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Abstract

Recent technological advances provide researchers a way of gathering real-time informa-

tion on an individual’s movement through the use of wearable devices that record accelera-

tion. In this paper, we propose a method for identifying activity types, like walking, standing,

and resting, from acceleration data. Our approach decomposes movements into short com-

ponents called “movelets”, and builds a reference for each activity type. Unknown activities

are predicted by matching new movelets to the reference. We apply our method to data col-

lected from a single, three-axis accelerometer and focus on activities of interest in studying

physical function in elderly populations. An important technical advantage of our methods

is that they allow identification of short activities, such as taking two or three steps and then

stopping, as well as low frequency rare activities, such as sitting on a chair. Based on our

results we provide simple and actionable recommendations for the design and implementa-

tion of large epidemiological studies that could collect accelerometry data for the purpose of

predicting the time series of activities and connecting it to health outcomes.
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1 Introduction

Accurate measurement of physical activity is necessary for understanding the complex relation-

ship between an individual’s health outcomes and his or her behavior profile. Unfortunately,

standard measures of activity such as questionnaires and diaries are based on self-report and

are subject to known shortcomings. Moreover, these measures typically offer snapshots of ac-

tivity and do not reflect the dynamic nature of movement in the real world. Recently, progress

in sensor technologies and wearable computing devices have allowed researchers to collect real-

time information on movement through the use of accelerometers. In this paper, we propose a

method for predicting activity types, such as walking, standing and sitting, from a multichannel

accelerometer designed with widespread deployment in observational studies in mind.

The use of accelerometers to collect activity information in large-scale observational studies

began with the addition of the ActiGraph accelerometer to the National Health and Nutrition

Examination Survey (NHANES) in 2003 (Troiano et al., 2008). Early public health work has fo-

cused on the quantification of total energy expenditure (Welk et al., 2000; Bussmann et al., 2001;

Atienza and King, 2005; Ravi et al., 2005; Boyle et al., 2006; Pärkka et al., 2006; Grant et al., 2006;

Ermes et al., 2008; Grant et al., 2008). However, these devices offer the potential to assess more

complex questions regarding real-world function and more refined measures of specific activity

types. Currently, function is assessed using measures of activities of daily living that depend

on retrospective self-report, despite well-documented and substantial measurement error asso-

ciated with these instruments (Feinstein et al., 1986; McDowell and Newell, 1987). The devel-

opment of a method to accurately identify activity types and durations based on accelerometer

data could alleviate many of the problem associated with self-reported activity data. This is par-

ticularly important in the study of aging populations, both because issues with recall are more

severe and because understanding physical activity is central to the study of elderly populations

in public health (Pate et al., 1995).

We base activity prediction on the idea that movements can be understood in terms of smaller

components, which we dub “movelets”. Briefly, given accelerometer time series data, we decom-

pose movements into short overlapping segments; these movelets are the elements which make
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up motions and activities. Using data with known activity labels, movelets are organized by

activity type into “chapters”, or collections of movelets with the same activity label. Predictions

of unknown activity labels are made by finding the closest match, defined in terms of squared

error for all acceleration channels, of an unlabeled movelet to those in chapters. Thus we build

our method on the intuition that movements with elements that look similar are likely to have

the same labels.

Our data are generated using a single accelerometer positioned on the subject’s hip. The ac-

celerometer is built on core chip MMA7260Q by FreescaleTM, and records acceleration in three

mutually orthogonal directions for a wide range of sampling frequencies (time points per sec-

ond) and sensitivities (acceleration per unit of scale). Data were collected during in-laboratory

sessions in which subjects performed a collection of activities, including resting, walking, and

lying. We observe data for two subjects with two laboratory visits each. Sessions lasted roughly

15 to 20 minutes, and in that time each activity was replicated up to three times. Both the data

collection device and activities performed are compatible with the needs of observational stud-

ies, especially of elderly populations: the single accelerometer worn at the hip is unobtrusive

and wearable in real time, and the activities provide a useful understanding of physical move-

ment. During the data collection, an observer recorded activity start and stop times to provide a

time series of movement labels that accompanies the accelerometer signal.

The accelerometer output consists of 3 voltage time series, which are proxy measures of ac-

celeration. The time series vary by amplitude, frequency and correlation along the time course

of the corresponding activities. For example, Figure 1 displays two segments of accelerometer

data. In the first segment, the subject stands, walks twenty meters, and stands. In the second

segment, the subject performs two replicates of lying down and standing up; during each repli-

cate, the subject lies from a standing position, rests for several seconds in the lying position, and

rises to a standing position. Three acceleration channels or axes are shown, and activity labels

are provided. From this Figure, we see that active periods, in which the subject is walking, rising

or lying down, have higher variability than inactive periods, in which the subject is resting in

either the standing or lying position. Walking is characterized by periodic acceleration patterns

for each axis, although there are differences in amplitude between axes. Replicates of the “Chair
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Figure 1: Two segments of accelerometer data. First, a subject walks for approximately 20 sec-
ond; then, a subject preforms two replicates of ”Lie down / Rest / Stand up”. Acceleration in
three mutually orthogonal directions is shown, and activity labels are included.

Stand” activity display similar patterns, bolstering the intuition that movements that share a

label also appear similar visually. Although there are two types of inactivity (standing and ly-

ing), the acceleration time series corresponding to these two periods are characterized by low

variation around stable constants; however, the ordering and relative position of the axes are

different, due to a change in the orientation of the accelerometer with respect to Earth’s gravity.

Prediction of physical activity intensity and type has been under intense methodological de-

velopment in electronic engineering and computer science, but to a lesser extent in statistics.

Several prediction methods using either raw or transformed accelerometer data exist, including

“cut-point” or linear regression (Freedson et al., 1998; Hendelman et al., 2000), quadratic dis-

criminant analysis (Pober et al., 2006), artificial neural networks (Kiani et al., 1997, 1998; Zhang

et al., 2003, 2004; Staudenmayer et al., 2009), Markov Models (Krause et al., 2003; Pober et al.,

2006), unsupervised learning (Nguyen et al., 2007) and combined methods (Ravi et al., 2005; Bai,

2011). Previous work has often focused on activity types that are not of interest in public health

studies, such as typing and brushing of teeth, or has included multiple accelerometers placed

at several locations on a subject’s body (Kiani et al., 1997, 1998; Mantyjarvi et al., 2001). A com-

parison of recent approaches is applied to data generated using five biaxial accelerometers in

Bao and Intille (2004). However, these approaches are unsuitable for application to accelerom-

eter data in public health studies, either because they require more sensors than are feasible or
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because they are not designed to detect short-term activities like standing from a lying position.

Our approach and taxonomy are inspired by the speech recognition literature, where words

or parts of words are matched to known speech patterns. However, the parallel with speech

recognition should not be overstated given the large differences between the two activities and

measurement instruments. First, speech is often recorded at much higher frequencies (between 8

and 16kHz) than acceleration (10Hz in our dataset), providing density and detail to voice recog-

nition data (Picone, 2005). Second, audio data is inherently single-channel while acceleration is

understood in three orthogonal directions, increasing the dimension of the activity prediction

problem. In natural speech most sounds and many full words are repeated often, providing an

ample training set on which to build a prediction algorithm. In activity prediction, movements

can be rarely performed and infrequently observed, making the definition of a training set chal-

lenging. Moreover, high fidelity audio recorders could be though lossless reproductions of the

original signal. In contrast, accelerometers are weak proxies for activities that are complex and

could be ambiguous.

The remainder of the paper is organized as follows. In Section 2 we describe the movelet-

based approach to predicting activity based on accelerometer data. Section 3 details the appli-

cation of our proposed method to the real data described above. We close with a discussion in

Section 4.

2 Methods

To predict activities based on accelerometer data, we first define a movelet as a basic element

of 3-axis time series data. Collections of movelets paired with known labels (annotations) form

chapters, which are in turn organized into reference dictionaries of known movelets and their

associated activities. Classification of accelerometer data with unknown activity annotations is

based on decomposing the unlabeled data into component movelets, and then matching each

unlabeled movelet to these chapters. The label of the best matched chapter is used as a prelimi-

nary prediction of the activity of the unlabeled movelet.
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2.1 Definitions

We observe data that is a collection of three time series representing the acceleration in three

mutually orthogonal axes. Though we have two subjects and each with two visits, we actually

treat them as 4 independent visits. Thus denote the data by Xi(t) = {Xi1(t), Xi2(t), Xi3(t)}, t =

1, 2, ..., Ti, where Ti is the length of the accelerometer time series for visit i. Define an activity label

time series Li(t) such that Li(t) is a function mapping t to {Act1,Act2, . . . ,ActA}, t = 1, 2, . . . , Ti,

where Acta denotes activity type a. Let Ti and Vi be a partition of observation time for visit i into

training and validation sets, respectively. Thus if t ∈ Ti, then Xi(t) belongs to the training dataset

and has a known activity label Li(t); otherwise Li(t) is unknown and is to be estimated. Training

sets contain continuous segments or blocks of time to include full examples of each movement

type.

Next we define movelets as elements of time series that characterize movement in temporal

windows with length H . More specifically, let

Mi(t) = {Xi(t),Xi(t+ 1), . . . ,Xi(t+H − 1)},

define the movelet at time t ∈ {1, 2, . . . , (Ti − H + 1)}. Note that movelets are made up of

time series for all axes of the accelerometer output, and summarizes the pattern of acceleration

recorded from time t to t + H − 1. The dimension of the movelet Mi(k) is 3H , because there

are 3 concatenated time series, and contains all the accelerometry information for a window of

movement of length H/10, because time is expressed in 10 Hz. Movelets Mi(t) with t ∈ T are

paired with their known activity labels and collected into activity-specific “chapters”. Thus,

we define a chapter Ca as a collection of movelets {Mi(t) : Li(t) = Acta} that share a common

label. An important characteristic of movelets is that they overlap; in fact Mi(t) and Mi(t +

1) overlap everywhere, except at time t and t + H . This is an important characteristic when

there is uncertainty on where the activity actually starts. This happens to be a serious problem

even with the best in-lab human annotation. One chapter is constructed for each activity type;

chapters are then combined to form a subject-visit specific “dictionary” of movelets and their

labels. Dictionaries are distinct for subjects and visits to control for differences between the

6 http://biostats.bepress.com/jhubiostat/paper229



movement patterns for different subjects and to account for changes in the orientation of the

accelerometer at different visits. This dictionary is used as a reference for movelets Mi(t) with

t ∈ V. Table 1 displays an example of a subject-specific dictionary consisting of A chapters in

total. Each chapter is constructed using the training set and is made up of movelets, the short

components of three-axis accelerometer data.

Dictionary

Chapter Activity Movelets

C1 Activity 1 {Mi(t) : Li(t) = Act1}
● ●

● ●
●

● ● ●
● ●

● ● ● ●
● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
●

● ●
●

● ● ●
● ●

●

● ● ●
● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ●

● ●
●

● ● ●
● ●

●
●

● ●
● ● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ... ...
●

● ● ●
● ●

●
● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ●
● ●

●
● ● ● ●

● ● ● ●

● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ●

C2 Activity 2 {Mi(t) : Li(t) = Act2}
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ... ...
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

...
...

...
...

CA Activity A {Mi(t) : Li(t) = ActA}
● ●

● ●
●

● ● ● ●
●● ● ● ● ●

● ● ● ● ●

● ●
● ● ● ● ● ● ●

●

●
● ●

●
● ● ● ●

● ●● ● ● ●
● ● ● ● ● ●

●
● ● ● ● ● ● ●

● ●

● ●
●

● ● ● ●
● ●

●
● ● ●

● ● ● ● ● ●
●

● ● ● ● ● ● ●
● ● ●

... ...
●

●
●

●
●

●
● ● ● ●

● ● ● ●
● ● ● ● ●

●

● ● ● ● ●
●

● ● ●
●

●
●

●
●

●
● ● ● ● ●

● ● ●
● ● ● ● ●

● ●

● ● ● ●
●

● ● ●
● ●

Table 1: A subject-specific dictionary with with A chapters, one for each activity type. Each
chapter consists of movelets, short overlapping segments of three-axis accelerometer data, which
are illustrated in the far-right column of the table.

The definitions of movelets, chapters, and dictionaries given above provide a useful anal-

ogy for our proposed classification method. Given unlabeled accelerometer data that has been

decomposed into movelets, we use the dictionary as a reference by “looking up” an unlabeled

movelet and finding its best match among known movelets. The label associated with the best

match, which is the chapter title, is used to predict the unknown label. Matching, which is de-

scribed below, quantifies the intuition that movelets with similar visual appearances are likely

to be components of the same larger movement.

2.2 Matching and Labeling

Given an unlabeled movelet Mi(t0), we predict the label Li(t0) first by matching Mi(t0) to a

chapter in the dictionary described above. To be more specific, the closest match for movelet

Mi(t0) in the dictionary is Mi(t
′), where

t′ = argmin
t∈T

[D{Mi(t),Mi(t0)}] .
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Smallest!
We predict that Movelet_New

is from Chapter 2. Thus

Mi(t*) has label Act2.

D(Mi(t*), Mi(t'))

... ...
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... ...

... ... Mi(t')

Mi(t*)

Figure 2: A display of matching an unlabeled movelet Mi(t
∗) to 4 chapters in the dictionary.

Points in each chapter represent labeled movelets corresponding to the activity associated with
this chapter. The distance between the unlabeled Mi(t

∗) and each chapter is given by the min-
imum distance between Mi(t

∗) and the movelets in each chapter. After Mi(t
∗) is compared to

all reference movelets in the dictionary, it is matched to Chapter 2 which provides the smallest
distance among all the 4 chapters.

The distance function D(·, ·) is

D[Mi(t1),Mi(t2)] =
1

3

3
∑

p=1

√

√

√

√

H
∑

h=1

[Xip(t1 − 1 + h)−Xip(t2 − 1 + h)]2. (1)

Thus, distance between movelets averages the difference taken over all acceleration axes.

Based on this match, an estimate for the unknown label is L∗

i (t0) = Li(t
′); that is, we take the la-

bel associated with the best dictionary match and use it to estimate the unknown label. Figure 2

gives a schematic of the matching process, in which an unlabeled movelet Mi(t
∗) is compared

to a dictionary with 4 chapters. The distance between Mi(t
∗) and all reference movelets is cal-

culated using the distance function (1). After Mi(t
∗) is compared to all reference movelets in

the dictionary it is matched to Chapter 2, because movelet Mi(t
′) in Chapter 2 along with Mi(t

∗)

provides the smallest distance.

After preliminary labels L∗

i (t), t ∈ V, are generated using the matching step, a majority voting
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procedure is used to select final estimated labels L̂i(t). Each element of {L∗

i (t), L
∗

i (t+1), . . . , L∗

i (t+

H)} (t ∈ [0, Ti −H]) is considered a single vote, and the activity with the most votes in this set is

the estimate L̂i(t). An advantage of this procedure is that it smooths the predicted labels L̂i(t) by

taking into account the fact that movements are continuous, meaning that neighboring movelets

contain information about the current activity.

2.3 Movement Fingerprints and Lazy Movelets

To increase the accuracy of our dictionary-based classification method and decrease the compu-

tational burden of the looking-up process, each chapter must be carefully constructed to include

useful information while excluding redundant or less useful movelets. With this in mind, chap-

ters that were built in the manner described above can be fine-tuned using the identification of

what we will label “fingerprint” and “lazy” movelets.

First, each chapter must to include the signature movelets of the corresponding activity. We

refer to these defining movelets as “fingerprints” because they provide excellent prediction of a

specific activity related to the chapter. Fingerprints are thus the characteristic acceleration time

series associated with a movement, and are most often used when matching new movelets of the

same activity. Second, unnecessary or redundant information should be removed from the chap-

ter. For example, a chapter built on several seconds of walking will include many near-identical

movelets due to the periodic nature of the activity. Further, there often exist ”lazy” movelets

which, contrary to fingerprints, are not commonly matched to and do not usefully identify the

activity; rather than aiding prediction, these can be falsely matched to by movelets of other

activities. Both redundant and lazy movelets can be excluded from a chapter to increase com-

putational performance and reduce the number of errors. Finally, some movements share very

similar movelets. These “ambiguous” movelets can lead to misclassification due to very close

matches in multiple chapters. In this situation, an ambiguous movelet can be removed from one

chapter so that matches will be made to the remaining movelet; the choice of which movelet to

retain will depend on the relative importance of correctly classifying the two movements.

As an example of both fingerprints and lazy movelets, Figure 3 displays the chapter for
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Figure 3: The chapter “Standing from Lying”, which consists of 16 movelets. In dark grey is the
section of the acceleration data used to construct the chapter; in light grey are time points with
the same activity label, but that are excluded from the chapter as “lazy” movelets.

“Standing from Lying” from a movelet dictionary. We used only the region shown in dark gray

to construct the chapter, despite the fact that the areas shown in light gray are also labeled by a

human observer as “Standing from Lying”. The fingerprint of this activity is the pattern that the

red time series goes down while the green one goes up. The movelets in the light gray bands are

lazy movelets, and do not distinguish this activity from others. We removed the lazy movelets

from the annotated time period and built the library conservatively to make the chapter a more

useful reference for future unlabeled activities.
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2.4 Summary

Movelet-based analysis of accelerometer data is built on the intuition that movements with sim-

ilar acceleration patterns at the elemental level are likely to be generated by the same activity.

Using this idea, we decompose movements into overlapping segments and construct reference

chapters and dictionaries; given unlabeled time series, we match to the reference and use the best

match to predict the unknown activity type. Movement fingerprints are identified to strengthen

the construction of chapters and to aid in the basic understanding of movements, while lazy

movelets are eliminated to reduce classification error and computation time. The result is a con-

ceptually clear method for activity prediction that is computationally feasible and scalable to

large datasets.

3 Application to LIFEmeter Data

We now apply our methods to data from two subjects, each with two visits. Data were collected

in the development of the LIFEmeter multi-sensor device, intended to assess physical function

in large-scale observational studies. Subjects were observed in a clinical setting, and performed

physical activities that are common in daily living. The following activities were selected as

important in understanding physical function in real-world setting: walking, standing from sit-

ting, standing from lying, sitting from standing, and lying from standing. Three sedentary states

(standing, sitting, and lying) were also collected. Table 2 lists all activities observed and provides

abbreviations that will be used through the remainder of this Section.

An observer annotated the time points at which an activity was started and completed, pro-

viding activity labels Lobs
i (t). Annotations were imperfect due to early or late start and stop

points, to rounding times to the nearest second, and to misalignment. Obvious errors in the

observed labels were detected and corrected through comparison with the accelerometer output

to create labels used to construct movelet dictionaries and assess the predictive performance of

our algorithm.
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Activity List

Activity Alias

Rest (Stand) Rest1
Rest (Sit) Rest2
Rest (Lie) Rest3
Standing from Chair CS Stand
Sitting Down from Standing CS Sit
Lying Down from Standing RS Lie
Standing from Lying RS Stand
Walking Walk

Table 2: A list of activities of interest, with abbreviates used in remaining Figures and text.

3.1 Constructing the dictionary

Following the method described in Section 2, we build a dictionary with 8 chapters of activities

for each subject and visit. First, we partitioned the accelerometer data into training and valida-

tion sets Ti and Vi. Using the training set, we decompose movements into movelets and organize

by activity type. For activities with well-defined beginnings and endings, such as “CS Stand”

and “CS Sit” , we use the first replicate as training data and reserve the remaining replicates as

testing data. Chapters for these activities contain between 5 and 30 movelets each, depending on

the duration of the activity. For continuous movements that lack well-defined beginnings and

endings, such as walking or resting, we extract segments lasting 2 to 3 seconds that are clearly

labeled with a particular activity to build the corresponding chapter. This is done to prevent

chapters from becoming too large, and, since these activities are periodic, to prevent redundant

information from being included in the reference.

3.2 Initial Results

After constructing dictionaries for each subject and each visit using the training data, we predict

activity labels L̂i(t) for s ∈ Vi by matching movelets to the reference and implementing the

majority voting step. Figure 4 details this analysis.
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Figure 4: Observer-defined annotations and predictions for two segments of accelerometer data with several activity types. Curves
giving the smallest distance between movelets and each chapter are displayed.
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For the accelerometer data displayed in Figure 1 (one segment of walking and two repli-

cates of lie-rest-stand), the lower panel of Figure 4 shows the minimum distance between each

unlabeled movelet and all movelets contained in the reference chapters as a collection of dis-

tance curves. The preliminary labels L∗

i (t) are taken to be the chapter title with smallest dis-

tance. Next, the prediction L̂i(t) is determined via a majority vote in which each element of

{L∗

i (t), L
∗

i (t + 1), . . . , L∗

i (t + H)} (t ∈ [0, Ti − H]) is considered a single vote. At the top of Fig-

ure 4 are the observer-annotated (top colored bar) and predicted labels (bottom color bar) that

accompany the accelerometer data. A comparison of the annotations and predictions indicates

generally high agreement between these time series. In particular, there is broad overlap be-

tween the prediction and annotation of walking and resting periods as well as the location of the

shorter activities lying and standing. Moreover, there is generally reasonable separation between

the distance curve corresponding the the correct chapter and the remaining chapters, indicating

the ability of the movelet-based analysis to distinguish between activity types. In two regions,

the distance curves are zero – these depict the first replicate of the “Lie from Stand” and “Stand

from Lie” activities, and were used to construct their respective activity chapters. Isolated mis-

classifications in the preliminary labels, such as those that take place in the middle of walking

period, are in effect smoothed by the majority-voting step which prevents single activity labels

from disagreeing with its neighbors.

On the other hand, as shown in the right segment of Figure 4, the annotated labels for the

shorter activities have much longer time durations than the predicted intervals. This is most

likely due to a combination of early and late stop points in the annotations and time spent tran-

sitioning between activities. For example, when a subject is asked to sit from a standing position,

there is a brief pause as the new movement is begun; similarly, when rising to a standing posi-

tion, there is a short period of stabilization as the movement is completed. The “true activity” at

these time points is not clearly defined, but the annotations are seen to be conservative in start-

ing and stopping short activities, whereas the predictions extend neighboring (well-predicted)

resting periods. This contrast can negatively affect the apparent prediction accuracy, although

many of the activities are correctly identified.

Let V a
i be the amount of time spent performing activity a (measured by Lobs

i (t)) and V̂ a
i be the

14 http://biostats.bepress.com/jhubiostat/paper229



predicted amount of time spent performing activity a. For each subject and visit, in Table 3, we

report V̂ a′

i /V a
i for all activities a, a′.

Table 3 reinforces the observations from Figure 4 that long continuous activities, like resting

and walking, are better predicted than short activities, like standing from a chair. In fact, with

the exception of subject 1 at visit 1, all resting states are accurately predicted more that 99% of

the time, and walking is accurately predicted between 68% and 80% of the time. However, short

activities seem to be fairly poorly predicted, and are often mistaken for one of the resting states.

Again, this apparent shortcoming stems from two major factors: i. these activities are undertaken

for very short periods, so even minor misclassification can greatly impact results, and more

importantly ii. the observer-provided annotations for these short activities are inaccurate.

3.3 Refined Results

A comparison of our initial predictions, the observer defined annotations and the raw accelerom-

eter data indicate that a gold standard for Li(t), the true activity labels associated with accelera-

tion data, is not given by Lobs
i (t), the observer’s annotations. Thus, we next create a “combined

observer” to define activity labels Lcom
i (t) by synthesizing all available information. Primarily,

this resulted in designating times between two distinct activities as “transition times”, rather

than misleadingly assigning these periods to one or the other activity. The new activity labels

are shown in Figure 5, and a comparison of labels Lcom
i (t) and predictions L̂i(t) is given in Table

4. These demonstrate the large improvements in prediction accuracy that arise from improve-

ments in the standard used to define true activity labels. We contend that these findings indicate

that: 1) accurate labeling is crucial to prediction algorithm training; 2) a large source of predic-

tion inaccuracies can reliably be traced to human labeling; and 3) prediction accuracy results

reported in the literature are hard to compare because data use different labeling protocols.

The construction of the combined observer also illustrates the feedback from the movelet-

based prediction algorithm to the annotations. Periods that were largely misclassified using

Lobs
i (t) as a reference, and that were labeled as “transitions” in Lcom

i (t), are periods where the

distance between an unlabeled movelet and those in the reference dictionary is large. Thus,
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Subject 1 Visit 1

Prediction
Truth Rest1 Rest2 Rest3 CS Stand CS Sit RS Lie RS Stand Walk
Rest1 78.3% 0 0 21.7% 0 0 0 0
Rest2 0 100% 0 0 0 0 0 0
Rest3 0 0 100% 0 0 0 0 0
CS Stand 4.3% 30.5% 0 55.3% 0 0 6.4% 3.5%
CS Sit 11.9% 37.3% 0 23.1% 27.6% 0 0 0
RS Lie 0 0 22.9% 49.4% 0 27.7% 0 0
RS Stand 0 0 21.3% 59.8% 0 0 18.9% 0
Walk 9.6% 0 0 10.4% 0.5% 0 0 79.5%

Subject 1 Visit 2

Prediction
Truth Rest1 Rest2 Rest3 CS Stand CS Sit RS Lie RS Stand Walk
Rest1 96.8% 0 0 0 2.7% 0 0 0.4%
Rest2 0 99.9% 0 0 0.1% 0 0 0
Rest3 0 0 100% 0 0 0 0 0
CS Stand 25.6% 25.6% 0 40.2% 8.5% 0 0 0
CS Sit 25.7% 12.8% 0 0 57.8% 3.7% 0 0
RS Lie 40.3% 0 14.9% 0 0 44.8% 0 0
RS Stand 0 0 21.1% 2.8% 39.4% 0 36.6% 0
Walk 18.8% 0 0 0.2% 0.6% 1.1% 0 79.3%

Subject 2 Visit 1

Prediction
Truth Rest1 Rest2 Rest3 CS Stand CS Sit RS Lie RS Stand Walk
Rest1 99.9% 0 0 0 0.1% 0 0 0
Rest2 0.7% 99.2% 0 0.1% 0.1% 0 0 0
Rest3 0 0 100% 0 0 0 0 0
CS Stand 10.9% 16.4% 0 57.3% 0 0 10.0% 5.5%
CS Sit 11.1% 44.4% 0 4.6% 34.6% 5.2% 0 0
RS Lie 10.6% 0 50.6% 0 0 27.1% 11.8% 0
RS Stand 36.8% 0 24.6% 0 0 0 38.6% 0
Walk 22.1% 0 0 0.3% 0 0.2% 1.0% 76.4%

Subject 2 Visit 2

Prediction
Truth Rest1 Rest2 Rest3 CS Stand CS Sit RS Lie RS Stand Walk
Rest1 100% 0 0 0 0 0 0 0
Rest2 0 100% 0 0 0 0 0 0
Rest3 0 0 100% 0 0 0 0 0
CS Stand 7.9% 40.4% 0 46.1% 0 0 0 5.6%
CS Sit 33.3% 20.6% 0 9.8% 35.3% 0 0 1.0%
RS Lie 42.6% 0 31.5% 0 0 25.9% 0 0
RS Stand 34.4% 0 34.4% 21.3% 0 0 9.8% 0
Walk 31.3% 0 0 0.1% 0 0 0 68.6%

Table 3: Comparison of observer-annotated labels Lobs
i (s) and the predicted labels L̂i(s), ex-

pressed as the proportion of the predicted time spent engaged in an activity and the time spent
engaged in the activity according to the annotated activity labels.16 http://biostats.bepress.com/jhubiostat/paper229



Subject 1 Visit 2

Prediction
Truth Rest1 Rest2 Rest3 CS Stand CS Sit RS Lie RS Stand Walk
Rest1 98.8% 0 0 0% 1.2% 0 0 0
Rest2 0 100% 0 0 0 0 0 0
Rest3 0 0 100% 0 0 0 0 0
CS Stand 7.5% 0% 0 75.0% 17.5% 0 0% 0%
CS Sit 4.2% 1.4% 0 0% 88.8% 5.6% 0 0
RS Lie 0 0 16.7% 0% 0 83.3% 0 0
RS Stand 0 0 0% 8.0% 0 0 92.0% 0
Walk 13.2% 0 0 0% 0.4% 1.1% 0 85.3%

Table 4: Table of prediction agreement for Subject 1 Visit 2, using the combined observer

Clock Time
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11:23:40 11:23:50 11:24:00 11:32:30 11:32:40 11:32:50 11:33:00 11:33:10

Figure 5: Comparison of “combined observer” annotations, based on observed-defined annota-
tions and an inspection of the raw accelerometer data, and predicted labels.

movelets that don’t match well to any known reference can be quickly identified. In observa-

tional studies, this facilitates the recognition of movements that are not included in any dictio-

nary or are otherwise abnormal.

4 Discussion

Understanding physical activity is a key component in public health studies of subject function.

However, standard measures of physical function such as activities of daily living question-

naires are subject to substantial measurement error. Emerging accelerometer technologies allow
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the collection of real-time, real-world activity data and may alleviate many of the issues with

retrospective self-report data collection.

In this paper we propose a method for activity classification built around the “movelet” as

a basic element of movements. Using movelets with known activities, we construct reference

chapters and dictionaries; given an unlabeled movelet, we find its closest match in the reference

and use the match’s label as a basis for prediction. Thus, our method is built on the intuition that

movements with similar component acceleration patterns are likely to be generated by the same

activity. This allows the method, and the matches it provides, to be quickly evaluated based on

visual inspection of the accelerometer time series. Moreover, the extension to large datasets in

which subjects are observed for hours or days is direct, because activity prediction is local in

time. Finally, our method accurately predicts short activities, such as taking a few steps, as well

as relatively rare and low-frequency movements such as rising from a chair.

Several directions exist for improving the movelet-based method. Focusing on the predic-

tions for a single subject, transition models could naturally encode information about the order

of movements and the likelihood of switching between them. Similarly, smoothing the distance

functions (shown in Figures 4 and 5) would allow neighboring time points to influence the pre-

diction at the current time. Augmenting dictionaries to include objects other than movelets, for

instance by adding measures of mean and variation, could improve predictions. Our method can

also be extended to increase the understanding of heterogeneity in acceleration patterns between

and within subjects. For instance, constructing a multi-subject dictionary would necessitate an

understanding of movement fingerprints across several subjects.

Our results and methods suggest three improvements that could help the deployment of this

technology to large epidemiological studies. First, there is an increasing need for developing

an accelerometer whose axes are always oriented with respect to gravity. This could probably

be done by incorporating a gyroscope. This would resolve the problem of interpretation of

the accelerometry data, especially in realistic scenarios where people wear these devices for

extended periods of time. Second, the study could be more accurate if a human observer goes

to the home of the participants, explains the use of the device, helps setting it up and conducts

a short testing period using a known sequence of common activities whose duration and type
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is carefully annotated. This would resolve the problem of subject-specific training of prediction

algorithms in the home environment and not in a lab. It would also place a smaller burden on

the participants. Finally, replication and calibration pre-studies should be conducted to ensure

that prediction algorithms perform well on new subject or visit data.
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