
Movement-Assisted Sensor Deployment
Guiling Wang, Guohong Cao, and Tom La Porta
Department of Computer Science & Engineering

The Pennsylvania State University
University Park, PA 16802

Email: {guiwang,gcao,tlp}@cse.psu.edu

Abstract— Sensor deployment is an important issue in de-
signing sensor networks. In this paper, we design and evaluate
distributed self-deployment protocols for mobile sensors. After
discovering a coverage hole, the proposed protocols calculate the
target positions of the sensors where they should move. We use
Voronoi diagrams to discover the coverage holes and design three
movement-assisted sensor deployment protocols, VEC (VECtor-
based), VOR (VORonoi-based), and Minimax based on the prin-
ciple of moving sensors from densely deployed areas to sparsely
deployed areas. Simulation results show that our protocols can
provide high coverage within a short deploying time and limited
movement.
Index Terms: Sensor deployment, simulations, mobile sensor,
Voronoi diagram.

I. INTRODUCTION

Wireless sensor networks are expected to be intensively
utilized in the future since they can greatly enhance our capa-
bility of monitoring and controlling the physical environment.
Sensor networks are revolutionizing the traditional methods of
data collection, bridging the gap between the physical world
and the virtual information world [1], [2], [3], [4]. Due to
the inextricable relation with the physical world, the proper
deployment of sensors is very important for the successful
completion of the sensing tasks issued [5], [6], [7].

Sensor deployment has received considerable attention re-
cently. Most of these work [5], [8], [9], [10] assume that
the environment is sufficiently known and under control.
However, when the environment is unknown or hostile such
as remote harsh fields, disaster areas and toxic urban regions,
sensor deployment cannot be performed manually. To scatter
sensors by aircraft is one possible solution. However, using
this technique, the actual landing position cannot be controlled
due to the existence of wind and obstacles such as trees
and buildings. Consequently, the coverage may be inferior to
the application requirements no matter how many sensors are
dropped. Moreover, in many cases, such as during in-building
toxic-leaks detection [11], [12], chemical sensors must be
placed inside a building from the entrance of the building.
In such cases, it is necessary to make use of mobile sensors,
which can move to the correct places to provide the required
coverage.

There have been some research efforts on deploying mobile
sensors, but most of them are based on centralized approaches.

This work was supported in part by the National Science Foundation
(CAREER CCR-0092770).

For example, the work in [13] assumes that a powerful cluster
head is available to collect the sensor location and determine
the target location of the mobile sensors. However, in many
sensor deployment environments such as disaster recoveries
and battle fields, a central server may not be available and
it is hard to organize sensors into clusters due to network
partitions. Further, the centralized approach suffers from the
problem of single point failure. Sensor deployment has also
been addressed in the field of robotics [11], [12], where sensors
are deployed one by one, utilizing the location information
of previously deployed sensors. This method is not scalable
in terms of deployment time and has strong assumptions on
the initial placement to guarantee the communication between
the deployed and undeployed sensors. In case of network
partitions, this method may not be feasible.

In this paper, we design and evaluate three distributed
self-deployment protocols for sensor networks to address the
limitations of previous work. Our problem statement is: given
the target area, how to maximize the sensor coverage with less
time, movement distance and message complexity. Given an
area to be monitored, our distributed self-deployment proto-
cols first discover the existence of coverage holes (the area
not covered by any sensor) in the target area based on the
sensing service required by the application. After discovering
a coverage hole, the proposed protocols calculate the target
positions of these sensors, where they should move. We use
Voronoi diagrams to discover the coverage holes and design
three movement-assisted sensor deployment protocols, VEC
(VECtor-based), VOR (VORonoi-based), and Minimax based
on the principle of moving sensors from densely deployed
areas to sparsely deployed areas. By intensive simulations, we
evaluate our protocols from various aspects: coverage, deploy-
ment time, moving distance, scalability to initial deployment
and communication range, etc, and show that our protocols
are very effective in terms of coverage, deployment time, and
moving distance.

The rest of the paper is organized as follows. Section II
introduces the basic knowledge about Voronoi diagram. In
section III, we present three self-deployment protocols. Section
IV evaluates the performance of the proposed protocols. Based
on the simulation results, we justify our design and discuss
future work in Section V.
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(b) Voronoi polygon Gp(O) of point O

Fig. 1. Voronoi diagram

II. TECHNICAL PRELIMINARY: VORONOI DIAGRAM

The Voronoi diagram [14], [15] is an important data struc-
ture in computational geometry. It represents the proximity
information about a set of geometric nodes. The Voronoi
diagram of a collection of nodes partitions the space into
polygons. Every point in a given polygon is closer to the
node in this polygon than to any other node. Fig. 1(a) is an
example of the Voronoi diagram, and Fig. 1(b) is an example
of a Voronoi polygon. We define the Voronoi polygon of O as
Gp(O) = (Vp(O), Ep(O)), where Vp(O) is the set of Voronoi
vertices of O, and Ep(O) is the set of Voronoi edges. As
shown in Fig. 1(b), Vp(O) = {V1, V2, V3, V4, V5}, Ep(O) =
{V1V2, V2V3, V3V4, V4V5, V5V1}, N (O) = {A,B,C,D,E},
where N (O) denotes the set of Voronoi neighbors of O. The
Voronoi edges of O are the vertical bisectors of the line passing
O and its Voronoi neighbors, e.g., V5V1 is OA’s bisector. All
the points inside Gp(O) are closer to O than to any other
nodes.

Our sensor deployment protocols are based on Voronoi
diagrams. As shown in Fig. 1, each sensor, represented by
a number, is enclosed by a Voronoi polygon. These polygons
together cover the target field. The points inside one polygon
are closer to the sensor inside this polygon than the sensors
positioned elsewhere. Thus, if this sensor cannot detect the
expected phenomenon, no other sensor can detect it, and then
each sensor is responsible for the sensing task in its Voronoi
polygon. In this way, each sensor can examine the coverage
hole locally, and only needs to monitor a small area around

it. To construct the Voronoi polygon, each sensor only needs
to know the existence of its Voronoi neighbors, which reduces
the communication complexity.

III. MOVEMENT-ASSISTED SENSOR DEPLOYMENT

PROTOCOLS

Our sensor deployment protocol runs iteratively until it
terminates or reaches the specified maximum round. In each
round, sensors first broadcast their locations and construct
their local Voronoi polygons based on the received neighbor
information. To construct its Voronoi polygon, each sensor first
calculates the bisectors of its neighbors and itself based on
the location information. These bisectors and the boundary of
the target field form several polygons. The smallest polygon
encircling the sensor is the Voronoi polygon of this sensor.
After the Voronoi polygons have been constructed, they are
examined to determine the existence of coverage holes. If
any coverage hole exists, sensors decide where to move to
eliminate or reduce the size of the coverage hole; otherwise,
they stay. Next, we present three movement-assisted sensor
deployment protocols: VEC (VECtor-based), VOR (VORonoi-
based) and Minimax, based on the principle that evenly dis-
tributed sensors can provide better coverage. For these three
protocols, VEC pushes sensors away from a densely covered
area, VOR pulls sensors to the sparsely covered area, and
Minimax moves sensors to their local center area.

A. The VECtor-based Algorithm(VEC)

VEC is motivated by the attributes of electro-magnetic parti-
cles: when two electro-magnetic particles are too close to each
other, an expelling force pushes them apart. Assume d(si, sj)
is the distance between sensor si and sensor sj . dave is the
average distance between two sensors when the sensors are
evenly distributed in the target area, which can be calculated
beforehand since the target area and the number of sensors to
be deployed are known. The virtual force between two sensors
si and sj will push them to move (dave − d(si, sj))/2 away
from each other. In case one sensor covers its Voronoi polygon
completely and should not move, the other sensor will be
pushed dave − d(si, sj) away. In summary, the virtual force
will push the sensors dave away from each other if coverage
hole exists in either of their Voronoi polygons. The virtual
force exerted by sj on si is denoted as �Fij , with the direction
from sj to si.

In addition to the virtual forces generated by sensors, the
field boundary also exert forces, denoted as �Fb, to push sensors
too close to the boundary inside. �Fb exerted on si will push it to
move dave/2−db(si), where db(si) is the distance of si to the
boundary. Since dave is the average distance between sensors,
dave/2 is the distance from the boundary to the sensors closest
to it when sensors are evenly distributed.

The final overall force on sensors is the vector summation
of virtual forces from the boundary and all Voronoi neigh-
bors. These virtual forces will push sensors from the densely
covered area to the sparsely covered area. Thus, VEC is a

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25 26

27

28

29

30

31

32

33
34

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

0

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

3334

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

3334

(a) Round 0 (b) Round 1 (c) Round 2

Fig. 2. Snapshot of the execution of VEC

Notations:
N (si), Gp(si), �Fij , �Fb: defined before
ci: whether Gp(si) is completely covered
�vi: moving vector of si

(1) Upon entering Discovery phase:
(1.1) set timer to be discovery interval

enter Moving phase upon timeout
(1.2) broadcast hello after a random time slot

(2) Upon entering Moving phase:
(2.1) set timer to be moving interval,

enter Discovery phase upon timeout
(2.2) if ci = false then

call V EC() /∗ call VOR and Minimax
in other protocols ∗/

(2.3) Done when satisfying stop criteria
(3) Upon receiving hello message from sensor sj :

(3.1) Update N (si) and Gp(si)
(3.2) if Gp(si) is newly covered then

set ci = true
Broadcast OK /∗ only for V EC ∗/

/∗ The following is only for V EC,
and will be replaced in VOR and Minimax ∗/

(4) Upon receiving OK message from sensor sj :
(4.1) set cj = true

(5) V EC()
(5.1) �vi = �0
(5.2) for each sj in N (si)

if (cj �= true) ∧ (dave > d(si, sj)) then
| �Fij | = (dave − d(si, sj))/2; �vi = �vi + �Fij

if (cj = true) ∧ (dave > d(si, sj)) then
| �Fij | = dave − d(si, sj); �vi = �vi + �Fij

(5.3) if (dave/2 > db(si)) then
| �Fb| = dave/2 − db(si); �vi = �vi + �Fb

(5.4) do movement adjustment

Fig. 3. The VEC protocol at sensor si

“proactive” algorithm, which tries to relocate sensors to be
evenly distributed.

As an enhancement, we add a movement-adjustment scheme
to reduce the error of virtual-force. When a sensor determines
its target location, it checks whether the local coverage will be
increased by its movement. The local coverage is defined as the
coverage of the local Voronoi polygon and can be calculated by
the intersection of the polygon and the sensing circle. If the
local coverage is not increased, the sensor should not move
to the target location. Although the general direction of the
movement is correct, the local coverage may not be increased
because the target location is too far away. To address this
problem, the sensor will choose the midpoint between its target
location and its current location as its new target location. If
the local coverage is increased at the new target location, the
sensor will move; otherwise, it will stay.

Fig. 2 shows how VEC works. Round 0 is the initial random
deployment of 35 sensors in a 50m by 50m flat space, with the
sensing range of 6 meters. The initial coverage is 75.7%. After
Round 1 and Round 2, the coverage is improved to 92.2% and
94.7% respectively. A formal description of the VEC algorithm
is shown in Fig. 3.

B. The VORonoi-based Algorithm (VOR)

Si

B

A

Fig. 5. VOR

Compared to the VEC algorithm, VOR is a pull-based
algorithm which pulls sensors to their local maximum coverage
holes. In VOR, if a sensor detects the existence of coverage
holes, it will move toward its farthest Voronoi vertex (denoted
as Vfar). Fig. 5 shows how VOR works. The solid polygon
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(a) Round 0 (b) Round 1 (c) Round 2

Fig. 4. Snapshot of the execution of VOR

Sj

A

Si

Fig. 6. Inaccurate Voronoi polygon

is Gp(si). The small white circles represent si’s Voronoi
neighbors and the large circle represents the sensing circle.
Point A is the farthest Voronoi vertex of si and d(A, si) is
longer than the sensing range. Sensor si moves along line siA
to Point B, where d(A,B) is equal to the sensing range.

We limit the maximum moving distance to be at most half
of the communication range to avoid the situation shown in
Fig. 6, where si is not aware of the existence of sj because
of communication limitations, and its local view of Gp(si)
(shown in the dotted line) is not correct (shown in the solid
line). Otherwise, if si moves toward point A and stops at a
distance d(A,B) (sensing range), si has moved more than
needed.

VOR is a greedy algorithm which tries to fix the largest
hole. Moving oscillations may occur if new holes are generated
due to sensor’s leaving. To deal with this problem, we add
oscillation control which does not allow sensors to move
backward immediately. Each time a sensor wants to move, it
first checks whether its moving direction is opposite to that in
the previous round. If yes, it stops for one round. In addition,
the movement adjustment mentioned in VEC is also applied
here.

The deployment protocol using VOR is similar to the VEC
Protocol, except that in line (2.2) V EC() is replaced by

V OR(), which is shown below.

Notations:
dmax: maximum moving distance
�vi,f : vector from si to Vfar

V OR()
(1) �vi = �vi,f - sensing range
(2) shrink |�vi| to be dmax if |�vi| > dmax

(3) do oscillation control
(4) do movement-adjustment

Fig. 4 shows of how VOR works. With the original coverage
75.7%, after round 1 and round 2, the coverage is improved
to 89.2% and 95.6% respectively.

C. The Minimax Algorithm

Similar to VOR, Minimax fixes holes by moving closer to
the farthest Voronoi vertex, but it does not move as far as
VOR to avoid the situation that the vertex which was originally
close becomes a new farthest vertex. Minimax chooses the
target location as the point inside the Voronoi polygon whose
distance to the farthest Voronoi vertex (Vfar) is minimized.
We call this point the Minimax point, denoted as Om. This
algorithm is based on the belief that a sensor should not be
too far away from any of its Voronoi vertices when the sensors
are evenly distributed. Minimax can reduce the variance of
the distances to the Voronoi Vertices, resulting in a more
regular shaped Voronoi polygon, which better utilizes sensor’s
sensing circle. Compared with VOR, Minimax considers more
information and it is more conservative. Compared with VEC,
Minimax is “reactive”; it fixes the hole more directly by
moving toward the farthest Voronoi vertex.

The following terms are used to calculate the Minimax
point. A circle centered at point O with radius r is denoted
C(O, r). The circumcircle of three points Vu, Vv , Vw is
denoted as C(Vu, Vv, Vw). Specifically, we define the Minimax
circle Cm(Om, rm) as follows:

Definition 1: Minimax circle Cm(Om, rm) is the circle
centered at the Minimax point Om, with radius rm =
d(Om, Vfar).

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



The Minimax circle must pass at least two Voronoi vertices,
which is proved as the following,

*d

V

δm
^

O
mO

farV

Fig. 7. Proof of Lemma 1

Lemma 1: Cm(Om, rm) must pass at least two Voronoi
vertices.

Proof: (by contradiction) By definition, Cm(Om, rm)
must pass Vfar. Suppose Cm(Om, rm) does not pass any other
vertices. Let

d∗ = maxV ∈Vp,V �=Vfar
{d(Om, V )}. (1)

Then d∗ < rm = d(Om, Vfar). Let δ = (rm − d∗)/2 and
Ôm be the point on line OmVfar such that d(Om, Ôm) = δ
(shown in Fig. 7). Then,

d(Ôm, Vfar) = rm − δ < rm. (2)

Based on triangle inequality, we have

d(Ôm, V ) ≤ d(Ôm, Om) + d(Om, V ) = δ + d(Om, V ),
(∀V ∈ Vp ∧ V �= Vfar)

(3)
With (1) and (3), we get

d(Ôm, V ) ≤ δ + d∗ = rm/2 + d∗/2 < rm,
(∀V ∈ Vp ∧ V �= Vfar)

(4)

With (2) and (4), we get

maxV ∈Vp
{d(Ôm, V )} < rm, (5)

which contradicts with the assumption that Om is the minimax
point.

Definition 2: The circumcircle of two point Vu and Vw

(C(Vu, Vw)) is defined as the circle whose center is the mid-
point of Vu and Vw and whose radius is d(Vu, Vw)/2.

V

δ

Om
^

Vw

Vfar

Vu

Vfar( ) ( )

d*

A

Om

Fig. 8. Proof of Lemma 2

Lemma 2: If Cm(Om, rm) passes exactly two Voronoi ver-
tices: Vu and Vw, then Cm(Om, rm) = C(Vu, Vw). In other
words, if the Minimax circle passes only two Voronoi vertices,
it must be centered at the midpoint of these two vertices.

Proof: (by contradiction) Suppose Cm(Om, rm) �=
C(Vu, Vw), which means Cm is not the mid-point of Vu and
Vw. Let

d∗ = maxV ∈Vp,V �=Vfar
{d(Om, V )}, (6)

and let δ = (rm − d∗)/2. Suppose A is the mid-point of Vu

and Vw (shown in Fig. 8). Let Ôm be the point on OmA such
that d(Ôm, Om) = δ. Since � OmÔmVu = � OmÔmVw >
� OmAVu = � OmAVw = π/2,

{
d(Ôm, Vu) < d(Om, Vu) = rm.

d(Ôm, Vw) < d(Om, Vw) = rm.
(7)

With triangle inequality, we have

d(Ôm, V ) ≤ d(Ôm, Om) + d(Om, V ) = δ + d(Om, V ),
(∀V ∈ Vp ∧ V �= Vfar)

(8)
With (6) and (8), we get

d(Ôm, V ) ≤ δ + d∗ = rm/2 + d∗/2 < rm,
(∀V ∈ Vp ∧ V �= Vfar)

(9)

With (7) and (9), we get

maxV ∈Vp
{d(Ôm, V )} < rm, (10)

which contradicts with the assumption that Om is the minimax
point.

If the Minimax circle passes more than two Voronoi vertices,
it is the circumcircle of these vertices. To find the Minimax
point, we only need to find all the circumcircles of any two and
any three Voronoi vertices. Among those circles, the one with
the minimum radius covering all the vertices is the Minimax
circle. The center of this circle is the Minimax point. We
formally state this claim and prove it in the following:

Theorem 1: Let Γ = {C(Vu, Vv) | C(Vu, Vv) covers all
vertices in Vp, and Vu, Vv ∈ Vp}

⋃ {C(Vu, Vv, Vw) |
C(Vu, Vv, Vw) covers all vertices in Vp, and Vu, Vv, Vw ∈ Vp},
then Cm(Om, rm) ∈ Γ and ∀C(O, r) ∈ Γ, r ≥ rm.

Proof: By Lemma 1, Cm(Om, rm) passes at least two
Voronoi vertices.

Case1: Cm(Om, rm) passes three or more Voronoi vertices.
Then it is the circumcircle of any three vertices it passes. With
the definition of Γ, Cm(Om, rm) ∈ Γ. Based on the definition
of Cm(Om, rm), rm = minC(V,r)∈Γ{r}.

Case2: Cm(Om, rm) passes exactly two Voronoi vertices:
Vu and Vw. Based on Lemma 2, Cm(Om, rm) = C(Vu, Vw).
With the definition of Γ, Cm(Om, rm) ∈ Γ. Based on the
definition of Cm(Om, rm), rm = minC(V,r)∈Γ{r}.

Based on Theorem 1, we obtain the algorithm to calculate
the Minimax point which is formally stated as below. The
complexity of this algorithm is O(n3), where n is the number
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(a) Round 0 (b) Round 2 (c) Round 3

Fig. 9. Snapshot of the execution of Minimax

of the Voronoi vertices. The computational cost is not high
since a Voronoi polygon usually has only a few vertices.

Minimax():
(1) Initialize n = |Vp|
(2) for u = 1, 2, . . ., n − 2

for v = u + 1, u + 2, . . ., n − 1
for w = v + 1, v + 2, . . ., n

Calculate C(Vu, Vv, Vw)
if V is inside C(Vu, Vv, Vw) ∀V ∈ Vp then

Record it.
(3) for u = 1, 2, . . . , n − 1

for v = u + 1, u + 2, . . ., n
Calculate C(Vu, Vv)
if V is inside C(Vu, Vv) ∀V ∈ Vp then

Record it.
(4) choose one with minimum radius and

set the target location to be the center
(5) do movement-adjustment

Fig. 9 shows how Minimax works. With the original cover-
age 75.7%, after round 1 and round 2, the coverage is improved
to 92.7% and 96.5% respectively.

D. Termination

The algorithm terminates naturally based on the movement-
adjustment heuristic (explained in Section III-A), which does
not allow sensors to move unless the local coverage can be
increased. The total coverage, bounded by 100%, increases as
the local coverage increases. Based on the attributes of Voronoi
diagram, the local coverage increase of one sensor does not
affect the local coverage of another sensor. Thus, sensors will
stop naturally when the best coverage is obtained.

In some applications, the coverage requirement is not that
high, and it is not efficient to move sensors to get a very
small coverage increase. In this case, it may be necessary
to terminate the deployment process before the maximum
coverage is reached to save power and reduce the deployment
time. To terminate the deployment procedure earlier, we use
a threshold ε, defined as the minimum increase in coverage
below which a sensor will not move. With a larger ε, the

deployment will finish earlier. When ε = 0, sensors stop when
the best coverage is obtained.

E. Optimizations

In some cases, the initial deployment of sensors may form
clusters, as shown in Fig. 10, resulting in low initial cover-
age. In this case, sensors located inside the clusters can not
move for several rounds, since their Voronoi polygons are
well covered initially. This problem prolongs the deployment
time, which is shown in Fig. 10, where some sensors are
still clustered together after the sixth round. To reduce the
deployment time in this situation, we propose an optimization
which detects whether too many sensors are clustered in a
small area. The algorithm “explodes” the cluster to scatter
the sensors apart, if necessary, which works as follows. Each
sensor compares its current neighbor number to the neighbor
number it will have if sensors are evenly distributed. If a sensor
finds the ratio of these two numbers is larger than a threshold,
it concludes that it is inside a cluster and chooses a random
position within an area centered at itself which will contain
the same number of sensors as its current neighbors in the
even distribution. The explosion algorithm only runs in the
first round. It scatters the clustered sensors and changes the
deployment to be close to random.

IV. PERFORMANCE EVALUATIONS

A. Objectives, Metrics, and Methodology

We measure the performance of the proposed protocols from
two aspects: deployment quality and cost. Deployment quality
is measured by the sensor coverage and the time to reach this
coverage. Deployment time is determined by the number of
rounds needed and the time of each round. The duration of
each round is primarily determined by the moving speed of
sensors, which is the mechanical attribute of sensors. Thus,
we only use the number of rounds to measure the deployment
time. The Cost has two components. One is the sensor cost;
to reach a certain coverage, the proposed protocol needs fewer
sensors than random deployment of static sensors. The other is
the energy consumption of the deployment. Both mechanical
movement and electronic communication consume energy, of

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



0 10 20 30 40 50
0

10

20

30

40

50

Round 0
0 10 20 30 40 50

0

10

20

30

40

50

Round 1

0 10 20 30 40 50
0

10

20

30

40

50

Round 2
0 10 20 30 40 50

0

10

20

30

40

50

Round 3

0 10 20 30 40 50
0

10

20

30

40

50

Round 4
0 10 20 30 40 50

0

10

20

30

40

50

Round 5

Fig. 10. Working procedure (VOR)

which mechanical motion is the major part. Hence we choose
the moving distance as the evaluation metric.

We measure the sensor coverage and moving distance under
various system parameters: sensor density, field size, topology,
communication range, and ε. With certain sensing range, the
sensor density determines the sensor coverage that can be
reached, and the difficulty to reach it. We choose 30, 35, 40,
and 45 sensors per 50m ∗ 50m field as the sensor density
in our simulation. We also vary the field size (50m ∗ 50m to
150m∗150m) and the number of sensors to test the protocols’
extendibility to large scenarios. We consider two kinds of
initial deployments. One is the random distribution which can
be used to model many cases such as when the sensors are
dropped by an airplane from a high altitude. The other is the
normal distribution, which can be used to model the case where
sensors form a cluster. By varying the standard deviation, we
can control the dense degree of the sensor clustering.

Communication range is another important factor since
it affects the accuracy of the constructed Voronoi diagram
depending on which sensors detect the coverage hole and
choose the target locations. We will vary the communication
range from 10m to 28m to see how the performance is affected.
20m is what is used in most sensor prototypes. We choose
higher communication range to quantify the performance
improvement. 10m is the point at which network partitions
become common. For example, when 36 sensors are deployed
in a 50m by 50m field and when they are in their optimal

sensing position, the minimum distance between two sensors
is 6∗√

(2), which is about 8.5m. If the communication range
is less than this value, the network is totally disconnected when
sensors are in their optimal sensing position.

We implemented the proposed protocols in ns2 (version
2.1b9a). The target field is chosen to be 50m ∗ 50m flat
space except in the evaluation of our scheme’s sensitivity to
the field size (in section IV-B.3). The initial placement of
sensors follows random distribution except in the evaluation
of the impact of topology. All simulation results are under
ε = 0 except in the testing of our algorithm’s sensitivity
to ε. We use 802.11 as the MAC layer protocol and DSDV
as the routing protocol. The physical layer is modeled after
the RF MOTE from Berkeley, with 916.5MHZ OOK 5kbps
as the bandwidth and 20 meters as the transmission range
except in the evaluation of the impact of communication range.
Based on the information from [16], we set the sensing range
to be 6 meters. This is consistent with other current sensor
prototypes, such as Smart Dust (U.C.Berkeley), CTOS dust,
Wins (Rockwell)[17], and JPL[18].

B. Simulation Results
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Fig. 11. Coverage (randomly deployed)

1) Coverage and Sensor Cost: The coverage of randomly
deployed sensor networks under different sensor density is
shown in Fig. 11, which shows that about 85 sensors are
required to reach 98% coverage. In contrast, by using our
sensor deployment protocols, only 40 sensors (shown in Fig.
12(a)) are needed to reach the same coverage.

From Fig. 12(a) and Fig. 12(b), we can see Minimax per-
forms the best, while VEC performs the worst. Minimax fully
utilizes the local Voronoi polygon. It fixes the coverage hole
directly by moving toward the largest hole, while avoiding the
possible negative effect by the sensor’s movement. In addition,
by locating sensors in the Minimax point, Minimax lowers
the variance of a sensor’s distances to its Voronoi vertices,
resulting in a more regular shaped Voronoi polygon. VOR fixes
the coverage hole more greedily, but lacks a comprehensive
consideration. It is expectable that VOR performs worse than
Minimax. One thing to be noted is in the first round, VOR
is better than Minimax. This is because initially the coverage
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Fig. 12. Coverage

holes are normally bigger than in the middle of the deployment
procedure, thus to fix them greedily can result in a higher
coverage increase.

VEC performs the worst for several reasons. The primary
one is that VEC is sensitive to the initial deployment. Consider
an extreme situation, where sensors are located in the same line
with the same inter-distance. In this case, no sensor will move,
since the virtual forces offset each other, though there are large
coverage holes. If the sensors are located in a similar relative
position initially, VEC does not perform well. In addition, VEC
neither considers coverage holes nor utilizes any geometric
information from the Voronoi polygon when choosing the
target location. It tries to reach a relatively balanced position
among the sensors, which is very hard, for the difficulty of
obtaining an exact global even distribution from only local
information.

2) Moving Distance: Fig. 13 shows the average cumulative
moving distance after each round. From the figure, we can see
an interesting phenomena about VEC: the moving distance is
similar under different sensor densities. This is because VEC
fixes coverage holes by pushing sensors into a relatively even
distribution. In VEC, sensors are pushed by the virtual forces,
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Fig. 13. Moving distance

which are determined by the difference between the average
distance of sensors when they are evenly distributed and the
individual inter-distances. Both values increase with a low
density and decrease with a higher density. Thus, the difference
is not that sensitive to the sensor density. In contrary, Minimax
and VOR relocate sensors by measuring the coverage holes,
which are larger under lower density and smaller under high
density. In addition, the curves of VEC is the flattest among
these three since the movement is very small when sensors
arrive at a relatively balanced position.

Between Minimax and VOR, the former always moves a
longer distance. Minimax not only tries to fix holes, but also
tries to reach more regular shaped Voronoi polygons. Thus,
after the first two rounds and the remaining holes are relatively
small, VOR moves sensors slightly while Minimax makes
sensor move longer to the Minimax points.

3) Extendibility to Large Scenarios: To test the sensitivity
of our methods to field size and network scale, we fix the
sensor density to be 40 sensors per 50m ∗ 50m field, and vary
the field size from 50m ∗ 50m to 150m ∗ 150m. The coverage
reached and the moving distance after ten rounds is shown
in Table I. From the data, we can see that our algorithms
are extensible to large deployment scenarios, because the
communication and movement are kept local in our protocols.
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In addition, we notice that the performance is slightly better
with large field size. This is because the sensing circle is better
utilized inside the field than beside the boundary. With a large
field, the percentage of sensors inside is higher.
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Fig. 14. Reference normal distribution

4) Impact of Topology: The simulation results in the previ-
ous sections indicate that our algorithms perform quite well if
the initial deployment is random. In this section, we examine
the performance on other types of topologies. Fig. 14 shows
the coverage under different σ and sensor density when sensors
are deployed following the normal distribution. With as high
as 80 sensors, the coverage cannot reach 80% even when σ
is 10. By comparing this figure with Fig. 15, we can see the
effectiveness of our algorithms.

Fig. 15 presents a dense clustering scenario. All 40 sensors
are deployed around the center of the field with a normal
distribution. We use σ = 1 and σ = 5 to represent the
clustering degree of sensors. It is a very rigid situation when σ
is equal to 1, since the initial coverage is below 10%, and about
28 sensors are located within the circle of one meter radius.
The data includes both the basic version of the algorithm
and the optimized version. In Fig. 15, VEC-o, VOR-o, and
Minimax-o represent the optimized version.

R C D (m) E M
VEC-o 10 98.29% 23.00 1.24 3.43
VEC 20 84.04% 16.00 1.39 4.37

VOR-o 10 98.11% 21.75 1.17 4.22
VOR 20 46.21% 8.19 1.69 1.32

Minimax-o 10 99.15% 22.81 1.20 5.38
Minimax 20 89.11% 13.76 1.18 5.73

TABLE II

IMPROVEMENT OF THE OPTIMIZATION (σ = 1; n = 40): E

measures the effectiveness of moving, which is the ratio of actual moving

distance to the distance between the initial position and the final position.

M shows the average number of movements of sensors. C and D refer to the

coverage and to the moving distance respectively. R is the Round number to

record these data.

As mentioned in SectionIII-E, our basic algorithms have
difficulties in dealing with this high-degree clustering, espe-
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Fig. 15. Normal Distribution

cially when σ = 1. In this case, VEC works better than other
algorithms in the first several rounds, because it pushes sensors
into balanced positions aggressively. Though Minimax can not
increase the coverage as quickly as in the random case, it
can increase the coverage steadily. It surpasses VEC after the
tenth round when σ = 1, and after the seventh round when
σ = 5. This again demonstrates that Minimax has advantage
in coverage.

Though our basic algorithm cannot deal well with the
problem of a high degree clustering, the high coverage reached
after the first round shows the effectiveness of our optimized
algorithm in scattering sensors from being stick together. In
addition, the explosion done in the first round does not add
additional cost, instead, the deployment cost is reduced com-
pared with the basic version. Table II presents additional data.
From the number of movements and the moving efficiency, we
can see that the optimized algorithm does not add additional
cost while the round number and reached coverage tell us the
optimized algorithm reduces the deployment time significantly.

5) Impact of Communication Range: We randomly deploy
40 sensors in the platform and vary the transmission range
from 10m to 28m to evaluate its impact on the performance.
Fig. 16 and Fig. 17 show the moving distance and the coverage
reached after 10 rounds under different communication range.
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50m ∗ 50m 100m ∗ 100m 150m ∗ 150m
Coverage Moving Distance(m) Coverage Moving Distance(m) Coverage Moving Distance(m)

VEC 97.15% 4.45 97.41% 4.38 97.52% 4.33
VOR 98.50% 3.91 98.73% 3.78 98.80% 3.75
Minimax 99.17% 4.91 99.35% 4.79 99.67% 4.82

TABLE I

COVERAGE REACHED UNDER DIFFERENT FIELD SIZE
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As can be seen, when the communication range is lower than
12m, the performance of our algorithms is reduced. When
the communication range is too low, most sensors do not
know all their Voronoi neighbors, and the constructed Voronoi
diagram is not very accurate. Consequently, sensors may get
some false coverage holes and make wrong decisions about
the target location. Among these three protocols, VEC is
affected the least by the low communication range in terms
of both moving distance and coverage, since it only utilizes
the Voronoi polygon to determine whether to move or not, but
not the target position. Sensors are only affected by the virtual
force from their neighbors within dave, so lack of knowledge of
sensors far away does not affect the accuracy of the calculated
target location.

Fig. 16 and Fig. 17 show that when the communication
range is greater than 12m, the performance is quite good.

However, our trace file shows that even when the communi-
cation range is 26m, some constructed Voronoi diagrams are
not accurate. This indicates that the heuristics used to deal
with the inaccuracy of constructing Voronoi polygons are very
effective.

6) Coverage increase threshold ε: In this section, we eval-
uate how ε affects the performance. In Table III, the values
shown in the leftmost column are the product of ε used by
sensors for determining whether to move and the number of
sensors. As can be seen, with a smaller ε, a higher coverage
can be reached, while the deployment cost is also increased. By
properly setting this threshold, we can save time and energy by
trading off a very small coverage (less than 1% in the table).
From table III, we also find that, when ε ∗ n > 0.5%, each
sensor only moves about 20% more than the direct distance
from the starting point to the destination. This also means
that our protocols only incur an approximately additional 20%
movement overhead compared to the centralized approach,
which may not be feasible and suffer from single point failure
problem.

V. DISCUSSION AND FUTURE WORK

This paper addressed the problem of placing sensors in
a target field to maximize the sensing coverage. Based on
Voronoi diagrams, we designed three distributed protocols to
move mobile sensors from densely deployed areas to sparsely
deployed areas in an iterative way. Simulation results verified
the effectiveness of our protocols and provided a baseline for
performance under ideal conditions. In this section, we discuss
some open issues that will be addressed in the future.

A. Optimal Movement vs Communication

Our protocols require sensors to move iteratively, eventually
reaching the final destination. Other approaches can be envi-
sioned in which the sensors move only once to their destination
to minimize the sensor movement. Two such approaches are a
centralized approach and an approach using simulated move-
ment. Our results show that our distributed algorithms only
incur an approximately additional 20% movement overhead,
compared to these algorithms. However, we provide significant
benefit in other dimensions as described below.

Although the centralized approach may minimize the sensor
movement, a central server architecture may not be feasible in
some applications. For example, in the battle field, sensors are
responsible for detecting abnormal phenomena and warning
soldiers nearby. No central server in the battle field can help
these sensors, and an individual sensor does not have the
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ε ∗ n VEC VOR Minimax
R C(%) D M E R C(%) D M E R C(%) D M E

0.0% 47.56 98.44 5.18 3.67 1.62 37.88 98.74 4.19 6.30 1.60 41.39 99.49 5.31 6.88 1.50
0.1% 14.23 97.87 4.57 2.55 1.47 12.00 98.57 3.62 2.74 1.47 13.71 99.11 4.28 3.67 1.35
0.5% 8.00 97.24 4.02 1.70 1.41 7.00 97.92 3.13 1.67 1.30 9.44 98.37 3.49 2.11 1.24
1% 6.22 96.62 3.62 1.26 1.33 5.10 97.19 2.85 1.26 1.23 6.78 97.84 3.11 1.60 1.21
2% 5.90 95.87 3.21 1.01 1.23 4.70 96.54 2.55 0.98 1.18 5.90 96.82 2.60 1.18 1.14

TABLE III

IMPACT OF ε (n = 40) (R is the round number when all sensors stop; C, D, M, and E have been defined in Table II. These values are obtained in the

stopping round R)

computation power of a center server. In the case of an in-
building toxic-leak, mobile sensors have to self deploy into
the building from outside without server support. Further, the
centralized approach suffers from the problem of single point
failure.

Another alternative method is to let sensors stay fixed and
obtain their final destinations by simulated movement. With the
same round-by-round procedure, sensors calculate their target
locations, logically move there, and exchange these locations
with the sensors which would be their neighbors as if they had
actually moved. The real movement only happens at the last
round when they get the final destinations. We did not deploy
this alternative method for two reasons. First, an approach
using simulated movement is susceptible to poor performance
under network partitions which are likely to occur in a sensor
deployment. If a network partition occurs, each partition will
exercise the movement algorithms without knowledge of the
others. Consequently, the obtained final destination is not
accurate and the required coverage cannot be reached. Using
real movement, the network partitions will be healed allowing
all sensors to be eventually considered in the algorithm. A
second reason is the high communication overhead. To guar-
antee logical neighbors are reached, a network-wide broadcast
is needed when using simulated mobility. If this network-
wide broadcast is implemented by gossiping, the message
complexity is at minimum 2rn2. Using actual mobility as
in our protocols, a much lower message complexity, 2rn, is
enough.

B. Sensing Area

In this paper, the sensing area of each sensor is assumed to
be a disk with radius 6m. This is the ideal case which provides
us with a baseline of the sensor placement problem. In future
work, we will address varying sensing ranges and investigate
such cases. Here, we discuss these issues.

Our protocols can deal well with the case of a larger
or smaller sensing radius if the sensing area is uniformly
a disk. The performance of the protocol depends more on
the ratio of communication range to sensing range than the
absolute sensing range. As the sensing range decreases with
regard to the communication range, our protocols will perform
very well because they can accurately construct the Voronoi
diagrams. As the sensing range increases, we need to enlarge
the broadcast hops to better construct the Voronoi cells.

If the sensing area is an irregular shape, instead of a disk,
sensors can still check their Voronoi cells to determine the
coverage holes. In this case, we can decrease the sensing range

used in our protocols to account for the reduced coverage. In
future work, we will study our protocol’s sensitivity to the
sensing area.

C. Extend to Large Sensor Networks

In our simulation, we use a 50m∗50m (and 150m∗150m)
field and tens of sensors. In some situations, perhaps thousands
of sensors are needed in a very large field. Simulation shows
that the protocols presented here are not sensitive to the scale
of the network and the target field; the performance of our
algorithm depends on the density of sensors used in the field.
This is because communication and movement are kept local.
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