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ABSTRACT
Stress causes and exacerbates many physiological and men-
tal health problems. Routine and unobtrusive monitoring of
stress would enable a variety of treatments, from break-taking
to calming exercises. It may also be a valuable tool for as-
sessing effects (frustration, difficulty) of using interfaces or
applications. Custom sensing hardware is a poor option, be-
cause of the need to buy/wear/use it continuously, even before
stress-related problems are evident. Here we explore stress
measurement from common computer mouse operations. We
use a simple model of arm-hand dynamics that captures mus-
cle stiffness during mouse movement. We show that the
within-subject mouse-derived stress measure is quite strong,
even compared to concurrent physiological sensor measure-
ments. While our study used fixed mouse tasks, the stress sig-
nal was still strong even when averaged across widely varying
task geometries. We argue that mouse sensing “in the wild”
may be feasible, by analyzing frequently-performed opera-
tions of particular geometries.
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INTRODUCTION
Stress has a profound impact on the emotional, cognitive and
physical well-being and the quality of life of individuals. It
has been strongly linked to numerous chronic health risks,
such as cardiovascular disease [25], diabetes, obesity [4], hy-
pertension, and coronary artery disease [22]. Physiological
reactions induced by stress are symptomatic of mental ill-
nesses, such as anxiety disorder and depression which is a
leading cause of suicides [19]. Chronic stress can induce
mood swings, social isolation, and aggression which neg-
atively affect interactions with peers, friends, and families,
leading to a broader array of social issues.
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Stress may result from and also cause difficulties in using
computer interfaces and applications: users may become
frustrated, and they may feel trapped and unable to do what
they want to do, leading to poor user experience and overall
reduced productivity. Being able to use “everyday” technolo-
gies to continuously monitor and detect stress on ordinary
computers could open a new source of field data to gauge
and understand user difficulties and to inform the design of
better UIs or applications adaptive to user pains.

Self-report tools and specialized questionnaires have been
successful in detecting and diagnosing acute distress disor-
der in clinical settings [5]. These methods, however, provide
only a momentary snapshot of individual stress levels and are
of limited use for in-situ, everyday monitoring. Routine un-
obtrusive monitoring can help individuals better understand
stress patterns and can enable a variety of interventions, in-
cluding break-taking, breathing, and visualization exercises.

A number of physiological markers have been linked with
stress, including heart rate variability, muscle tension, pulse
oximetry, and galvanic skin response. Custom wearable body
sensors have been designed to continuously monitor these
stress markers. However, the costs of acquisition and contin-
uous wear, even before stress-related problems are evident,
present barriers for wide-spread adoption.

This paper explores the use of common computer mouse
operations for measuring stress. Studies by Lundberg [15]
and Wahlstrom [28] have shown that increased arm muscle
activity and muscular tension are prominent mental stress
markers. We show that muscle stiffness of arm/hand move-
ment can be directly captured from common mouse opera-
tions with a physiological model of hand-arm dynamics, the
Mass-Spring-Damper system (MSD). We derive two novel
mouse-derived stress metrics based on the parameters of this
model and discuss a computational procedure that provide
direct and accurate means to estimate these parameters. A
controlled study was carried out using a within-subject, fully-
balanced design, where mouse activity data, ECG, and sub-
jective stress ratings were collected from 49 participants un-
der both calm and induced stress conditions. The results sug-
gest that within-subject mouse-derived stress measures are
quite strong, and in fact stronger than parallel physiological
methods. We also find that stress detection is feasible, and un-
der controlled conditions, 10 samples (mouse motions) from
a user in a fixed state of stress can infer their stress state at
70% accuracy. This requires 100-200 training movements to
train a single-parameter model for that user.



BACKGROUND AND RELATED WORK

Stress and Muscle Activity
Increased muscle activity/tension is one of the most con-
sistent physiological markers of stress and arousal [11].
[15] identified increased activity in the trapezius muscle
from electromyography readings (EMG) while subjects per-
formed cognitively demanding tasks. Independent studies
by Wahlström [29] and Visser [27], showed (from EMG
readings) that mentally demanding computer mouse tasks
can also significantly increase co-contraction and tension in
neck/shoulder muscles, upper arm (biceps/triceps) muscles,
multiple forearm and finger muscles. Visser’s study further
indicates that the accumulation of muscle tension has a sig-
nificant effect in the tempo of arm motion in pointing tasks.

Affective Mouse Devices
Prior work fitted mouse devices with custom sensors to mea-
sure and detect stress/arousal as well as affect during com-
puter work. Kirsch and Picard used the SenticMouse [14] (a
mouse with pressure sensor add-on) to collect finger pressure
while subjects browsed affective images. Analysis suggested
a correlation between finger pressure and valence states (posi-
tive versus negative). Wahlström et al. [29] collected grip and
click forces with sensor addons during a computer stressor
task. Click force was found to be significantly higher dur-
ing the stressor compared to the control, but grip force had
showed no significant differences.

A promising early exploration of the use of mouse movements
to detect affect was the work of Maehr [16]. Maehr used sev-
eral metrics of mouse movement, and emotions were induced
in subjects by watching short videos. A few of the metrics
showed some relationships to emotion, but many did not show
significant relationships. Specifically, “motion breaks” (dis-
continuities in mouse movement) were significantly related
to both arousal and disgust and close to significant for anger.
While the features used were intuitive, they were not driven
by physiological correlates of arousal or stress.

Stress and HRV
Heart rate variability (HRV), which captures the variation in
the inter-beat interval of the heart, is a frequently-used phys-
iological measure of arousal/stress. Numerous studies have
demonstrated its use in detecting stress induced by cognitive
and physical stressors, with varying degrees of success, e.g.,
mental math [2], interview [21], and computer work [28].
However, researchers have also consistently found HRV mea-
surements to be frequently noisy and highly sensitive to mo-
tion artifacts when subjects are moving around [3] and in-
accurate for short term measurements [18]. In fact, auto-
matic HRV analysis almost always begin with manual data
pre-processing of the ECG signal for artifact removal as per
the recommendations by the Task Force European Society of
Cardiology and the North American Society of Pacing and
Electrophysiology [24].

A PHYSIOLOGICAL MODEL OF THE ARM
In this work we are interested in using motion produced by
the user while operating a computer mouse to infer stress lev-
els. We begin by considering a physiological model of the

arm to establish a theoretical basis for the subsequent study
and analysis. We argue that the model lends itself to directly
capturing the physiological effect of stress and present a novel
application of a computational technique to derive this model
from data.

Mass Spring Damper Model
There is substantial empirical and theoretical evidence that
the dynamics of human arm motion for two-dimensional
tasks, such as handwriting and drawing, can be well approxi-
mated by a mass-spring-damper (MSD) system [10]. Varia-
tions of the MSD model have wide applications in science and
engineering, such as in modeling arm motion for handwriting
and drawing tasks [12] and in system design for robotics and
haptic interfaces[17].

Consider the use of a single mass-spring-damper system to
model arm motion along each axis of motion during com-
puter mouse use. The mass is a lump representation of the
arm/hand, and the mouse. The spring and damper compo-
nents capture the interactions between the active and passive
muscle elements of the arm. The system takes as input forces
generated by the arm and produces as output an arm motion
trajectory which is recorded as a mouse movement.

Mechanically, an MSD system consists of a mass (m) at-
tached to a spring component (k) and a viscous damper (c),
where k is the spring constant and c is the damping coeffi-
cient. The mass shall oscillate at a rate related to the tension
of the spring but the oscillation will decay exponentially due
to the drag/friction produced by the damper. This behavior
is fully described by the two fundamental MSD parameters –
the damped frequency (ω) and the damping ratio (ζ).

From basic physics, we know that the constant k determines
stiffness of the spring component MSD model. Furthermore,
prior research have demonstrated that increased arm muscle
tension is a strong physiological correlate of stress during
computer work [15, 28]. We thus postulate that an increase
in stress will translate to an increase in the tension k of the
spring component of the MSD model.

How is k related to the fundamental parameters ω and ζ? We
know the damped frequency ω is proportional to the natural
(undamped) frequency ω0 and by definition:

ω0 =

√
k

m
ζ =

c√
mk

We can see that, for a system with constant mass (e.g.
arm/hand) and damping coefficient, the damped frequency
will be proportional to the square-root of k, the spring con-
stant: ω ∝

√
k, while the damping ratio will be inversely

proportional to the square-root of k: ζ ∝ 1√
k

.

By deriving the above relationship between stiffness and the
MSD parameters, we have shown that the MSD model is well
suited for directly modeling muscle tension, a strong stress
indicator. Further, we may “capture” the effect of stress if we
are able to obtain ω and ζ.



LPC Model
Direct identification of the MSD model will not be possible
since only the system’s output – mouse movement can be ob-
served. Hence a major modeling challenge is how to “invert”
the system, i.e. to infer the system’s fundamental parameters
when only the output signal is available.

Linear predictive coding (LPC) is a signal modeling tech-
nique which builds a predictive model for future samples
based only on linear combinations of observed signals from
the past [20]. It turns out that an ideal second-order system,
such as the spring-damper system, has a simple second-order
LPC model. That is, each sample can be predicted exactly
from the previous two, given the MSD parameters1. Con-
versely if we build a second-order LPC model that best fits a
series of samples, we can recover the MSD parameters.

Model Computation
We used a logger to record a sequence of raw mouse events
describing x and y mouse motion. Each event is a tuple
(dx, dy, t), where dx and dy are the displacements along x
and y directions, and t is the timestamp. This event stream
is segmented into individual trials, each corresponding to a
particular instance of mouse task. The relative displacements
are linearly interpolated, resampled and summed to give uni-
formly time-sampled absolute mouse displacements along x
and y axes. This becomes the observed trajectory of the MSD
system that we wish to identify.

To compute the MSD model, LPC is applied to a trajectory
with an interpolation order p as input2. LPC produces a se-
quence of coefficients that define the characteristic polyno-
mial of MSD system. The complex roots (r) of this polyno-
mial characterize the MSD’s damping behavior. Specifically,
the damping frequency (ω) is the imaginary part of the com-
plex root (ω =| =(r) |) , and the damping ratio (ζ) is the ratio
of the root’s real part and its absolute value (ζ = |<(r)|

||r|| ).

HYPOTHESES
Given the discussion in the previous section, we designed an
experiment to evalute the following specific hypotheses:

Hypothesis 1a (H1a): Due to higher stress, the damped fre-
quency ω will be higher during stressed mouse use compared
to a baseline.

Hypothesis 1b (H1b): Due to higher stress, the damping ratio
ζ will be lower during the stressed mouse use compared to a
baseline.

That is we expect the MSD model’s parameters to capture the
within subject stress variation for some well defined set of
mouse tasks.

We considered a third indicator variable: task completion
time (t). Subjects under stress typically increase their speed,
especially on familiar tasks [27]. Hence:

1Assuming there is no input, i.e. not external force on the system.
When inputs are present, least squares estimates minimize the output
error
2We used p = 4 in our analysis

Hypothesis 2 (H2): The time to complete different mouse
tasks will be shorter during stressed mouse use compared to
an unstressed baseline

METHOD

Mouse Task Design
To decide which common mouse operations should be used
in our study we first observe that the bulk of onscreen mouse
interactions can be characterized by a small number of repet-
itive tasks. For example, we frequently move the mouse cur-
sor over a button or icon to invoke an action, e.g. starting
an application, opening a file, sending a message. Another
common set of tasks involve moving or rearranging objects
by dragging, e.g. positioning windows, copying files. Some-
times the mouse cursor must be moved through constrained
“tunnels”, such as in selecting an action from a drop-down
menu or highlighting text in an editor. These and other com-
mon mouse interactions can be described by three abstract
mouse operations: point-and-click, drag-and-drop, and steer-
ing. We designed the mouse tasks in this study based on these
abstract operations for good generality and wide applicability,
similar to literature on human psycho-motor modeling [8].

Point-and-click
The abstract point-and-click task shows two different color-
filled targets, at equal distance from the center-point of the
screen. The user moves and clicks the two targets in suc-
cession (left and right) as quickly and accurately as possible
(Figure 1).

Figure 1: Point-and-click: Targets are dimmed when clicked-
on to provide feedback.

Drag-and-drop
The abstract drag-and-drop task is similar to the pointing task.
The user clicks on the left target and, while keeping the left
mouse button depressed, moves and releases the object over
the target on the right (Figure 2).

Figure 2: Drag-and-drop: A shadow copy of the dragged ob-
ject moves along with the mouse to provide feedback.

Steering
The abstract steering task follows the design in[1]. where the
participant draws a line through a tunnel, from left to right, as
quickly and as horizontal as possible (Figure 3).



Figure 3: Steering: Line is visualized to provide feedback.

Task configurations
A task configuration corresponds to a particular assignment
of values for two parameters: distance (D) and width (W).
For point-and-click and drag-and-drop tasks, D describes the
horizontal distance between the center point of the targets,
while W describes the uniform width of the targets. For the
steering task, D describes the horizontal length of the tunnel
and W describes the vertical width of the tunnel. In our de-
sign, each mouse task has twenty D and W combinations, as
summarized in Table 1. Each task configuration is presented
5 times to the subject for a total of 100 trials per mouse task.

Distance (px) Width (px)

Pointing 64 128 256 512 1024 8 16 32 64
Dragging 64 128 256 512 1024 8 16 32 64
Steering 64 128 256 512 1024 16 32 64 128

Table 1: Different task configurations by varying the distance
and width parameters

Conditioning Task Design
In this experiment we used two conditioning tasks, one to
help induce stress in subjects and another to help destress the
subjects. We note that the stressor and destressor tasks were
not applied concurrently with the mouse tasks. We explain
this design decision shortly.

Stressor Task
The basic stressor task requires participants to count down
from a large prime number in decrements of 13 sequentially
as quickly and accurately as possible. Recursive mental math
calculations have been found to be effective in inducing cog-
nitive stress with strong physiological markers, such as in-
creased heart rate variation and reduced breathing rates [2].

Tasks containing the components of “uncontrollability” and
“social-evaluative threat” are associated with some of the
largest physiological stress responses and the longest recov-
ery times [7]. Thus, we augment the basic stressor task the
following additional components:

Social pressure: We wanted the participant to feel like his/her
performance might be negatively judged by another person.
To achieve this, during the mental math task, the participant
was required to verbalize successive answers to the exper-
imenter and the experimenter was seen to be recording all
incorrect answers in front of the participant.

Timing pressure: The participant was given an upper limit of
5 seconds to verbalize the next number in the sequence. When
a visible timer expired, the participant was immediately inter-
rupted and asked to restart from the beginning.

Repetition: In addition to the timer, when an incorrect answer
was verbalized at any point, the participant was interrupted
and was required to restart the counting from the beginning.

Performance: The participant was informed at the start of the
math stressor she can earn a bonus up to $10 depending on
how well she performed. Specifically for every 5 correct an-
swers in a row $2 will be added, and for every 2 incorrect
answers, $1 will be deducted. This performance component
simulates workplace stress where outcomes can impact com-
pensation (e.g. year-end bonuses) or job standing.

Destress Task
The motivation for using a destress task was twofold: to pro-
vide a uniform control for pre-existing stressors that partic-
ipants might carry into the experiment and to provide a re-
covery period at the end of study as required by the IRB
for conducting stress-related experiments. The task is based
on mindfulness meditation and visualization which has been
found to be effective in alleviating stress under various situa-
tions [6].

Participants
Participants were recruited from a list of potential subjects
maintained by the campus. No details regarding the experi-
ment were disclosed to participants beyond that they will be
asked to perform tasks similar to those encountered in aca-
demic settings. To minimize psychological and physiological
confounds, subjects were screened to exclude those with sig-
nificant psychiatric disorders, heavy smoker and drinkers, and
those with shoulder, arm, wrist injuries in the past 6 months.
Fifty-one, one-hour sessions were schedule over the course of
two weeks. Forty-nine successfully completed the tasks, split
into 26 female (53%) and 23 male subjects (47%). The aver-
age age of participants was 20 years old. The minimum com-
pensation was guaranteed $25, even if the participant earned
a negative amount on the math stressor task.

Procedures
The experiment was partitioned into four main phases:

• Calm-phase: a five-minutes destressor task designed to
normalize for external factors and to help destress the par-
ticipant.

• mCalm-phase: this phase is coupled with and takes place
immediately after the Calm phase. The subject performs a
collection of mouse tasks with a balanced number of point-
ing, drag-and-drop, and steering mouse operations. The
mouse tasks and configurations are described in the Mouse
Task Design section.

• Stressor-phase: a five-minutes stress-inducing task. De-
tails of the task are described in the Stressor Task section.

• mStress-phase: this phase is coupled with and takes place
immediate after the Stressor-phase. The subject performs
the exact same set of mouse operations as the mCalm
phase. The task orders are fully randomized.

Hence, each participant performed two sessions of mouse
tasks, a control session (mCalm) and a stress session



(mStress). To control for order effects in a repeated mea-
sure design, the ordering of the task couplings (Calm-mCalm
and Stressor-mStress) were randomized between subjects, as
shown in the two protocol schedules in Figures 4 and 5. A
uniform three minutes of Recovery takes place at the end of
the experiment as per study requirements. The participants
gave subjective stress ratings (SSR) at the beginning and end
of each task, as indicated in Figures 4 and 5. The data is
roughly balanced for gender and for the two experimental
protocols, with 25 (13 female, 12 male) subjects completing
the normal protocol, and 24 subjects (13 female, 11 male)
subjects completing the counter-balanced protocol.

Figure 4: The normal (calm to stress) protocol.

Figure 5: The counterbalanced (stress to calm) protocol.

mStress vs. Stressor Condition
In this experimental design mouse measurements were not
made during the active application of a stressor or destressor,
but during the next m-phase. This was a difficult experiment
design choice but was made so that we could be sure that
subjects were actually experiencing stress during the stress
phases. We used stress-inducing procedures that have been
shown to induce stress in many prior experiments. There was
no concurrent mouse use during those stressors, and in many
cases this would have been impossible. Prior attempts to use
concurrent stressors in mouse experiments have had mixed
success Garde [9], Wahlstrom [28], and Hoshikawa [13], al-
though we feel that the right choice of stressors should work
well, e.g. “social-evaluative threat” and “uncontrollability”.
Had we not done this we would have been at risk of not in-
ducing enough stress, and of potentially measuring physio-
logical phenomena other than stress. With the experiment as
executed, we saw very strong self-report and HRV differences
between Stressor and Calm and weaker (but significant under
many measures) differences between mStress and mCalm.

The weakness of this approach is that the physiological stress
induced during the Stressor phase will decay somewhat dur-
ing the mStress phases. However, the time constants of stress
decay (minutes to tens of minutes) should still afford good
measurements well into the mStress phase. Similar arguments
apply to mCalm which follows Calm. This is indeed what we
observed.

Data Collection and Processing
We recorded three independent measures of stress for each
subject: subjective stress ratings, continuous electrocardio-
gram(ECG), and mouse activity data.

Subjective Stress Rating
Multiple Subject Stress Ratings (SSRs) were recorded for
each participant at different stages of the experiment. Each
SSR was reported on a 11 point Likert scale, where 0 indi-
cates no stress and 10 indicates extreme stress. Unlike ECG
signals which are samples of a continuous signal, SSR are
discrete, point-in-time values recorded at the start and at the
end of an experimental phase in Figures 4 and 5. To estimate
subjective stress during any experimental phase, we take the
average of the two SSR values reported by the subject before
and after the phase was completed.

Electrocardiogram data
Continuous ECG data was collected from a 3-lead ECG me-
ter. The ECG electrodes were attached to a subject’s chest in
a triangular configuration, with 2 electrodes placed over the
right and left coracoid processes, and one electrode over the
xiphoid process. The ECG device was connected to a com-
puter and streamed continuous ECG signals for the duration
of the experiment.

We extracted the HRV indicators in Table 2 using the Kubios
HRV analysis tool [26]. These measures have been shown
in prior work as promising objective indicators of individual
differences in emotional response, particularly as it relates to
stress [23]. Kubios will automatically detect QRS complexes
in the raw ECG signal, compute RR intervals, and produce
all the most commonly used HRV parameters according to
the guidelines given in [24]. We further removed incorrectly
detected beats and added missing beats.

Mouse Data
The three mouse tasks and a mouse motion recorder were im-
plemented using C++ and Microsoft Windows GDI+. The
mouse motion recorder monitors and records device level
raw-input events, which report mouse movements at the sub-
pixel level. We obtain the timestamp of an event from a high
precision hardware timer. A high resolution gaming mouse
was used for the study. The mouse has a spatial resolution
of 5700 CPI (counts per inch). While we did not collect
data using a normal mouse, we did simulate normal mouse
resolution by decimating the high-resolution mouse data to
400 CPI. The experiments reported here are for the high-
resolution mouse. We repeated all tests with decimated data.
This yielded the same detection accuracy (70%) as the high-
resolution mouse. The t-scores for decimated data were all
within 20% of the high-resolution values.

An MSD model is computed from the resulting data, as de-
cribed in Section “Model Computation”. Mouse motion pa-
rameters and interpretations are summarized in Table 3.

RESULTS AND ANALYSIS

Subjective Stress Rating
For SSR, a one-tailed, paired t-test was applied between Calm
and Stressor phases, and between mCalm and mStress phases.



Measures Description and Interpretation
MeanRR Mean of the rhythm-to-rhythm (RR) interval series. Lower value indicates high stress
RMSSD The root mean square of differences of successive RR intervals. RMSDD describes short term variation.

Low value indicates high stress.
Power LF (nu) The powers of LF in normalized units. LF demonstrates both sympathetic and vagal activation.

High LF value indicates high stress.
Power HF (nu) The powers of HF in normalized units. HF is modulated by the vagal (parasympathetic) tone.

Low HF value indicates high stress.
LF/HF Ratio of LF to HF. The ratio mirrors sympathetic and parasympathetic balance. High value indicates high stress.
SD1 The standard deviation of the Poincare plot orthogonal to the line-of-identity.

SD1 describes short-term variation caused by sinus arrhythmia. Low value indicates high stress.
SD2 The standard deviation of the Poincare plot along the line-of-identity. SD2 describes long-term variability.

Low value indicates high stress.

Table 2: Descriptions and interpretations of Heart Rate Variability Measures

Indicator Description and Interpretation
ωx The damped frequency of the MSD system along the

x-axis of motion. High value indicates high stress.
ωy The damped frequency of the MSD system along the

y-axis of motion. High value indicates high stress.
ζx The damping ratio of the MSD system along the

x-axis of motion. Low value indicates high stress.
ζy The damping ratio of the MSD system along the

y-axis of motion. Low value indicates high stress.
t Task completion time. Low value indicates high stress.

Table 3: Descriptions and interpretations of mouse motion
based stress indicators.

All effects will be considered at 0.05 level of significance.
On average the SSR indicator was significantly higher dur-
ing Stressor phase (M = 4.39, SE = .27), compared to the
Calm phase (M = 2.42, SE = .24)(t(48) = 12.63, p =
7e−17). The SSR indicator was also significantly higher dur-
ing mStress (M = 3.90, SE = .25) compared to mCalm
(M = 2.67, SE = .26) (t(48) = 5.86, p = 4e−7).

Heart Rate Variability
HRV analysis was done for each participant for the follow-
ing four phases of the experiment: Calm, mCalm, Stressor,
mStress. The descriptive statistics are summarized in Table 4.

Measures Conditions
Calm Stressor mCalm mStress

MeanRR 0.76 (0.02) 0.65 (0.02) 0.77 (0.02) 0.77 (0.02)
RMSSD 0.04 (0.003) 0.04 (0.004) 0.04 (0.003) 0.04 (0.003)
LF (nu) 60.51 (2.79) 66.44 (1.73) 59.89 (1.93) 61.28 (1.64)
HF (nu) 39.44 (2.78) 33.46 (1.73) 39.92 (1.92) 38.62 (1.63)
LF/HF 2.57 (0.41) 2.54 (0.26) 1.85 (0.17) 1.83 (0.13)
SD1 0.03 (0.002) 0.03 (0.003) 0.03 (0.002) 0.03 (0.002)
SD2 0.08 (0.01) 0.08 (0.01) 0.07 (0.00) 0.07 (0.00)

Table 4: Mean and Standard Error of various Heart Rate Vari-
ability measures in the four phases.

A paired, one-tailed t-test was applied to the HRV measures
between Calm and Stress phases, and between mCalm and
mStress phases. The direction of the tail is specified in ac-
cordance to the physiological interpretation of each measure
according to Table 2. All effects are reported at .05 level of
significance. We summarize the results in Table 5.

Measures Conditions
Calm vs Stressor mCalm vs mStress
t(48) p t(48) p

MeanRR 10.95 1.08e−14∗ -0.23 .82
RMSSD 0.40 .35 -1.79 .96
LF (nu) -2.03 .02* -0.81 .21
HF (nu) 2.05 .02* 0.76 .23
LF/HF 0.05 .52 0.18 .57
SD1 0.40 .34 -1.78 .96
SD2 -0.56 .71 -1.11 .86

Table 5: Student t-test results for different Heart Rate Vari-
ability measures between Calm and Stessor phases and be-
tween mCalm and mStress phases. Star(*) indicates signifi-
cance at .05.

Results show that on average the two measures: MeanRR
(t(48) = 10.95, p = 1.08e−14) and HF (nu) (t(48) =
2.05, p = .02), were significantly lower in the Stressor phase
compared to the Calm phase. In addition, LF(nu) was sig-
nificantly higher in the Stressor phase compared to the Calm
phase (t(48) = −2.03, p = .02). These results are consistent
with theoretically predicted direction of the parameters and
indicate that the Stressor was effective in inducing stress. No
HRV measure was found to be significantly different (with the
appropriate direction) between mCalm and mStress phases.

Mouse Motion
In this section, we examine whether the motion derived pa-
rameters in Table 3 are good indicators of stress across several
models.

Mixed Task Model
We start by considering the Mixed Task model. The Mixed
Task model can be regarded as a kind of omnibus model
that is independent of specific task types (clicking, dragging
and steering) as well as task configurations (taget width by
distance). The Mixed Task model is obtained by averaging
across all task types, configurations, and repetitions (300 data
points). For each subject a single average was obtained for
each of the indicators: ωx, ωy, ζx, ζy, t, for the stressed mouse
use phase (mStress) and for baseline phase (mCalm). Sum-
mary statistics and t-test results are given in Table 6.



All effects will be considered at .05 level of signficance. In
accordance with Table 3, a single-tailed, paired t-test was
applied between stressed mouse use mStress and the base-
line mCalm for all the indicator variables. On average, the
damped frequency for both x-axis (ωx) (p = .003) and y-
axis (ωy) (p = .002) was significantly higher during mStress
than during mCalm. The damping ratio for the x-axis of mo-
tion (ζx) was significantly lower during mStress compared
to mCalm (t(48) = 3.11, p = .002), but the effect was not
significant for the y-axis (ζy) (t(48) = 1.32, p = .097). Re-
sults indicate that twas not significantly lower during mStress
compared mCalm (t(48) = −.02, p = .49).

Indicators Conditions
mCalm mStress t(48) p-value

ωx 0.126(0.001) 0.130 (0.001) 2.83 .003*
ωy 0.205(0.004) 0.215(0.004) 3.00 .002*
ζx 0.532(0.0004) 0.534(0.0003) 3.11 .002*
ζy 0.408(0.008) 0.414(0.008) 1.32 .097
t 1.03(0.05) 1.03(0.07) -.02 .490

Table 6: Summary of descriptive statistics (Mean and Stan-
dard Error) and t-test results between mCalm and mStress
phases of the experiment pertaining to mouse motion param-
eters under the Mixed Task model. Star (∗) indicates signifi-
cance at .05.

Task Specific Models
Next, we examine Task Specific models. We consider sep-
arate averages for each of the three mouse tasks: clicking,
dragging, and steering. Task Specific models are obtained
by averaging across all task configuration and repetitions.
The motion indicator variables were tested between mStress
and mCalm phases (along the same direction as Mixed Task
model). To avoid α-inflation, we applied Bonferroni correc-
tion and set signficance to α = 0.05

3 = 0.0167. This result is
presented in Table 7.

For the Clicking task, the results indicate that the damped
frequency was on average significantly higher during the
mStress phase than the mCalm phase, along both x-axis
(ωx) (t(48) = 4.54, p = 2e−5) and y-axis (ωy) (t(48) =
3.94, p = 1e−4). In addition, the damping ratio was signifi-
cantly lower for mStress compared to mCalm along the x-axis
(ζx) (t(48) = 4.54, p = 4e−5). No significant effect was ob-
served for ζy .

For the Steering task, the analysis showed that the damped
frequency was significantly higher during mStress compared
to mCalm for ωx (t(48) = 2.40, p = .010), and ωy (t(48) =
2.55, p = .007). No signficant effect was observed for damp-
ing ratio along x-axis or y-axis. Furthermore, none of the
damping parameters were signficant (under the discounted α)
for the Dragging task.

The analysis further showed that task completion time (t) was
significantly lower during mStress compared to mCalm under
the Clicking task (t(48) = −2.65, p = .005) but not signifi-
cant for the Dragging and Steering tasks.

DISCUSSION
On the basis of the above findings, we revisit the hypotheses
set forth earlier and discuss the implications.

Hypothesis 1a (H1a) is well supported by the inferential
statistics. Results for the Mixed Task model suggests that
the effects of stress was strong and consistent for damped
frequency for both x-axis (ωx) and y-axis (ωy) of motion.
Further analysis of the Clicking task model showed consis-
tent results (significant effect) for both ωx and ωy , while the
Steering task model showed signicant effect for ωx. The ω
parameters were not consistently signficant under every task
specific model, but this should not taken as an absence of ef-
fect. In fact, it is clear that the effect of stress is present for
the Dragging task (ωx : p = .056, ωy : p = .087), only that
this effect is somewhat weaker compared to the Steering and
Clicking tasks.

From our analysis for the Mixed Task model, we see that the
damping ratio was significantly lower along the x-axis di-
rection of motion (ζx), which supports Hypothesis 1b (H1b).
Analysis of the Clicking and Steering tasks show significant
effect of stress on ζx, which further supports this hypothesis.
The effect of stress on the damping ratio appears to be weaker
along the y-axis of motion, as none of the models showed sig-
nificant differences for ζy . Intuitively this is not very surpris-
ing since the measureable effect of stress should reflect more
prominantly in the dominant direction of movement, which
is in the left-to-right x-axis direction in the design our mouse
tasks. Further studies are needed to verify this hypothesis.

Hypothesis 2 (H2) was supported for the Clicking task only
(at p = .005), but not for the Dragging and Steering tasks, or
for the Mixed task.

From the practical standpoint, the significance of the MSD
parameters under the Mixed task model suggests that these
parameters are strong indicators of stress and good candidates
for stress detection during daily computer mouse use, which
naturally contains a blend of different mouse operations.

Results from the Subject Stress Ration (SSR) was consistent
with the mouse motion parameters. Analysis showed a sig-
nicantly higher self-report stress level in the mStress phase
compared to the baseline mCalm

ECG analysis yielded several HRV measures (meanRR, LF
(nu) and HF (nu)) that were significantly different between
the Stressor phase and the Calm phases. This is consistent
with the self-reported stress indicator, which showed very
strong differences in stress level. However, no HRV measure
was found to be significantly different between mCalm and
mStress phases. SSR reports for mStress/mCalm showed that
significant but weaker differences were present in stress be-
tween mStress and mCalm. On the other hand, many mouse
stress metrics (damped frequency being the best) yielded
strong, significant differences in stress between mStress and
mCalm. It appears then that mouse measurements are more
sensitive, or at least less prone to artifacts, than classical stress
measures such as HRV.



Indicators Tasks and Conditions
Click Drag Steer

mCalm mStress t(48) p-value mCalm mStress t(48) p-value mCalm mStress t(48) p-value
ωx 0.13(.001) 0.14(.001) 4.54 .00002* 0.126(.002) 0.129(.001) 1.62 .056 0.123(.002) 0.128(.003) 2.40 .010*
ωy 0.20(.005) 0.21(.005) 3.94 .0001* 0.24(.009) 0.25(.008) 1.38 .087 0.177(.005) 0.185(.007) 1.53 .066
ζx 0.53(.0003) 0.53(.0002) 4.54 .00004* 0.53(.0004) 0.53(.0003) 1.68 .049 0.531(.001) 0.533(.001) 2.55 .007*
ζy 0.46(.007) 0.46(.007) 0.82 .194 0.38(.009) 0.39(.01) 1.02 .160 0.39(.01) 0.40(.01) 0.96 .171
t 0.89(0.02) 0.84(0.02) -2.65 .005* 1.23(.07) 1.30(.11) .66 .257 0.98(.08) 0.96(.11) -0.16 .435

Table 7: Summary of t-test results which show the significance of the stress indicator variables: damped frequency, damping
ratio, and completion time for task specific models: clicking, dragging, and steering. Star (∗) indicates significance at .0167.

Subjects performing mouse tasks during mCalm and mStress
phases naturally had bigger and more frequent upper-
body/arm movement compared to Calm and Stressor phases,
where they were predominantly sitting still (mindful medita-
tion or speaking). We believe this is a plausible explanation
for the noisier ECG signals we found for mStress and mCalm.

STRESS DETECTION
We studied the accuracy of within-subjects stress classifica-
tion, i.e. given some labeled samples for one subject as train-
ing data, we studied the accuracy of stress classification on
some unseen samples. We did this by taking a random sam-
ple of k of the data points derived during the study, training a
classifier on the remaining n−k points, and using this to clas-
sify the initial k samples. We used a very simple model-based
classifier, relying on the structure that is evident in Figure 6.
The model has a staircase structure, i.e. we model canonical
stress behavior as having a simple step-wise dependence on
target distance, and a separate (step slope) dependence on tar-
get size. The step for target distance is proportional to the log
of the distance: the distances in our experiment were powers
of two, so their logs are evenly spaced, matching Figure 6(a).
We use the same step magnitude for all subjects (-0.01 for a
2x distance step), and zero step slope for the click and drag
tasks. The step slope for the steering task was 0.005 for a
2x increase in the target size. There remains a single model
parameter: the vertical offset of the entire staircase, which
needs to be learned for each user.

An advantage of this model for “real-world” mouse stress
analysis is that it requires only knowledge of the distance of
a mouse motion, not the target size. Thus a low-level logging
application can be used, which does not need to be aware of
what task or application the user is using, which would entail
increased privacy risks.

Given a user sample p which comprises a distance d and a
feature value (e.g. the natural frequency), we normalize the
value by computing a normalized feature values p̂ = d−S(d)
where S(d) is the value of the stair model at distance d (it
doesnt matter what height offset S(d) has). Now the effects
of target distance have been accounted for, and we have a
simple one-dimensional label classification problem on the
samples p̂. We used a very simple one-dimensional classifier:
namely we choose the real threshold which gave the best clas-
sification accuracy on the training set. This one-dimensional
value sets the height of the stair model for that user. This is
equivalent to an SVM with uniform penalties, but our imple-

mentation was simple and direct (i.e. we enumerated all data
values and midpoints between them as potential thresholds,
scored each for accuracy, and took the best).

Once we have a model for a user, we can make an estimate of
their stress by using single or (an average of) multple samples
for the user in the same stress state.

Figure 7 shows the results. The vertical axis is the classifi-
cation accuracy (fraction of correctly labeled samples). The
horizontal axis is the number of samples used for measure-
ment with the remainder used for training. This accuracy
value is an average of classifaction accuracy for positive and
negative samples. That is, at 5 on the x-axis, 5 measurements
of natural frequency were randomly selected in the stressed
state and 5 were taken in the unstressed state (for each user).
The remaining 190 (95 for each stress condition), were used
to train the model above for each user. The 5 measurements
in each condition were averaged and compared against the
threshold, and assigned as correct or incorrect based on the
actual label of those 5 measurements. This process was re-
peated 10000 times to get an overall accuracy measure.

There are three plots in the figure. The lowest is a baseline
model (not the model above) using a simple average of the
p as the threshold (no stair model). The middle plot shows a
simple average of the p̂ as threshold. The top figure shows the
max-accuracy threshold of the p̂ as the model. Note that the
stair model with max-accuracy threshold provides a useful >
6 percentage-point improvement in accuracy at 10 samples.
We do not show the max-accuracy classifier applied to the
raw samples p - it gave very close to random (50%) accuracy.

Model accuracy improves with the number of samples at mea-
surement time, peaking at about 71% accuracy with 30 sam-
ples. As the number of measurement samples increases be-
yond 30, accuracy starts to fall because there are not enough
remaining samples (100-k) to build an accurate model.

The upshot is with around 10 mouse movements with the user
in a fixed stress state (and stress state usually changes over
many minutes) should yield around 70% accuracy in classi-
fying stress.

CONCLUSION AND FUTURE WORK
This paper makes several contributions to affective comput-
ing and human computer interaction.

We have shown a new physiologically motivated measures of
stress that can be computed from common mouse operations.



(a) Clicking (b) Dragging (c) Steering

Figure 6: Damping frequency feature (y-axis) vs. task configuration (x-axis) for (a) Clicking, (b) Dragging and (c) Steering
tasks. Note the strong staircase/sawtooth behavior.

(a) Clicking (b) Dragging (c) Steering

Figure 7: Accuracy (y-axis) vs. number of samples (x-axis) of the damping frequency feature for the user in a given stress state.
The top curves are for the stair/sawtooth model and best accuracy threshold. The middle curves are stair model with simple mean
threshold, and bottom curves are no model and simple mean threshold.

This is the first work that establishes a theoretical connection
between a simple mechanical model of the arm (MSD) and
muscle stiffness – a strong physiological correlate of stress.
Further, we demonstrated the use of LPC as a computation-
ally efficient and accurate method to estimate two fundamen-
tal parameters of this model – damping ratio and damping
frequency. Our statistical tests suggested that both measures
are sensitive to stress states in mix-task and task-specific con-
ditions; and when stress is present, they are much stronger
than HRV measures derived from concurrently recorded ECG
signals.

This work makes novel use of the computer mouse – a widely
available input device as a stress “sensor”, which in prac-
tice has three advantages compared to existing sensing so-
lutions: it is universally accessible to computer users; it is
unobtrusiveness and requires no wiring; and it is suitable for
long-term and in-situ monitoring when people are engaged in
stressful tasks.

This work examined a broad range of target sizes and dis-
tances, and showed that an accurate detector can be agnostic
to the target size – which suggests that a stress sensing pro-
cess can run on the user’s computer without knowledge of the
underlying application. These are encouraging evidences that

this work can be used as a basis for stress sensing solutions in
the wild.

We believe the ability to use everyday technologies on or-
dinary computers to continuously monitor and detect stress
opens a new source of field data to gauge and understand user
difficulties. Such affective information can also be usefully
presented to help people interpret changes based on exposures
to stressors.

In the sequel to this work, we plan to use stressors that are
both concurrent with mouse use and more natural (e.g. email
tasks). Preliminary model results computed from a normal
resolution mouse are quite positive which strongly suggests
that the model can be deployed widely in work and office
settings, and we plan to do so in future work.
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