocks of combi-

national logic and matching delay elements (“matched delays”)

are simply inserted between pipeline stages. The standard asyn-

chronous bundled data scheme is again used: must ar-

rive at stage after the data inputs to that stage have stabi-

lized. Therefore, the latency of the delay element must match

the worst-case delay through the combinational block. A ben-

efit of this approach is that the datapath itself can use standard

single-rail (synchronous style) blocks, which are allowed to be

hazardous, as long as the req arrives after data has stabilized.

Moreover, even when worst-case matched delays are used, this

approach has two advantages over synchronous design: 1) dif-

ferent pipeline stages are allowed to have different delays and

2) variations in a stage’s latency are required to be tracked only

by its local delay element, not by a global clock.

There are several common ways to implement a matched

delay. One technique is to simply use an inverter chain, or a

chain of transmission gates; the number of gates and their tran-

sistor sizing determines the total delay. A more accurate tech-

nique duplicates the worst-case critical path of the logic block,

and uses that as a delay line [10]. If the duplicated critical path

is placed in close proximity to the logic block, it can provide

good delay tracking even for a wide variation in environmental

and process variations. However, this technique is more area ex-

pensive than using a chain of inverters or other standard gates.

Bundled data has been widely used, including in a commer-

cial Philips 80C51 asynchronous microcontroller, several tens

of millions of which have been sold commercially by Philips

for use in pagers and smartcards [12]. Moreover, bundled data

is also currently used in the commercial tool flow of Handshake

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 687

Fig. 4. MOUSETRAP pipeline with logic processing.

Fig. 5. C MOS logic.

Solutions [13], a Philips-incubated asynchronous startup com-

pany that, in partnership with ARM, has very recently developed

a fully asynchronous bundled-data ARM family processor [1].

2) Special Case: Gate-Level Pipelines Using C MOS: To

target extremely high throughput, as a special case, gate-level

pipelines can be used: the datapath is sectioned into the finest-

grained stages, each containing function logic that is only a

single logic level deep, with no explicit latches. As an additional

benefit, the absence of latches also translates into savings of chip

area and power consumption.

Clocked-logic, also known as C MOS, is a particularly attrac-

tive approach to gate-level pipelining [2]. In this scheme, the

latches are eliminated altogether; instead, a clock is applied di-

rectly to the logic gate, to which latching functionality is added.

Fig. 5 shows the structure of a general C MOS gate. The

clock input directly controls the gate through two transis-

tors, one each in the pull-up and the pull-down network. When

is asserted, the gate is enabled and a new output is produced.

When is deasserted, the gate holds its output value. Typ-

ically, an inverter pair providing weak feedback is attached at

the gate output to provide a more robust hold operation. While

C MOS has been proposed as a synchronous technique [2],

it can be naturally adapted to very high-speed asynchronous

pipelines using local handshake signals to replace the clock.

Fig. 6 shows a C MOS implementation of the MOUSETRAP

pipeline. The explicit data latches of Fig. 4 have been elim-

inated; instead, C MOS gates provide both logic as well as

Fig. 6. C MOS implementation of gate-level MOUSETRAP pipeline stage.

latching functionality. Note that the “clock” input to the C MOS

logic is actually the asynchronous signal that is locally gen-

erated by the XNOR gate in the stage’s latch controller. Both

and are needed for the control of C MOS gates. This sug-

gests the use of a dual-rail XNOR gate, which is discussed next.

3) XNOR Optimization: Dual-Rail Implementation: An alter-

native design of the pipeline control is now proposed, to elim-

inate two gate delays from the critical path. Since many trans-

parent latches as well as C MOS gates require both true and

complemented enables, a useful optimization for both of the

proposed pipeline schemes (Figs. 4 and 6) is to implement the

XNOR as a dual-rail gate, providing both XOR and XNOR outputs.

As highlighted in Fig. 6, the XNOR now has two dual-rail in-

puts—(done,) and (ack,)—and a dual-rail output (,

). Accordingly, the “bit latch”—which receives the incoming

req, and generates done as well as the outgoing req and ack sig-

nals—is now replaced by a pair of C MOS identity gates. While

this approach increases the overall control area, it directly im-

proves the performance: two inverters are eliminated from the

critical cycle (from XNOR inputs and its output).

D. Pipeline Performance and Timing Constraints

This section presents an analytical evaluation of both pipeline

performance and timing constraints.

1) Performance: Two key measures of the performance of

the pipeline are discussed: forward latency and cycle time [39].

688 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

Forward latency is the time it takes a data item to pass through

an initially empty pipeline. Since, in an empty pipeline, all the

latches are transparent, the pipeline latency per stage is simply

the stage’s latch delay plus logic delay

(1)

Cycle time is the time interval between successive data items

emerging from the pipeline when the pipeline is operating at

maximum speed. A cycle of stage from one enabling of its

latch to the next, consists of three events: 1) new data passes

through the latch and the stage’s logic block, 2) the data passes

through stage ’s latch, producing and 3)

causes stage ’s latch controller to reenable stage ’s latch.

Therefore, the analytical cycle time is

(2)

(3)

where is the delay through the logic block, and is

the time it takes the XNOR gate to enable the latch.

For the special case of C MOS pipelines, there are no ex-

plicit latches. If the delay through a C MOS gate is denoted by

, the latency and cycle time are given by

(4)

(5)

The cycle times of (3) and (5) are quite fast, and would be diffi-

cult to surpass with synchronous schemes. For example, a stan-

dard synchronous pipeline, with alternating latches controlled

by complementary clocks, and with logic between every ad-

jacent latch pair, will typically have a cycle time of at least

, plus adequate margins to compensate for

clock skew and jitter.

2) Timing Constraints: There are two simple one-sided

timing constraints which must be satisfied for the correct op-

eration of the pipeline: setup time and data overrun. (A third

one-sided constraint, which is standard in such asynchronous

design styles, is the “bundling constraint” (Section II-A), which

requires that the latency through the matched delay in each

stage is greater than the worst-case logic delay.)

Setup Time. Once a latch is enabled and receives new data at

its inputs (along with a req signal), it must remain transparent

long enough for data to pass through. Thus, the path from

to deasserted (XNOR switching low) must be longer than the

setup time

(6)

This constraint is usually easily satisfied because the delay from

to typically exceeds the setup time.

Data Overrun (Hold Time): Once data enters a stage, it

should be securely captured before new data is produced by

the previous stage. If this condition is violated, stage ’s data

will be overwritten by new data. Therefore, since and

are generated in parallel, the path from to stage

Fig. 7. Handling wide datapaths in MOUSETRAP pipelines.

’s data inputs must be longer than the time to close ’s latch,

plus a hold time

(7)

The left terms represent the shortest path through the XNOR to

the arrival of new input from stage . The right terms rep-

resent the path to disabling stage ’s latch. The equation can

be rewritten to simplify the constraint

(8)

Assuming the right expression in

parentheses is canceled. The result is a simple hold time con-

straint, which is usually easily satisfied because the latch and

logic delays through stage typically exceed the hold time.

E. Handling Wide Datapaths

An important practical issue in designing asynchronous

pipelines is the handling of very wide datapaths, where a

single control signal for a pipeline stage must be broadcast

across many latches. In principle, such control distribution may

introduce sizable delays in the critical path, slowing down the

operation of the pipeline. There are two practical solutions

proposed for efficient pipelining of wide datapaths: 1) datapath

partitioning and 2) control kiting.

In the first approach, datapath partitioning, a wide datapath is

divided into several smaller independent streams. The pipeline

control is replicated for each stream, and each stream has its

own sequence of completion generators and matched delays. As

a result, the requirement of buffering is significantly reduced: in

each stage, the latch controller generates a latch enable signal

which is broadcast to only a small number of bits, i.e., to only

those bits that lie inside that partition. This approach is typically

applicable to bit-slice datapaths, such as plain FIFOs and logic

function units (e.g., bitwise AND, OR, etc.).

The second approach to handling wide datapaths, called con-

trol kiting, allows the datapath to be skewed with respect to the

control [21], [42]. No partitioning is used; instead, buffers are

inserted to adequately amplify the latch enable signals which

drive the datapath latches. However, the latch enables for the

completion generators do not need this amplification; they are

simply tapped off from before the buffers, i.e., the control path

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 689

Fig. 8. Waveform shaping optimization. (a) No waveform shaping: symmetric rise and full times. (b) Waveform shaping: asymmetric rise and fall times.
(c) Limiting case: little timing margin. (d) Extreme case: reduced voltage swing.

does not incur the buffering delays used in the datapath, and is

therefore skewed with respect to the datapath. As a result, much

of the overhead of broadcasting the latch enable to the datapath

is hidden, occurring in parallel with other pipeline operations.

Fig. 7 shows an example of how control kiting can be imple-

mented in a MOUSETRAP FIFO. There are two key differences

with respect to the basic implementation of Fig. 1. First, the “bit

latch,” which receives the incoming req and generates the out-

going req and ack signals, is now pulled apart from the rest of the

latch which handles the data bits. Second, buffers are added in

each stage to amplify the enable signal that controls the lower

part of the latch; the “bit latch” still receives the unamplified

enable. Since the insertion of buffers only delays the latching

(and unlatching) of the datapath, the completion signal of each

stage, req, is actually produced a buffer delay earlier than the

data outputs.

Interestingly, if the buffer delays are assumed to be uniform,

the pipeline of Fig. 7 not only operates correctly, but also has

exactly the same analytical cycle time and timing constraints as

those derived for narrower datapaths. In particular, the timing

analysis of Section II-D still applies to the controller circuits;

the only difference is that the datapath is now operating at a

constant skew with respect to the controllers. However, if buffer

delays are unequal, the analysis needs to be modified to account

for this difference. Assuming that the difference between buffer

delays in neighboring stages is bounded by - , the timing

constraints of (6) and (8) are rewritten as

- (9)

- (10)

Each of the two approaches to handling wide datapaths has ac-

ceptable overheads. In particular, the first approach, datapath

partitioning, may sometimes introduce forks and joins into the

datapath if the individual data streams are not entirely indepen-

dent. These forks and joins can be handled through a slight mod-

ification to pipeline control, as shown in Section II-G, incurring

only a modest overhead to pipeline performance. The second

approach, control kiting, also has an overhead: it requires the

buffering delays to be fairly uniform across pipeline stages; oth-

erwise, the timing margins available to satisfy the constraints of

Section II-D2 are effectively reduced. The practicality of con-

trol kiting, however, has been demonstrated through a fabricated

FIR filter chip developed jointly with IBM, although using a dif-

ferent pipeline style [32], [36]. The filter exhibits a highly-varied

datapath, ranging from 30 to 216 wires in width at different

stages in the pipeline, yet was successfully handled using con-

trol kiting.

F. Pipeline Speedup: Optimized Control Generation by

“Shaping” XNOR Output

This subsection presents a circuit-level optimization that can

further improve the pipeline’s performance under steady-state

operation. The key idea is to shape the output of the latch con-

trollers through transistor sizing, such that the critical cycle is

further shortened at the expense of some loss of timing margins.

By varying the aggressiveness of this optimization, the designer

can generate a whole set of implementations, ranging from a ro-

bust unoptimized implementation to an aggressive implementa-

tion partially similar to a wave pipeline, but with greater robust-

ness [15], [19], [40].

In particular, in wave pipelining, multiple waves of data

are propagated between two clocked latches; to ensure data

integrity, all path delays between the latches are required to

be extremely accurately balanced, and both left and right

environments must operate in perfect synchronism. However,

unlike wave pipelining, all MOUSETRAP implementations

even with the proposed optimization exhibit full asynchronous

handshaking, thereby allowing variable environment rates as

well as stalls to be gracefully handled. That is, all the MOUSE-

TRAP variants allow back pressure through synchronization

to enforce stalling when there is congestion; in contrast, wave

pipelining typically allows no backwards pressure and will

malfunction if there is congestion.

This wave-shaping optimization is implemented by making

the rising and falling transitions of the latch controller asym-

metric, such that the speed-critical up-transition is made faster

at the expense of the down-transition. In particular, the rising

transition of the controller is sped up by appropriately sizing

the transistors of the XNOR gate; the shorter implies im-

proved cycle times [cf. (3) and (5)]. However, to maintain the

same amount of loading in the controller circuit, the down-tran-

sition is slowed down; the longer implies somewhat

tighter timing [cf. (8)].

1) Waveform Shaping Scenarios: Fig. 8 shows four different

scenarios, which result when the waveform shaping optimiza-

tion is applied increasingly aggressively from left to right. Each

690 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

graph represents one complete cycle of operation, from one

latch enable to the next latch enable. Moving left to right, the

cycle time is shortened, thereby improving throughput, but at

the cost of reduced timing margins. Each of the four scenarios

is now discussed in detail.

Scenario I (No Waveform Shaping): Fig. 8(a) shows the

controller output (i.e., latch enable) when no waveform shaping

is applied. The deassertion and the subsequent assertion of the

latch enable—i.e., the fall and rise times, respectively—are sim-

ilar. The throughput obtained is used as a baseline for compar-

ison with the remaining scenarios. The timing margin available

to satisfy the data overrun timing constraint (8) is, in practice,

quite adequate: .

Scenario II (Moderate Waveform Shaping): Fig. 8(b)

shows the controller output when a moderate amount of wave-

form shaping is applied. The (re)enabling of the latch (i.e.,

the up transition) is sped up through transistor sizing. At the

same time, the disabling of the latch is slowed down, in order

to keep the total load represented by the latch controller (i.e.,

the XNOR’s input capacitance) constant; thus, the delays in

the rest of the critical path remain largely unchanged. The net

impact is that the cycle time is reduced because the critical

up-transition happens faster [see (3) and (5)]. However, the

timing margin available to satisfy the data overrun constraint of

(8) is somewhat reduced, i.e., by the amount of the asymmetry

in the fall and rise times . In practice,

though, experiments indicate that this constraint can still be

usually satisfied easily (see Section V).

Scenario III (Limiting Case): Fig. 8(c) represents the lim-

iting case in which waveform shaping is applied more aggres-

sively, while still barely ensuring both of the following: 1) the

controller output has a full voltage swing and 2) the data overrun

timing constraint is satisfied, possibly with little margin. This

scenario represents the lower bound on the cycle time that can

be achieved using waveform shaping, while still barely main-

taining correct operation.

Scenario IV (Extreme Case): If waveform shaping is ap-

plied beyond the limiting case, the controller output no longer

exhibits a full voltage swing, as shown in Fig. 8(d). In this

scenario, under steady-state operation, the pipeline latches are

never fully disabled. As a result, the reenabling of the latches oc-

curs even faster, thereby further shortening the cycle time and

improving the throughput. However, the timing constraint of (8)

may no longer be satisfied, thereby potentially allowing for the

possibility of data overrun unless careful management of data-

path delays is undertaken.

The reduced voltage swing scenario has some similarities

with wave pipelining, but also some fundamental differences.

In particular, if the voltage swing is reduced to the extent

that the latches are always substantially transparent, then the

entire pipeline operates in a manner similar to flow-through

combinational logic. As a result, the throughput obtained

will be competitive to that of a wave pipeline. However, re-

duced-swing MOUSETRAP pipelines are fundamentally more

robust because they require much simpler timing assumptions,

and can robustly interface with variable-speed environments.

In particular, even though their latches do not close fully under

steady-state operation, they are still fully functional. In the

event of a slowing down of the receiving environment, or due

to stalls in the pipeline, the latches will fully close to secure the

data they are holding, thereby gracefully handling situations

that wave pipeline cannot handle. An in-depth comparison with

wave pipelines is provided in Section IV-C.

2) Revisiting Timing Constraints: Handling Waveform

Shaping Optimization: Since the proposed waveform shaping

optimization somewhat worsens the timing margin available to

satisfy the data overrun timing constraint, that constraint is now

revisited and analyzed in greater detail. This constraint must

be satisfied in order for the latches to retain their full capture

funtionality.

In particular, the timing constraint of (8) is further refined

by substituting each term, as appropriate, with its minimum or

maximum value. Thus, the slowest time to disable the latch of

stage must be shorter than the fastest time for stage

to react to an acknowledgment from and produce a new data

item at the inputs to stage

(11)

In the absence of processing logic, this timing constraint re-

quires latch delays to be greater than the amount of asymmetry

introduced in the rise and fall times of the latch enables by the

waveform shaping strategy, plus a hold time. In practice, this

constraint is typically satisfied fairly easily, as indicated by the

simulation results in Section V. However, in the event that the

timing margin available to satisfy this constraint is insufficient,

additional processing logic can be inserted in pipeline stages,

which makes the constraint more easily satisfiable.

3) Summary: In summary, the new waveform shaping opti-

mization can help increase throughput at a modest cost in the

timing margins. The cost can be negligible if processing logic

is added to the pipeline, but is often reasonable even for plain

FIFOs. With the optimization, the performance of the pipeline

approaches that of wave pipelining, but without the accompa-

nying challenge of aggressively balancing path delays. Further,

the designer can choose the aggressiveness of this optimiza-

tion, and accordingly generate a continuum of implementations

ranging from robust unoptimized versions to those that are sim-

ilar to wave pipelines.

G. Nonlinear Pipelining

The paper has so far focused on linear pipelines, which have

many practical applications. However, in complex system ar-

chitectures, nonlinear pipelining is often needed (Fig. 9). Two

simple primitives—fork and join—are now introduced to extend

the applicability of MOUSETRAP pipelines.

Figs. 10 and 11 show simple structures for fork and join com-

ponents, respectively. In a fork stage, the data output and corre-

sponding “req” (matched done output) are both simply forked

to the two or more destination stages. In turn, the two or more

“ack” signals are combined through a Müller C-element. A C-el-

ement is an “event ANDer”: its output makes a transition when

all of its inputs change exactly once [35].

Analogously, in a join stage, the “ack” is simply a forked wire

communicating with all sender stages, but there are multiple

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 691

Fig. 9. Nonlinear pipelining.

Fig. 10. MOUSETRAP fork stage.

Fig. 11. MOUSETRAP join stage.

“req’s” that must be combined. Once again a C-element can

simply be used to combine the multiple requests, and the result

treated as a unified request that is fed into the latch.

However, an alternative join implementation merges this

C-element (that combines multiple requests into one) with

the latch itself, thereby producing a single component for

greater area efficiency and better latency. This combination of

a C-element and a latch is actually an “asymmetric” C-element

[11]. Whenever the “latch enable” is asserted, the component’s

output is 1 when all of the merged “req’s” are 1, and is 0 when

all of the merged “req’s” are 0. At all other times (when the

“latch enable” is deasserted, or if the req’s are not all equal), the

component simply holds its value. At the transistor level, the

pull-down network is a single series stack with one transistor for

each req, as well as a transistor for the “latch enable.” Similarly,

the pull-up network is a single series stack with one transistor

for each req, and with a transistor for the complemented “latch

enable.” Finally, the multiple data input streams are simply

merged into one stream and latched together.

The analytical cycle time of fork and join structures will

be slightly higher than that of linear pipelines, because of the

introduction of the C-elements. In particular, for a fork stage

(Fig. 10), the cycle time increases from that in (3) by an amount

equal to the latency of the C-element

(12)

(13)

For a join stage (Fig. 11), however, the cycle time does not

change much, since the new asymmetric C-element replaces the

bit latch and has a similar latency ()

(14)

In summary, in practical terms, only forks increase the analyt-

ical cycle time, and that too only by the amount , which typi-

cally represents a small overhead. As an example, if ,

and are all assumed to be two gate delays, and if the

logic in the stage is also two gates deep, then the cycle time in

the presence of a fork (13) will be ten gate delays, instead of

eight gate delays for a linear pipeline (3), representing an over-

head that is usually quite acceptable. However, we are currently

developing optimized versions which reduce this overhead fur-

ther through careful use of logic decomposition.

H. Pipeline Initialization

Initialization is an important aspect of any design. For sim-

plicity of discussion, this issue has been ignored so far, but is

now briefly addressed.

Initialization is achieved very simply by adding a global

“reset” input to the latch of every pipeline stage, thereby

making it resettable. In particular, an extra pull-up transistor

controlled by reset is added to the latch, which pulls the latch’s

internal node high during initialization, thereby causing the

latch output to reset low. Therefore, all the done, req, and

ack signals are forced low during initialization, which in turn

asserts all the latch enables . As a result, all pipeline

stages are initialized to be empty, and all latches are initialized

to be transparent while they await the first data item. Once the

pipeline is thus initialized, reset is deasserted. The pipeline is

then ready for operation.

The initialization capability is implemented with a low over-

head. In practice, only that one bit of the latch which produces

the done signal requires this reset capability. For the dual-rail

implementation of Section II-C3, the pair of identity C MOS

gates that produce the dual-rail done output are initialized so

that the true rail is low and the complement rail is high. The

pipeline circuits designed and simulated for this paper all in-

clude full initialization capability.

III. OVERVIEW OF RELATED WORK

A. Synchronous Pipelines

Several synchronous pipelines have been proposed for

high-throughput applications. In wave pipelining, multiple

waves of data are propagated between two latches [19], [40].

However, this approach requires much design effort, from

the architectural level down to the layout level, for accurate

692 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

balancing of path delays (including data-dependent delays),

and remains highly vulnerable to process, temperature, and

voltage variations. Section IV-C provides a detailed comparison

between wave pipelining and MOUSETRAP.

Other aggressive synchronous approaches include clock-de-

layed domino [41], skew-tolerant domino [14], and self-resetting

circuits [23], [8]. These all require complex timing constraints

which are difficult to verify; they also lack elasticity and still

require high-speed global clock distribution.

Several recent approaches combine clocking with the benefits

of handshaking, and thereby obtain elasticity or latency insensi-

tivity within a synchronous system. Carloni et al. [3] introduced

a formal approach for latency-insensitive design of single-clock

systems. Synchronous IP blocks are encapsulated inside custom

wrapper circuits, which employ clock gating when necessary to

accommodate arbitrary communication latencies. The approach

of Jacobson et al. [16] pushes latency-insensitive design to the

granularity of individual latches. Recently, Singh and Theobald

[31] have introduced several extensions to the notion of latency

insensitivity, including generalization from single-clock to mul-

ticlock systems, and from point-to-point communication to ar-

bitrary network topologies.

Finally, several approaches have been proposed recently for

implementing communication across clock boundaries in multi-

clock systems. Chelcea and Nowick [5] introduced low-latency

asynchronous FIFOs that can glue together different timing do-

mains. An alternative approach by Chakraborty and Greenstreet

[4] features a novel technique for handling metastability, which

practically eliminates the performance overheads of other ap-

proaches (e.g., a double-latch approach). Finally, Kessels et al.

[17] build upon the pipeline design of this paper and introduce

a clocked version of MOUSETRAP for bridging together dif-

ferent clock domains. MOUSETRAP was chosen because its

two-phase protocol had the advantage of fewer round-trip delays

(compared with four-phase styles), and because this pipeline

could be easily implemented using any standard cell library.

B. Asynchronous Pipelines

There has been much work recently on asynchronous

pipelines. This subsection presents a survey of recent asyn-

chronous pipeline styles, first single-rail and then dual-rail.

1) Single—Rail: The classic single-rail asynchronous

pipelines introduced by Sutherland are called micropipelines

[35]. This style uses elegant control, but has slow and complex

capture-pass latches which can significantly hinder perfor-

mance. A number of variants using alternative control and

latch structures have been proposed [7], [21], [42] but in each

case the performance is limited due either to excessive control

delays or to sizable latch delays. Recently, a new style, GasP,

has been proposed which obtains even higher throughputs [33].

However, this approach requires fine-grain transistor sizing

to achieve near-exact delay equalization for all gates in the

control circuitry, and the protocol has more complex two-sided

timing constraints. In contrast, MOUSETRAP pipelines do not

require delay equalization and have simpler one-sided timing

constraints.

The fastest designs reported so far are the IPCMOS pipeline

from IBM [25] and the GasP pipeline from Sun. Both of these

approaches are targeted to bundled datapaths [26] that use static

logic, i.e., datapath blocks with an attached worst-case delay

line (discussed in Section II-A). Each style provides very high

throughputs through use of novel complex control structures

and aggressive circuit techniques. Throughputs of 3.3 GHz in

0.18 m were reported for IPCMOS in an IBM proprietary sil-

icon-on-insulator technology, at the normal process corner.2 In

contrast, the experimental results for MOUSETRAP are for a

standard bulk-CMOS process, which is very likely significantly

more conservative than the proprietary IBM process used for

IPCMOS. For GasP, a throughput of 1.5 GHz has been reported

in 0.35- m technology.

While a definitive quantitative comparison of MOUSETRAP

with IPCMOS and GasP is not possible due to the significant

differences in the fabrication technology, a reasonable tech-

nology-independent comparison can be made by evaluating the

cycle times of these approaches in terms of a number of CMOS

logic levels on the critical path. In particular, a MOUSETRAP

FIFO has only 5–6 levels of CMOS gates plus one pass gate

(two latches and one XNOR) on its critical cycle. While GasP

also has a similar critical cycle (6 levels of CMOS logic), the

IPCMOS cycle is much longer: 12 levels of CMOS logic plus

one pass gate. Thus, if implemented in the same technology,

MOUSETRAP is expected to outperform IPCMOS and have a

performance similar to that of GasP. Arguably, the gates used

to implement GasP may have a somewhat lower logical effort

[34] compared with MOUSETRAP, but there are other features

of GasP (e.g., significantly more complex timing requirements

and transistor sizing) which make MOUSETRAP an attractive

alternative.

In summary, while IPCMOS and GasP are very fast,

they are much more complex and designer-intensive styles.

MOUSETRAP provides a different point in the design space:

much greater simplicity, with nearly comparable (or better)

performance. Section IV-B provides a detailed technology-in-

dependent comparison.

2) Dual-Rail: The classic dual-rail asynchronous pipeline

approach is the PS0 pipeline by Williams and Horowitz [39].

This pipeline style uses dynamic logic for the datapath and

uses dual-rail encoding with completion detection to generate

control information. A key contribution of this approach is

elimination of explicit latches or storage elements from the

datapath; latching functionality is achieved instead by a careful

sequencing of control of the dynamic function blocks.

There have been a number of recent approaches that build

upon the PS0 pipeline and achieve significantly higher perfor-

mance [27]–[29], [32]. In particular, throughputs up to 2.4 GHz

in 0.18- m technology have been reported for FIFOs, and up to

1.3 GHz in the same technology for a complex real-world dig-

ital FIR filter chip [32].

In addition, dynamic pipelines have been proposed that aim

at improving the storage efficiency of the pipeline. In particular,

PS0 is limited to storing distinct data items only in alternating

2Throughputs of up to 4.5 GHz have been reported, but these are only for
extreme process cases (L = �2� and low V).

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 693

pipeline stages, thus offering at most a 50% storage capacity. In

contrast, the high-capacity (HC) pipeline of [28] and [32] offers

100% storage capacity as well as higher throughput than PS0.

Martin et al. [20] and Lines [18] present the design of a com-

plete microprocessor using fine-grain pipelining techniques

similar to Williams’. The pipeline circuits are based on the

conservative and robust quasi-delay-insensitive (QDI) model,

yet have high performance. While several distinct pipeline

styles are introduced, the most commonly-used ones have

cycle times that are 18 gate delays or greater. Other QDI styles

include those by Ozdag and Beerel [24], which improve upon

the performance of [18] and [20] through use of concurrency

reduction to simplify the design of the dynamic function

blocks (i.e., reduced stack size). Finally, Ferretti and Beerel [9]

combine the robustness of delay-insensitive encoding with the

effiency of the single-track handshaking of [33] and introduce

single-track 1-of- pipelines.

While dual-rail asynchronous pipelines typically provide

greater robustness than single-rail pipelines, the former are

less compatible with current industry design methodologies.

In particular, many dual-rail approaches use dynamic logic,

which currently enjoys much less commercial tool support as

compared to static logic. Dynamic logic also has the inherent

problem of vulnerability to noise, thereby requiring careful

custom design to ensure reliable operation. Finally, dual-rail

design typically requires the creation of new function blocks,

since it cannot easily reuse preexisting designs which are pre-

dominantly single rail. As a result, single-rail bundled datapath

approaches have the attractiveness of greater compatibility with

industry practices.

IV. DETAILED COMPARISON WITH RELATED WORK

The proposed MOUSETRAP pipeline is now compared in

greater detail with several recent closely-related approaches.

First, Section IV-A provides a comparison with other classic

transition-signaling pipelines. Then, Section IV-B compares

MOUSETRAP with two of the fastest existing pipeline styles:

GasP pipelines from Sun and IPCMOS pipelines from IBM.

Finally, a detailed comparison with wave pipelining is provided

in Section IV-C.

A. Comparison With Other Transition-Signaling Asynchronous

Pipelines

Previous transition-signaling asynchronous pipelines fall into

two categories: those that use phase conversion [7], [22], [35],

and those that do not [11], [42].

The pipelines of ([35, Fig. 14]) and ([7, Fig. 10]), called mi-

cropipelines, both use phase conversion. Similar to MOUSE-

TRAP, a micropipeline stage uses transition signaling and trans-

parent latches (see Fig. 12). However, both of these approaches

have significantly more complex control than MOUSETRAP.

Each has two extra components per stage: a C-element and a

Toggle element. The Toggle element routes transitions received

on its input to one of two outputs alternately, starting with the

output labeled with a dot. The critical paths are also much longer

than MOUSETRAP: from to there are four com-

ponent delays (the C-element, XNOR, latch, and Toggle), and

Fig. 12. Sutherland’s and Day/Woods’ micropipeline stage.

from to the input of the C-element (to half-enable it) there

are three component delays (the XNOR, latch, and Toggle).

By comparison, MOUSETRAP pipelines have significantly

simpler structure than the micropipelines of Fig. 12. In partic-

ular, the critical paths are much shorter: there is only a single

latch delay from to , and only an XNOR delay from

to the reenabling of the stage for the next data item. In fact,

as seen in the alternate view of MOUSETRAP of Fig. 2, the top

bit of the latch (labeled “bit latch”) performs the combined role

of both the C-element and the Toggle element of Fig. 12, i.e.,

it receives the incoming request and generates the outgoing re-

quest and acknowledgment.

This difference in structure is critical: it allows not only

faster operation for MOUSETRAP, but also allows systems

built using MOUSETRAP pipelines to be implemented using

standard components (latches and XNORs). In contrast, the

micropipelines of Fig. 12 require C-elements and Toggle ele-

ments, which typically must be custom designed as they are

not supported by standard cell libraries or by automated design

and test tools.

Closer to MOUSETRAP, the Sun Laboratories’ “Charlie

boxes” [22] include simpler designs, such as the so-called

S-style. MOUSETRAP pipelines can be regarded as more opti-

mized—and less robust—versions of some Charlie boxes. For

instance, MOUSETRAP pipelines generate an earlier comple-

tion signal, thereby obtaining shorter cycle times at the modest

expense of a timing assumption that is in practice usually easy

to satisfy [cf. (8)]. In addition, MOUSETRAP provides new

templates for handling nonlinear datapaths (i.e., forks and

joins). Furthermore, several novel optimizations are introduced

for MOUSETRAP—a “waveform shaping” strategy to speed

up the critical path; an inverter elimination strategy using

dual-rail control logic; and the use of a C MOS-style—none of

which appeared in [22].

There are several alternative approaches to implementing

phase conversion, between transition-signaling and four-phase

protocols. However, each of these approaches has greater

complexity and analytical cycle time. In [11], Furber and Day

propose three distinct four-phase protocols for asynchronous

pipelines: fully decoupled, long hold and semidecoupled. In the

694 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

first two, pipeline control is significantly more complex than in

MOUSETRAP. The best of their designs, semidecoupled, in-

troduces a highly-concurrent protocol, but still has a minimum

of four components on the critical cycle. These components

are all C-elements, two of which have stack depth of 3, and

additional inverters are actually implied for correcting polarity.

In contrast, MOUSETRAP only has three components on the

critical cycle (two transparent latches and an XNOR), no stack

depths of 3, no implied inverters, and avoids the extra switching

activity of four-phase communication.

Compared with these phase-conversion approaches,

MOUSETRAP can be regarded as more of an optimized

variant, which, in some cases, may be slightly less robust. In

particular, the acknowledge signal in MOUSETRAP is sent

to the previous stage as soon as data has been received, but

before it has been securely latched in the current stage. This

optimization significantly improves the pipeline performance,

but introduces a small hold time requirement [see (8)]. This

timing constraint is typically easily satisfied in practice, as

demonstrated by simulation results, and therefore justifies the

optimization. The other approaches delay acknowledgment

until after the data has been latched. As a result, these ap-

proaches meet the hold time constraint by construction, but at

the cost of lower performance.

A final alternative approach to phase conversion is to retain

transition-signaling control, but replace the transparent latches

with dual-edge-triggered D-flip-flops (DETDFF’s) [42]: data

is latched each time the latch control is toggled. While this

approach avoids the overhead of phase conversion, it incurs a

heavy performance penalty because DETDFF’s are significantly

slower than transparent latches, and are also much larger.

B. Comparison With GasP and IPCMOS Pipelines

There are three fundamental distinctions between MOUSE-

TRAP and the most competitive recent high-speed asyn-

chronous pipelines from Sun Laboratories (GasP [33]) and

IBM (IPCMOS [25]). Overall, MOUSETRAP has the signif-

icant advantage of requiring less designer effort: it has fewer

requirements on transistor sizing, uses more standard VLSI

circuit structures, and has simpler timing constraints. Each of

these three distinctions are now discussed in detail.

First, the design methodologies of GasP and IPCMOS in-

herently expect very careful transistor sizing. In particular, the

GasP approach aims for fine-grain transistor sizing to make

all gate delays equal. As a result, it can be argued that the

GasP circuits are not really asynchronous at the level of indi-

vidual gates, but are completely balanced and timed: the cycle

time is defined by a fixed number of equal gate delays on the

critical path. The pipeline’s asynchronous behavior is observed

only at a higher level of abstraction, i.e., at the level of pipeline

stages. In IPCMOS, inter-stage communication is performed

using pulses instead of level signals. As a result, careful sizing of

output drivers is needed to ensure integrity of pulsed signals. In

contrast, while MOUSETRAP benefits from careful transistor

sizing, it is not a fundamental requirement for correct opera-

tion. Furthermore, MOUSETRAP uses transition signaling, thus

avoiding the challenging signal integrity issues of IPCMOS’s

pulse-mode communication.

Second, both the GasP and IPCMOS styles require spe-

cial-purpose VLSI circuit structures. In particular, GasP uses

aggressive nonstandard techniques such as communicating

control information on tristated wires, bidirectional commu-

nication on the same wire, and the use of self-resetting gates

in the control logic. Similarly, IPCMOS uses pseudo-nMOS

structures that may experience short-circuit conditions, thereby

requiring careful design to avoid malfunction. In addition,

IPCMOS uses switches based on pass-transistor logic. In

contrast, MOUSETRAP pipelines can be implemented using

standard cells if needed: standard transparent latches and static

logic for both datapath and control, without requiring any

specialized gate styles or components.

Finally, the timing constraints in GasP and IPCMOS are

significantly more stringent than the requirements of MOUSE-

TRAP. In particular, GasP has two-sided timing constraints

for correct operation. The pulse generated inside the control

of each pipeline stage (when new data arrives) must be long

enough in order to effectively charge/discharge both the left and

right state conductors. However, that pulse must also be short

enough so that it does not overlap with the pulses generated

inside neighboring stages; otherwise, the pulses in each pair of

adjacent stages will “fight” for control of the state conductor,

causing periods of short-circuit activity with unpredictable

behavior. Thus, there is a two-sided constraint on the width of

pulses generated by each GasP control circuit. IPCMOS has

similar two-sided constraints on the widths of the pulses used

for inter-stage communication. In contrast, MOUSETRAP

only has simple setup and hold time requirements, which are

single-sided and, in practice, usually easy-to-satisfy.

C. Comparison With Wave Pipelining

The steady-state performance of MOUSETRAP is competi-

tive with that of a wave pipeline [15], [19], [40]. In particular, in

a wave pipeline, multiple waves of data are propagated between

a pair of latches; there are no other latches in the datapath. By

comparison, under steady-state operation, MOUSETRAP also

acts as a transparent flow-through combinational logic. In par-

ticular, when the waveform shaping optimization of Section II-F

is used, it is possible to keep the latches continuously trans-

parent, when a steady stream of data is being processed. Hence,

under steady state, the performance of MOUSETRAP should

be competitive with that of wave pipelines. At the same time,

much like in a wave pipeline, careful management of datapath

delays will be required in order to preserve data integrity. Other-

wise, for example, certain bits of data in a stage may be overrun

by new data bits arriving along “fast paths” from its preceding

stage.

However, reduced-swing MOUSETRAP pipelines are fun-

damentally more robust than wave pipelines. There are two

key differences. First, careful delay management is less critical

for MOUSETRAP than for wave pipelining. The reason is

that, in steady-state operation, even if the latches are not made

fully opaque, they still go through a phase in which they are

not fully transparent either. As a result, the transmission of

data bits is somewhat slowed momentarily (though not fully

stopped)—especially for the new data bits arriving along “fast

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 695

TABLE I
PERFORMANCE OF MOUSETRAP FIFO (0.18-�m TSMC TECHNOLOGY)

paths”—thereby somewhat mitigating the task of careful man-

agement of datapath delays. Thus, the presence of handshake

signals in MOUSETRAP allows some degree of synchroniza-

tion even in the reduced voltage swing scenario. In contrast,

wave pipelining requires a highly accurate balancing of path

delays (including data-dependent delays), and remains highly

vulnerable to process, temperature, and voltage variations.

Second, and more importantly, MOUSETRAP provides

much greater robustness than wave pipelining in the presence

of pipeline congestion or environment stalls. In contrast, wave

pipelining fundamentally cannot handle these nonsteady-state

situations. For instance, consider the interface of a MOUSE-

TRAP pipeline with its right environment. Whether the right

environment suddenly stalls or speeds up, the pipeline grace-

fully handles these variations. If the right environment is slow

and cannot respond with an ack, the rightmost pipeline stage

quickly makes its latch opaque (since no ack is received by its

XNOR), thus preventing an overrun from the left stage. Even if

the right environment is very fast, it is correctly stalled until

the rightmost stage can deliver it data, since the environment

is waiting for the stage’s req signal. The same reasoning also

applies to the internal stages in the pipeline, making the pipeline

robust to internal delay variations and congestion as well. In

contrast, a wave pipeline lacks handshaking, and therefore

cannot adapt to variations in input or output rates or to pipeline

congestion and environment stalls.

V. EXPERIMENTAL RESULTS

Results of post-layout SPICE simulation for basic MOUSE-

TRAP pipelines are now presented.

Experimental Setup: A simple 10-stage FIFO was simu-

lated (with no logic processing). The FIFO was laid out using the

Cadence tool suite in a 0.18- m TSMC process. Two versions of

the pipeline were simulated: 1) the “unoptimized” pipeline style,

i.e., without the waveform shaping optimization of Section II-E,

but with dual-rail control and 2) an “optimized” version with

waveform shaping, corresponding to the scenario to Fig. 8(d).

Both a 4-bit FIFO and a 16-bit FIFO were simulated for the

unoptimized style. Identical control circuits were used in both

the cases (including identical transistor sizes), but control kiting

was used for the 16-bit design to handle the wider datapath

without any performance degradation (see Section II-F). For

the optimized style, the waveform shaping optimization was

performed on the 4-bit FIFO to obtain further improvement in

throughput, though at the expense of some loss of timing mar-

gins. This optimization was not performed, however, on the

16-bit FIFO because control kiting used on that design already

meant potentially tighter timing margins.

The operating conditions were 1.8 V nominal voltage supply,

300 K temperature, and a normal process corner. Simple custom

cells were designed: a pass-gate implementation of a dual-rail

XNOR/XOR pair, and an eight-transistor dynamic D-latch. (How-

ever, it should be noted that MOUSETRAP can be easily imple-

mented using any standard cell library as well.)

Simulation Results: Table I summarizes the simulation

results. The overall pipeline cycle time is given, as well as

the delays of individual components: the latch delay

and controller gate delays and . The first row,

labeled “MOUSETRAP,” presents results for both the 4- and

16-bit FIFOs without the waveform shaping optimization.

Since control kiting effectively isolates the control circuits

from the higher load represented by the wider datapath of the

16-bit design, no significant difference was observed in the

simulations for the 4- and 16-bit FIFOs. The timing constraints

of Section II-D2 were easily satisfied with adequate margins.

The second row of the table, labeled “ ,”

represents the results for the 4-bit design with somewhat ag-

gressive waveform shaping. The throughputs obtained were

quite encouraging: 2.1 GHz for the unoptimized design and

nearly 2.4 GHz for the optimized one.

These numbers compare favorably to the IPCMOS style of

Schuster et al. [25]. Their reported results of 3.3 GHz are for a

high-performance IBM 0.18- m process; this IBM process is in

practice significantly faster than the 0.18- m TSMC process we

used. In particular, the IBM process used was silicon-on-insu-

lator (SOI), whereas our process was a bulk process. Although

our designs do not include logic processing, we anticipate com-

petitive performance with IPCMOS using a comparable process

when logic is included, since one gate delay of logic adds little to

the overall MOUSETRAP cycle time. As indicated earlier, the

IPCMOS critical path is made up of 12 levels of CMOS logic,

plus a pass gate. In contrast, our MOUSETRAP implementa-

tion only uses five levels of CMOS logic, plus a pass transistor,

on its critical path (plus two additional CMOS levels if there

are forks and joins in the datapath). In addition, MOUSETRAP

has the benefit of much simpler circuit components and timing

constraints.

The simulations also demonstrate the benefit of the wave-

form shaping approach. The table shows that the optimization

resulted in an increase in throughput from 2.10 to 2.38 GHz,

representing a 13% improvement. The table shows how the op-

timization led to a decrease in , which is on the critical

path, in exchange for a slightly longer , which is not on

the critical path.

Fig. 13 shows the waveforms corresponding to the results in

the table. The top half of the figure shows the done output and

the latch enable signal for one pipeline stage of the unoptimized

design, i.e., without waveform shaping. The bottom half shows

the waveforms for the optimized design, with somewhat aggres-

sive waveform shaping. Observe that, in the bottom picture, the

696 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

Fig. 13. Waveforms corresponding to the results of Table I. (a) With no (or
moderate) waveform shipping. (b) With aggresive waveform shaping.

voltage swing is somewhat reduced, i.e., the latch enable signal

is not completely deasserted before it is reasserted. This sce-

nario corresponds to Fig. 8(d). The timing constraint of (8) (data

overrun) still appears to be easily met: 179 ps,

0 ps, and 68 ps. Strictly, however, the slew

rates (i.e., rise and fall times) of the latch enable signal, which

were not taken into account in (8), erode the available margin,

thereby resulting in the reduced swing. The introduction of pro-

cessing logic into the pipeline can help satisfy the timing con-

straint with more comfortable margins.

Power/Energy Consumption: Gate-level pipelining is de-

signed for the highest throughput systems, which typically have

greater power consumption.3 However, a gate-level MOUSE-

TRAP pipeline has several potential power advantages over

a gate-level synchronous pipeline. First, only active stages in

MOUSETRAP exhibit switching activity, whereas typically

all stages in the synchronous pipeline have switching activity.

While some clocked approaches employ clock gating [37] to

reduce unwanted switching, there are overheads of additional

design and verification complexity. Second, MOUSETRAP

uses transparent D-latches, while most synchronous designs

3Power consumption should be less for coarser-grain MOUSETRAP
pipelines, in which most of the power will be dissipated in the standard syn-
chronous-style bundled function blocks and their associated pipeline latches,
and relatively little in the stage controllers.

TABLE II
POWER AND ENERGY CONSUMPTION OF TEN-STAGE FIFOS

use more energy-expensive flip-flops or double latches. Finally,

a basic MOUSETRAP has only a single gate of control logic per

stage, and similar datapath loading as the synchronous pipeline,

so it is expected that local control does not incur additional

penalty over the synchronous implementation.

Experimental results are now presented to compare the power

and energy consumption of MOUSETRAP pipelines to another

asynchronous style, and to show how MOUSETRAP can be sig-

nificantly more energy efficient. In particular, the 16-bit unopti-

mized MOUSETRAP FIFO was evaluated both for power dissi-

pation when it is running at maximum throughput, and also for

energy consumed for one data item passing through one pipeline

stage. Power dissipation is relevant when considering thermal

issues and supply currents, whereas the latter figure is impor-

tant to determine energy efficiency, which is critical for mobile

and handheld systems that must operate on batteries with lim-

ited charge supplies.

Table II summarizes the simulation results for power and en-

ergy consumption. For comparison, a classic dual-rail dynamic

pipeline design by Williams and Horowitz called PS0 [39] was

also simulated. For each of the two styles, a 16-bit 10-stage

FIFO was simulated. Since PS0 is dual-rail, its datapath actu-

ally consists of 32 wires. Data items were generated randomly

for the pipelines such that each data bit has a probability of 0.5

that it changes between two consecutive data items. The middle

column of the table shows the power consumed in milliwatts for

each design. The last column shows the energy consumed in pi-

cojoules for each data item passing through one stage.

As seen in the table, MOUSETRAP has significantly better

energy efficiency, though slightly higher power consumption.

In particular, MOUSETRAP consumes 17% higher power

than PS0 (30.8 mW instead of 26.3 mW). This higher power

consumption in MOUSETRAP is solely because of its sig-

nificantly higher throughput (2.1 GHz), i.e., it performs more

“work” per second than the PS0 pipeline (0.51 GHz). In fact,

MOUSETRAP consumes 71% lower energy per item per

stage, i.e., it is 3.5 times more energy efficient for the same

computation. There are two reasons for the greater energy

effiency of MOUSETRAP. First, it has lower switching activity

because approximately only half the data bits switch between

consecutive data items; in contrast, in dual-rail PS0, one rail

of each bit must rise and precharge for each data item (i.e.,

4 switching activity). Second, MOUSETRAP does not need

completion detectors, which are required in PS0 and are a

significant source of energy consumption. Taken together, these

two factors would suggest an energy advantage for MOUSE-

TRAP of greater than 4 ; however, the benefit is slightly less

(3.5) because MOUSETRAP uses static latches, which are

somewhat more energy expensive than the dynamic gates used

in the PS0 pipeline.

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 697

VI. CONCLUSION

A new pipeline design style, MOUSETRAP, was introduced

for high-throughput applications that use static logic datapaths.

The pipeline uses simple structures for both latches and control,

and an efficient and highly-concurrent event-driven protocol.

The pipelines have only two simple one-sided timing constraints

which in practice are usually easy to satisfy.

Optimizations are introduced at the logic and circuit levels,

to further improve throughput. In particular, one style merges

latches and logic gates through use of C MOS, resulting in a

style that is particularly well-suited for gate-level pipelining.

Another optimization removes critical inverter delays from the

cycle time by implementing the control circuits in dual rail.

Finally, a circuit-level optimization further speeds up critical

events through a “waveform shaping” approach. As a result, in

steady-state operation, the pipeline performance is comparable

to that of wave pipelines, and yet the new pipelines are more

robust and require much less design effort.

ACKNOWLEDGMENT

The authors would like to thank Prof. S. Furber and Prof. J.

Garside of the University of Manchester, for pointing out poten-

tial issues of short-path timing violations when using the wave-

form shaping strategy.

REFERENCES

[1] ARM, Cambridge, U.K., “ARM offers first clockless processor core,”
(2006). [Online]. Available: http://www.eetimes.com/news/latest/
showArticle.jhtml?articleID=179101800

[2] M. Borah, R. M. Owens, and M. J. Irwin, “High-throughput and low-
power DSP using clocked-CMOS circuitry,” in Proc. Int. Symp. Low-

Power Design, 1995, pp. 139–144.
[3] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli, “The theory

of latency insensitive design,” IEEE Trans. Comput.-Aided Design In-

tegr. Circuits Syst., vol. 20, no. 9, pp. 1059–1076, Sep. 2001.
[4] A. Chakraborty and M. R. Greenstreet, “Efficient self-timed interfaces

for crossing clock domains,” in Proc. Int. Symp. Adv. Res. Asyn-

chronous Circuits Syst., 2003, pp. 78–88.
[5] T. Chelcea and S. M. Nowick, “Robust interfaces for mixed-timing sys-

tems with application to latency-insensitive protocols,” in Proc. ACM/

IEEE Design Autom. Conf., 2001, pp. 21–26.
[6] T.-A. Chu, “Synthesis of self-timed vlsi circuits from graph-theoretic

specifications,” Ph.D. dissertation, Lab. Comput. Sci., MIT, Cam-
bridge, 1987.

[7] P. Day and J. V. Woods, “Investigation into micropipeline latch design
styles,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3, no.
2, pp. 264–272, Jun. 1995.

[8] A. Dooply and K. Yun, “Optimal clocking and enhanced testability for
high-performance self-resetting domino pipelines,” in ARVLSI, 1999,
pp. 200–214.

[9] M. Ferretti and P. A. Beerel, “Single-track asynchronous pipeline
templates using 1-of-N encoding,” in Proc. Design, Autom. Test Eur.

(DATE), 2002, pp. 1008–1015.
[10] S. Furber, “Computing without clocks: Micropipelining the ARM

processor,” in Proc. Asynchronous Digit. Circuit Design, Workshops

Comput., 1995, pp. 211–262.
[11] S. B. Furber and P. Day, “Four-phase micropipeline latch control cir-

cuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 4, no. 2,
pp. 247–253, Jun. 1996.

[12] H. v. Gageldonk, D. Baumann, K. van Berkel, D. Gloor, A. Peeters, and
G. Stegmann, “An asynchronous low-power 80C51 microcontroller,”
in Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst. (ASYNC),
1998, pp. 96–107.

[13] Handshake Solutions, Eindhoven, The Netherlands, “Home page”
(2006). [Online]. Available: http://www.handshakesolutions.com

[14] D. Harris and M. Horowitz, “Skew-tolerant domino circuits,” IEEE J.

Solid-States Circuits, vol. 32, no. 11, pp. 1702–1711, Nov. 1997.

[15] O. Hauck, M. Garg, and S. A. Huss, “Two-phase asynchronous wave-
pipelines and their application to a 2D-DCT,” in Proc. Int. Symp. Adv.

Res. Asynchronous Circuits. Syst. (ASYNC), 1999, pp. 219–228.
[16] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G.

Mercer, and C. J. Myers, “Synchronous interlocked pipelines,” in Proc.

Int. Symp. Adv. Res. Asynchronous Circuits Syst., 2002, pp. 3–12.
[17] J. Kessels, A. Peeters, and S.-J. Kim, “Bridging clock domains by syn-

chronizing the mice in the mousetrap,” in Proc. Power Timing Mod-

eling, Optimization Simulation (PATMOS), volume 2799 of Lecture

Notes Comput. Sci., 2003, pp. 141–150.
[18] A. M. Lines, “Pipelined asynchronous circuits,” Master’s thesis, Dept.

Comput. Sci., California Inst. Technol., Pasadena, 1998.
[19] W. Liu, C. T. Gray, D. Fan, W. J. Farlow, T. A. Hughes, and R. K.

Cavin, “A 250-MHz wave pipelined adder in 2-� m CMOS,” IEEE J.

Solid-States Circuits, vol. 29, no. 9, pp. 1117–1128, Sep. 1994.
[20] A. J. Martin, A. Lines, R. Manohar, M. Nystroem, P. Penzes, R.

Southworth, and U. Cummings, “The design of an asynchronous
MIPS R3000 microprocessor,” in Proc. ARVLSI, 1997, pp. 164–181.

[21] C. Molnar, I. Jones, W. Coates, J. Lexau, S. Fairbanks, and I. Suther-
land, “Two FIFO ring performance experiments,” Proc. IEEE, vol. 87,
no. 2, pp. 297–307, Feb. 1999.

[22] C. E. Molnar and I. W. Jones, “Simple circuits that work for compli-
cated reasons,” in Proc. Int. Symp. Adv. Res. Asynchronous Circuits

Syst. (ASYNC), 2000, pp. 138–149.
[23] V. Narayanan, B. Chappell, and B. Fleischer, “Static timing analysis

for self resetting circuits,” in Proc. ICCAD, 1996, pp. 119–126.
[24] R. O. Ozdag and P. A. Beerel, “High-speed QDI asynchronous

pipelines,” in Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst.,
2002, pp. 13–22.

[25] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, and K.
Jenkins, “Asynchronous interlocked pipelined CMOS circuits oper-
ating at 3.3–4.5 GHz,” in Proc. ISSCC, 2000, pp. 292–293.

[26] C. L. Seitz, “System Timing,” in Introduction to VLSI Sys-

tems. Reading, MA: Addison-Wesley, 1980, ch. 7.
[27] M. Singh, “The design of high-throughput asynchronous pipelines,”

Ph.D. dissertation, Dept. Comput. Sci., Columbia Univ., New York,
NY, 2001.

[28] M. Singh and S. M. Nowick, “Fine-grain pipelined asynchronous
adders for high-speed DSP applications,” in Proc. IEEE Comput. Soc.

Annu. Workshop VLSI, 2000, pp. 111–118.
[29] M. Singh and S. M. Nowick, “High-throughput asynchronous pipelines

for fine-grain dynamic datapaths,” in Proc. Intl. Symp. Adv. Res. Asyn-

chronous Circuits Syst. (ASYNC), 2000, pp. 198–209.
[30] M. Singh and S. M. Nowick, “MOUSETRAP: Ultra-high-speed tran-

sition-signaling asynchronous pipelines,” in Proc. Int. Conf. Comput.

Design (ICCD), 2001, pp. 9–17.
[31] M. Singh and M. Theobald, “Generalized latency-insensitive systems

for single-clock and multi-clock architectures,” in Proc. Design,

Autom. Test Eur. (DATE), 2004, pp. 1008–1013.
[32] M. Singh, J. A. Tierno, A. Rylyakov, S. Rylov, and S. M. Nowick,

“An adaptively-pipelined mixed synchronous-asynchronous digital
FIR filter chip operating at 1.3 gigahertz,” in Proc. Int. Symp. Adv.

Res. Asynchronous Circuits Syst., 2002, pp. 84–95.
[33] I. Sutherland and S. Fairbanks, “GasP: A minimal FIFO control,” in

Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst. (ASYNC), 2001,
pp. 46–53.

[34] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast

CMOS Circuits. San Mateo, CA: Morgan Kaufmann, 1999.
[35] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6, pp.

720–738, Jun. 1989.
[36] J. Tierno, A. Rylyakov, S. Rylov, M. Singh, P. Ampadu, S. Nowick, M.

Immediato, and S. Gowda, “A 1.3 GSample/s 10-tap full-rate variable-
latency self-timed FIR filter with clocked interfaces,” in Proc. Int. Solid

State Circuits Conf., 2002, pp. 60–444.
[37] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Re-

ducing power in high-performance microprocessors,” in Proc. ACM/

IEEE Design Autom. Conf., 1998, pp. 732–737.
[38] C. van Berkel, M. Josephs, and S. Nowick, “Scanning the technology:

Applications of asynchronous circuits,” Proc. IEEE, vol. 87, no. 2, pp.
223–233, Feb. 1999.

[39] T. Williams, “Self-timed rings and their application to division,” Ph.D.
dissertation, Dept. Electr. Eng. Comput. Sci., Stanford Univ., Stanford,
CA, 1991.

[40] D. Wong, G. De Micheli, and M. Flynn, “Designing high-performance
digital circuits using wave-pipelining,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 12, no. 1, pp. 24–46, Jan. 1993.

698 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

[41] G. Yee and C. Sechen, “Clock-delayed domino for adder and combi-
national logic design,” in Proc. ICCD, 1996, pp. 332–337.

[42] K. Yun, P. Beerel, and J. Arceo, “High-performance asynchronous
pipeline circuits,” in Proc. Int. Symp. Adv. Res. Asynchronous Circuits

Syst. (ASYNC), 1996, pp. 17–28.

Montek Singh received the B.Tech. degree in elec-
trical engineering from IIT Delhi, Delhi, India, and
the Ph.D. degree in computer science from Columbia
University, New York, NY, in 2002.

He is an Assistant Professor with the Department
of Computer Science, the University of North
Carolina, Chapel Hill. His research interests include
the area of asynchronous circuits and systems,
especially circuits and synthesis tools for the design
of high-speed pipelined systems. In 2005, he was
brought onto the DARPA CLASS Program (led by

Boeing), to develop, in collaboration with Handshake Solutions, an indus-
trial-strength automated synthesis flow for designing high-speed pipelined
asynchronous systems. His work has been transferred to industries, including
IBM, Boeing, and Handshake Solutions (a Philips subsidiary).

Dr. Singh was a recipient of a Best Paper Award at the 2000 IEEE Async
Symposium, a Best Paper Finalist Nomination at the 2002 Async Symposium,
and an IBM Faculty Award in 2004. He was a Program Committee Co-Chair for
the Async’07 Symposium and the FMGALS’05 Workshop.

Steven M. Nowick received the B.A. degree from
Yale University, New Haven, CT, in 1976, and the
Ph.D. degree in computer science from Stanford Uni-
versity, Stanford, CA, in 1993.

He is an Associate Professor with the Department
of Computer Science and Electrical Engineering, Co-
lumbia University, New York, NY. His main research
interest is on CAD tools, as well as design methods,
for the synthesis, analysis, and optimization of asyn-
chronous and mixed-timing digital systems. In 2005,
was brought onto DARPA’s CLASS project, headed

by Boeing, with participation of a Philips-based startup (Handshake Solutions),
to create a commercially-viable CAD tool flow for designing asynchronous sys-
tems. He was also a co-founder of the IEEE Async Symposia series.

Dr. Nowick was a recipient of a National Science Foundation (NSF) Faculty
Early Career (CAREER) Award (1995), an Alfred P. Sloan Research Fellow-
ship (1995), an NSF Research Initiation Award (RIA) (1993), two Best Paper
Awards, one at the 1991 International Conference on Computer Design and
the other at the 2000 IEEE Async Symposium, and two medium-scale NSF
ITR Awards for asynchronous research in 2000. He was Program Committee
Co-Chair of Async’94 and Async’99 and General Co-Chair of Async’05, and
was Program Chair of the IWLS’02 Workshop. He is currently an Associate
Editor of the IEEE Transactions on Computer-Aided Design and of IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS.

