Canadian Journal of Fisheries and Aquatic Sciences Journal canadien des sciences halieutiques et aquatiques

Movement ecology of a mobile predatory fish reveals limited habitat linkages within a temperate estuarine seascape

Journal:	Canadian Journal of Fisheries and Aquatic Sciences
Manuscript ID	cjfas-2017-0308.R1
Manuscript Type:	Article
Date Submitted by the Author:	10-Nov-2017
Complete List of Authors:	Kenworthy, Matthew; University of North Carolina, Institute of Marine Sciences Grabowski, Jonathan; Northeastern University, Marine Science Center Layman, Craig; North Carolina State University, Applied Ecology Sherwood, Graham; Gulf of Maine Research Institute, Powers, Sean; Dauphin Island Sea Lab, Marine Sciences Peterson, Charles; University of North Carolina at Chapel Hill Marine Sciences, Institute of Marine Science Gittman, Rachel; Northeastern University , Marine Science Center Keller, Danielle; University of North Carolina, Institute of Marine Science Fodrie, Joel; University of North Carolina at Chapel Hill Marine Sciences, Institute of Marine Science
Is the invited manuscript for consideration in a Special Issue? :	N/A
Keyword:	MOBILE FISH, ACOUSTIC TELEMETRY, SALTMARSH CONNECTIVITY, RED DRUM, MOVEMENT BEHAVIOR

SCHOLARONE" ${ }^{\text {" }}$
Manuscripts

Movement ecology of a mobile predatory fish reveals limited habitat linkages within a temperate estuarine seascape

Matthew D. Kenworthy ${ }^{1 *}$, Jonathan H. Grabowski ${ }^{2}$, Craig A. Layman ${ }^{3}$, Graham D. Sherwood ${ }^{4}$, Sean P. Powers ${ }^{5}$, Charles H. Peterson ${ }^{1}$, Rachel K Gittman ${ }^{6}$, Danielle A. Keller ${ }^{1}$, and F. Joel Fodrie ${ }^{1}$
${ }^{1}$ Institute of Marine Sciences and Curriculum for the Environment and Ecology, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA; mkenwor@email.unc.edu; cpeters@email.unc.edu; dabbey@email.unc.edu; jfodrie@email.unc.edu
${ }^{2}$ Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA; J.Grabowski@northeastern.edu
${ }^{3}$ Department of Applied Ecology, North Carolina State University, 248 David Clark Labs, Raleigh, NC 27695, USA; calayman@ncsu.edu
${ }^{4}$ Gulf of Maine Research Institute, 350 Commercial Street, Portland, ME 04101, USA; gsherwood@gmri.org
${ }^{5}$ Department of Marine Sciences, University of South Alabama, 5871 USA Drive North Blvd., Mobile, AL 36688, USA; spowers@disl.org
${ }^{6}$ Department of Biology, Institute for Coastal Science and Policy, East Carolina University, Greenville, NC, 27858; gittmanr17@ecu.edu
*Corresponding Author: Matthew D. Kenworthy 252-726-6841 ext. 218

Abstract

Large predatory fishes, capable of traveling large distances, can facilitate energy flow linkages among spatially separated habitat patches via extended foraging behaviors over large areas. Here, we tested this concept by tracking the movement of a large mobile estuarine fish, red drum (Sciaenops ocellatus). Specifically, we addressed the following questions: 1) What are the spatial and temporal patterns of red drum movement (rates of dispersal) and activity space? and 2) Does red drum movement facilitate linkages among estuarine marsh complexes? Dispersal from the release location was greatest during the first two weeks at liberty before declining to less than $0.5 \mathrm{~km} /$ week for the remainder of the study. Activity space initially also increased rapidly before reaching an asymptote at $2.5 \mathrm{~km}^{2}$ two weeks post-release. Connectivity indices calculated among marsh complexes corroborated these observations, suggesting high residency and limited seascape-scale linkages via red drum movement behaviors. These data highlight potential within-estuary spatial structure for mobile fishes, and could inform subsequent efforts to track energy flows in coastal food webs, predict the footprint of local habitat restoration benefits, and enhance the design of survey regimes to quantify overall population demography.

Key Words: saltmarsh connectivity, spatial ecology, movement behavior, mobile fish, red drum, acoustic telemetry

INTRODUCTION

Marine ecosystems are typically comprised of heterogeneous mosaics of distinct habitat patches (i.e., seascapes). Identifying the value and function of habitats within the seascape is a central component of efforts to conserve and protect estuarine habitats (Bostrom et al. 2011). As ecologists and managers incorporate ecosystem-level approaches into research and decision making in marine environments, they have drawn on studies quantifying the degree of connectivity that results from the exchange of nutrients, pollutants, pathogens, sediments, and organisms (i.e., fish, birds, and mobile invertebrates) across habitat boundaries within seascapes (Polis et al. 1997). Fish movement, often considered one of the most influential factors in mediating habitat connectivity (Sheaves 2009), within and among these habitat mosaics can affect species interactions (Baggio et al. 2011), foraging behaviors (Beets et al. 2003), ecosystem resiliency, biodiversity (Olds et al. 2012), reproduction (Bolden 2000), recruitment success (Berkstrom et al. 2012), and nutrient transfer (Meyer et al. 1983). Therefore, enhancing our understanding of fish movement patterns within and between various estuarine habitats is critical to the management and conservation of fish populations and habitats on which they depend (e.g. identifying discrete stock units).

Mobile fish species capable of traveling large distances (i.e. $>5 \mathrm{~km} /$ day) increase the linkages and potential for connectivity among habitats within estuarine seascapes (Rosenblatt and Heithause 2011; McCauley et al. 2012; McMahon et al. 2012). Fish behavior can be highly variable, with a number of factors affecting a fish's decision to move. For example, movement and habitat choice can vary with individual preference and habitat complexity (Popple and Hunte 2005), different degrees of predation pressure (Martin et al. 2010), resource availability (Hammerschlag et al. 2010), seasonally (Barbour et al. 2014; Ketchum et al. 2014), and between
contingents of fish (Afonso et al. 2009), Here, we explore the movement behaviors of a relatively large mobile predator between different marsh complexes within a temperate estuary and the potential implications of this behavior on seascape-level connectivity of marsh complexes.

Salt marsh (Spartina altinaflora) complexes are often the dominant shoreline habitat within temperate estuarine ecosystems, and are typically comprised of a mosaic of salt marsh, seagrass, oyster reef, and mud/sand flat that are separated by deeper channels or extended sand/mud flats from other structured habitats (most typically, other marsh complexes). Connectivity, resulting from fish movement, has been explored at small (10's of m) spatial scales in relation to movement of considerably less mobile fish (Able et al. 2012). Estuarine scale (kms) connectivity among marsh complexes, however, is less well characterized. Identifying the level of linkages between individual saltmarsh complexes would help frame our understanding of whether whole estuaries function as the fundamental unit of "habitat" for large mobile fishes, versus a series of relatively discrete habitat units for subpopulations of a given species.

Red drum (Sciaenops ocellatus), common in estuaries from Virginia to Texas, is highly sought after by recreational fishermen. As sub-adults (up to age five), red drum inhabit estuarine marsh complexes and near-shore habitats and forage on small fishes and crustaceans (Scharf and Schlight 2000). Individuals are capable of traveling large distances ($>10 \mathrm{~km} / \mathrm{week}$) and are often found occupying a variety of estuarine habitats across a wide range of salinities in temperate estuaries (Bacheler et al. 2009a; Bacheler et al. 2009b). Because they are considered highly mobile and use a wide range of estuarine habitats, red drum are presumed to increase the connectivity of spatially separated saltmarsh complexes within estuaries over tidal, diel, and seasonal scales.

Understanding movement behavior of fish is challenging due to limitations in observing individuals directly. Yet, the use of acoustic tracking methods is increasing and overcoming long-standing impediments to monitoring fish movements. In particular, acoustic tracking promotes monitoring of movement and behavior of individual fishes across broader spatial and temporal gradients. The objective of this study was to quantify red drum movement patterns, more specifically temporal variation in dispersal and activity space (home range), with the overarching goal of assessing how fish behavior influences linkages between salt marsh complexes. We asked three primary questions regarding the movement behaviors within this estuarine seascape: 1) At what rate did individuals disperse throughout the estuary and into new areas? (2) What was the activity space of individual red drum, and did it vary throughout the study? And (3) Did individuals express high levels of residency within individual marsh complexes in the study array or frequently move among them?

METHODS

Study Area

We acoustically tracked the movement of 34 sub-adult red drum over five months within a temperate estuary near Cape Lookout, NC (Fig. 1). The shallow estuary of North River and Back Sound covers an area of $68 \mathrm{~km}^{2}$ from Beaufort Inlet (western extent of study system) to Bardens Inlet at Cape Lookout (eastern extent). The estuary contains multiple saltmarsh complexes, large expanses of shallow un-vegetated bottom, and deeper channels. Within the study area, we deployed an array of 25 Vemco VR2W hydrophones to detect red drum movement, specifically among four distinct salt marsh complexes (Fig. 1).

Within each marsh complex, multiple hydrophones were deployed to increase the probability of detection when fish were present. For our analysis, hydrophones were grouped
according to their associations with individual marsh complexes or classified as "non-marsh" (Fig. 1). Non-marsh stations were located in deeper channels and mud/sand flats, which were presumed to be travel corridors. The hydrophone stations were grouped as follows: Carrot Island Marsh (CIM) stations: 1, 4, 5, 9; Middle Marsh (MM) stations: 10, 13, 14, 15, 19; North River Marsh (NRM) stations: 8, 11, 12; Back Sound Marsh (BSM) stations: 21, 22, 25; and non-marsh complex stations: 2, 3, 6, 7, 16, 17, 18, 20, 23, 24 (Fig. 1). The VR2W omni-directional hydrophones had a detection range of approximately 350 m in this study system based on range detection tests conducted at the start of the study.

Tagging and Tracking

We collected sub-adult red drum ($550 \pm 15 \mathrm{~mm}$ total length, mean ± 1 standard error [SE]) from different locations within the study area via hook and line $(\mathrm{n}=24)$ or large mesh (12.7 cm mesh) gill nets $(\mathrm{n}=10)$ during July-October 2011 (Table 1). A coded acoustic transmitter (LOTEK Wireless Inc. MM-MR-11-28, also used in a companion fine-scale tracking study, see Fodrie et al. 2015) was implanted into the body cavity of each fish following procedures similar to Dresser and Kneib (2007). These transmitters emitted both LOTEK Wireless and Vemco coded signals, and therefore were all detectable with the VR2W (Vemco) receivers. Following tag implantation, fish were held for 24 hours for observation before being released into the southwestern-most bay within the MM complex (Fig. 1). Fish monitored in this study were the same individuals tracked in a companion project analyzing fine-scale habitat use within MM, therefore requiring all fish to be released in the same location (Fodrie et al. 2015). Individual fish were released intermittently starting July $12^{\text {th }}$, with the last fish being released on October $9^{\text {th }}$. At regular one-minute intervals, the transmitter emitted a pulsed chirp unique to each fish, which was used to identify the presence of each individual within range of a
hydrophone. For each detection, the hydrophone recorded the transmitter ID, date, and time information, and we downloaded these data monthly. Due to potential discrepancies in behavior as a result of capture, tagging, and subsequent release back into the environment, we excluded detections during the first 24 hours after being released from our movement analyses.

Additionally, as a result of using a single-release location, extrapolating patterns and processes to fish being released in other marsh and non-marsh complexes could be limited; however, the faunal communities and the quality and quantity of available habitats in MM are representative of the marsh complexes in this estuary (sensu Baillie et al. 2015). Therefore, we hypothesize that red drum would behave similarly if released in other, similar marsh complexes. Prior to analysis, we used the false detections analyzer within VEMCO's data processing software (VUE) to remove any false detections. Additionally, we examined the detection data to ensure that all detections were from live individuals. A deceased individual can be identified when a transmitter is detected continuously at a single hydrophone, with no detections occurring at any other stations, for extended periods of time.

Dispersal Patterns Away from Middle Marsh Release Location

Understanding connectivity in estuarine systems requires knowledge of the rate at which fish move throughout the estuary over hours to months. We calculated the rate of dispersal away from the release location in the southwestern-most embayment within MM. Red drum detections were separated into 10 , six-day time bins, roughly representing weeks since being released into the estuary (weeks at liberty thereafter). We then established three detection metrics: 1) the raw number of detections (total detections thereafter), reflecting the number of times all individuals were detected, collectively, at each hydrophone during each week at liberty; 2) the number of individuals that visited each hydrophone during each week at liberty; and 3) a weighted number
of detections, defined as "relative occurrence", at each hydrophone during each week at liberty. We chose to look at the number of fish visiting hydrophones to supplement the detection volume data (i.e. total detections). Instead of using just the number of total detections, which for any individual hydrophone or group of hydrophones could result from 'residency' of a single fish, we also wanted to evaluate how many individuals were detected at each hydrophone during each week at liberty. The third metric was designed to address a potential bias of individuals with disproportionately higher number of detections "swamping" total detection (metric 1) patterns. To accomplish this, we standardized total detections by dividing a fish's number of detections at each hydrophone by the total number of detections collectively for that individual at all hydrophones. In doing so, "relative occurrence" at individual hydrophones was scaled between 0 and 1 for each week at liberty for each fish. Each fish's relative occurrence value at each hydrophone was then summed to generate final relative occurrence values for analysis.

We adopted the general approaches of inspecting animal movement outlined by Ergon and Gardner (2014) by quantifying dispersal patterns as changes in the three detection metrics across our hydrophones, each of known distance from the release point in MM, through time. We first plotted the relationship between our detection metrics at each hydrophone and the straightline distance from the release location to the respective hydrophone for each weekly time bin (Fig. 2A). Next, normal distribution curves were fit through the data points to characterize the distribution of the detection metrics for each weekly bin. We used the resulting standard deviation (sigma $[\sigma]$) from the weekly normal distribution curves to represent the relative range of fish distribution (measured in kilometers). For the analysis, we used two standard deviations (2 σ) representing 95% of the distribution range. This value therefore represented the distance from the release location in which 95% of fish detections occurred during that week, hereafter
referred to as "relative distribution". As fish dispersed from the release location, the distribution of detections as a function of distance (of hydrophones) from the release location should "flatten", resulting in increasing 2σ values over time (Fig. 2B). By week 7 in our study the distribution of detections calculated from total detection and relative occurrence metrics had flattened to the point that 2σ values were unreliably large, and therefore we ceased to evaluate relative distribution beyond this point. When analyzing the number of individuals detected at each hydrophone (detection metric 2 listed above), 2σ became unreliably large after week 5 . Dispersal rate, the change in 2σ over time $(\Delta 2 \sigma / \Delta t)(t=$ time $)$, were calculated from the logarithmic trend lines fit to weekly relative distribution values. Dispersal rates were calculated through seven weeks at liberty for each detection metric.

Activity Space

In addition to quantifying the mean dispersal rate of tagged red drum over the duration of the study, we quantified weekly activity space size through time to examine if fish revisit the same areas or continuously explore new areas. First, we calculated the center of activity (COA) for each fish using the latitude and longitude coordinates of each hydrophone as suggested in Simpfendorfer et al. (2002). We weighted these values by the number of detections at each hydrophone visited during each week at liberty. Standard deviation (σ) values resulting from calculating the mean latitude and longitude components of the COA were averaged to obtain a single value representing the radius (m) of primary activity space for each week at liberty. Similar to dispersal calculations, we used two standard deviations (2σ) for the radius (m) of weekly activity space, which reflected 95% of all detections (per each individual fish within each week) occurring within these boundaries.

Next, we explored temporal variation in the weekly activity space of fish by calculating cumulative activity spaces. Cumulative activity space was calculated in the same manner as for weekly measurements; however, the cumulative measurement included detections from that week and all previous weeks since release. If fish were occupying completely new areas from week to week, we expected to see cumulative activity space continue to grow linearly through time (Fig. 3A). Alternatively, if a fish revisited areas over time, suggestive of higher site fidelity, we expected the cumulative activity would grow initially, then asymptote over time (Fig. 3A).

Residency

To examine patterns of residency and exchange of fish among individual marsh complexes, we calculated the probability of fish moving between each of the marsh complexes in our study area. Each day that an individual red drum was detected, we randomly selected one detection that day and recorded the location of that detection (primary detection). Relative to the time stamp of the primary detection, we identified the location of that same fish twenty-four hours later, or as soon as possible thereafter, based on the marsh complex groupings above (subsequent detection). We chose a twenty-four-hour time step to allow for two full tidal cycles and one day-night cycle, both of which can impact fish movement behavior and habitat choice (Popple and Hunte 2005; Dresser and Kneib 2007). This procedure was repeated each calendar day for which each individual was detected throughout the study. We conducted 100 iterations, with replacement, of this sampling procedure to ensure that a representative selection of randomly selected detection data points were incorporated. Therefore, for each day a fish was detected, we performed this procedure using 100 randomly selected detections. From these observations, we created a connectivity matrix identifying the probabilities that individuals observed in a given marsh complex (primary detection) will be relocated in the same marsh
complex, a different marsh complex, or a non-marsh location after 24 hours (subsequent detection). Probabilities ranged from 0 , low chance of being detected in subsequent location, to 100 , high chance of being detected in subsequent location. A high probability of being detected within the same marsh complex suggests high residency. Further, we explored the consistency of these behaviors over time by conducting the same analysis with time lags of 48 hours and one week following the primary detections.

Finally, we assured that the uneven distribution of hydrophones within the marsh complexes (e.g. MM contained five hydrophones while the others had 3-4 each) did not significantly alter our observations and understanding of movement behavior. We accomplished this conducting our residency analysis with two hydrophones removed from MM. We selected the three hydrophones with the most detections and ran our analysis again three times with all combinations of two of these three hydrophones being removed from the dataset. Therefore, for each subsequent run of the analysis, MM was represented using only three hydrophones. Due to consistencies in our original test for residency patterns using different time lags as well as the consistency in the re-analysis of the dataset with a 24-hr lag, we did not perform this test using time lags of 48-hr or 1-week. The resulting detection probabilities did not differ notably from the original analysis therefore we proceeded to include all hydrophones from MM in our subsequent analysis of residency patterns.

Fishermen Recaptures

Throughout the study, recreational and commercial fishermen reported occurrences of capturing our tagged red drum. Using the date and location of the reported captures, we calculated the number of days at liberty between release to recapture and the straight-line distance from the release location to the recapture location. We examined the correlation
between days at liberty and distance from the release location to suggest whether individuals exhibited random (low correlation) or non-random (high correlation) movement away from the study area. Correlation analysis was conducted in JMP Pro12.

RESULTS

We recorded 51,987 detections overall, averaging 1,625 ± 593 (mean ± 1 standard error) detections per fish from 32 of the 34 tagged individuals (Table 1). The two individuals that were not detected were recaptured outside of the study array by fishermen indicating that these individuals simply left the array without being detected. Only four of those 32 fish were detected less than 100 times. On average, individuals visited 5 ± 1 hydrophone stations and the number of days that individuals were recorded within the hydrophone array ranged between 0 and 126 with an average of 33 ± 5 days at liberty. Six individuals were detected visiting a combination of three marsh complexes while another 13 were only detected in two complexes. The remaining 13 fish were detected only in the MM complex. Of the 34 fish released, nine individuals were recaptured by fishermen during or following our 5-month tracking effort. The time at liberty of these nine fish ranged from 2 days to 425 days and the straight line distance from the release location to the recapture location varied from 0 km up to 38 km . There was no distinguishable relationship between days at liberty and distance from release location to recapture location (Pearson's $\mathrm{r}=$ <0.01).

Dispersal

Over the course of the study, all three dispersal metrics indicated initial dispersal from the release location during the first two weeks followed by minimal dispersal within the study area over the remainder of the study (Fig. 2C). Relative distribution calculated from total detections indicated that fish dispersed to a range of 1.69 km during the first week and 3.44 km after two weeks. The change in relative distribution each week from week three through week
seven was less than 0.50 km . Initial dispersal rate calculated based on total detections was 2.09 $\mathrm{km} /$ week during week one before falling below $0.75 \mathrm{~km} /$ week during the remaining six weeks (Fig. 2D). Distribution range observed from measurements of relative occurrence was similar to that measured by total detections during the first $(1.33 \mathrm{~km})$ and second $(3.30 \mathrm{~km})$ weeks at liberty followed by minor fluctuations through week seven (Fig. 2C). Based on the relative occurrence of fish, the calculated dispersal rate increased slightly from week one ($1.13 \mathrm{~km} / \mathrm{week}$) to week two ($1.34 \mathrm{~km} /$ week) followed by a continuous decline through week seven (Fig. 2D). Finally, the distribution range observed from measurements of the number of fish at each hydrophone displayed the greatest increase during the first week (2.77 km) followed by fluctuating distribution range through week five (Fig. 2C). Dispersal rate calculated based on number of fish at each hydrophone was high during week one ($2.78 \mathrm{~km} / \mathrm{week}$), followed by a large reduction in dispersal rate between week two ($0.63 \mathrm{~km} /$ week) and week five (0.20 km/week) (Fig. 2C-D).

The average of all three detection metrics indicated that after the first two weeks at liberty, the range of dispersal was approximately 3.29 km , which was comparable to the distance across the MM complex from the release location (2.73 km). Although dispersal measurements were calculated to represent distribution in all directions, the minimal number of detections at hydrophones one through six to the west of MM (0.08% of total) indicated that the dispersal direction was predominantly towards the east and north of the release location, along the main axis of MM.

Activity Space

Weekly mean radius of activity space ranged from 286 m to 1007 m , with an overall average of $686 \pm 16.1 \mathrm{~m}$ (mean radius \pm SE), and did not change appreciably over time (Fig. 3B).

Calculations of cumulative activity space indicated that the greatest increase in mean radius occurred during week one (756 m) and week two (925 m) (Fig. 3C). The size of the cumulative activity space increased by small increments ($<10 \%$ per week) over the remaining eight weeks of observations. Overall, the fish displayed only a 20% increase in the radius of their cumulative activity space between week two and week ten. Similar to results from dispersal patterns, the cumulative activity space after two weeks at liberty $\left(2.69 \mathrm{~km}^{2}\right)$ scaled approximately to the area of the MM complex $\left(2.75 \mathrm{~km}^{2}\right)$.

Residency

The connectivity matrix indicates the probabilities of fish remaining in the same location as the primary detection (highlighted values along the diagonal of the matrix; Table 2) or moving to a new location (non-highlighted values; Table 2). Movement probabilities indicated that a fish had a $>85 \%$ probability of being detected in the same marsh complex after 24 hours in three of the four marsh complexes (BSM: 86.04\%; MM: 93.34\%; NRM: 98.87\%). Fish within CIM were the least likely to remain in the same complex (connectivity index $=50 \%$). Fish initially detected at any of the non-marsh locations had a greater likelihood of being detected at MM (48.47\%) compared to being detected again at a non-marsh complex location (40.15\%).

In general, when fish were not detected in the same marsh complex after 24 hours from the primary detection, they were most likely to be detected in the MM complex during subsequent detections. There was evidence for a lack of direct linkages (i.e. subsequent detection probabilities equal to zero) between several marsh complexes (MM-NRI, BSM-CIM, and NRMBSM). Finally, none of the fish in this study were detected at either of the two stations located in the northern part of North River (stations 6 and 16), suggesting that tagged fish did not move to marsh complexes in the upper River. Extending the time lag between primary and subsequent
detections resulted in very similar patterns of residency within BSM, MM, and NRM. The likelihood of being detected in the same marsh complex 48 hours and 1 week later remained $>86 \%$ in all three marsh complexes. Conversely, fish originally observed in CIM had zero probability of again being detected in that marsh complex after 1 week. When primary detections were observed in CIM, these individuals were now most likely to be detected in NRM after one week.

DISCUSSION

Patterns of red drum dispersal, activity space, and residency suggested limited movement between similar saltmarsh complexes by a mobile fish during our five-month study. Dispersal and cumulative activity space metrics indicated that there was minimal sustained occupation of areas outside of the MM complex prior to emigration from the entire study array (further supported by fishermen recapture data). Residency analysis also corroborated dispersal and activity-space data; further suggesting limited movement between the marsh complexes we monitored. Thus, our results imply that red drum induce minimal linkages among these spatially separated habitat complexes on a sub-annual scale.

Limited seascape connectivity in this study highlights the potential for these saltmarsh complexes to represent relatively isolated, discrete food webs within the estuary (Sheaves 2009). This runs counter to suggestions that mobile consumers facilitate nutrient exchange within estuaries through consumption and excretion, and may impact primary productivity in adjacent habitats when consumer movement between habitats is high (Allgeier et al. 2013; Hyndes et al. 2014). Rather our results suggest that consumer-driven transfer of nutrients may be primarily a local phenomenon, with relatively tighter recycling within each marsh complex. Additionally, red drum could potentially impose greater predation pressure locally on their prey if movement
away from their preferred marsh complex is limited. Conversely, seasonally high abundances of food resources throughout the lower estuary could provide fitness incentives to limit movement away from MM, or any marsh complex in the lower North River (Dudley and Judy 1973; Williams 1955).

Assigning value to individual habitats and seascapes is an essential component to the management of fish populations and the habitats they use. Preferred habitats, measured by the amount of time fish rely on those habitats and the benefits they provided to the success of the population, weigh heavily when evaluating habitat value (sensu Nagelkerken et al. 2015). Although red drum demonstrated high levels of residency within MM in this study, comparing this marsh complex as a preferred location to the alternative complexes is beyond the scope of this study given a potential bias in releasing all fish within this marsh complex. Nonetheless, we expect that red drum would behave in a similar manner if released in other marsh complexes due to similarities in fauna and habitat (Baillie et al. 2015). The few individuals (three) that moved into one of the alternative marsh complexes for extended periods during the study, with the exception of fish moving to CIM, displayed high residency for their new location. Although two of these fish returned to their initial capture location in NRM, there is little evidence suggesting that red drum movement is influenced by any homing behavior such as that previously documented for some large bodied fish (Taylor et al. 2017). Fourteen of the sixteen individuals initially captured in NRM remained in the MM system during the study and only two out of thirty translocated fish were observed returning to their initial capture location. Reflecting the results observed in this study, other fish in the population would be suggested to maintain high levels of residency within the marsh complex they occupy.

Ontogenetic migrations of red drum generally shift the distribution of 1-3 year-old fish to lower, more saline portions of coastal estuaries (Bacheler et al. 2009b). However, this pattern is not all inclusive as two-year-old fish, equivalent to those used in our study, are still known to occupy low salinity ($<10 \mathrm{ppt}$) waters of North Carolina estuaries (Bacheler et al. 2009a) specifically the upper North River estuary (M. Kenworthy, personal observations). Regardless of expectations that red drum in our study system would move to occupy this region of the estuary, none of the tagged red drum were detected at our two upper estuary stations. Furthermore, only a limited number of fish (four) were detected as far up-estuary as NRM (Fig 1). Our data contribute to the growing consensus in the literature that suggests red drum rarely move upstream as sub-adults (Dresser and Kneib 2007; Bacheler 2009b). Occupation of the upper estuary by similar age class fish is likely a result of individuals either settling in this region and remaining or individuals arriving during spring months when a large portion of the sub-adult population re-enter and distribute within the estuaries (Bacheler et al. 2009b). Connectivity among upper estuary and lower estuary seascapes therefore is likely influenced more by ontogenetic migrations or suggested re-entry of the red drum population into the estuary. The mechanism driving this subpopulation structure deserves further research attention.

Overall, red drum displayed high levels of residency within the MM complex with limited seascape linkages. However, some fish were observed making intermittent excursions between MM and both CIM and BSM, potentially establishing linkages with these other complexes. These excursions almost always occurred during nighttime hours and were short in duration. These movement patterns could reflect foraging excursions to the habitats located between the associated march complexes. For example, the sandflats between MM and BSM contain isolated patches of seagrass, which red drum could be targeting during preferred
crepuscular and nighttime foraging hours (Facendola and Scharf 2012). In comparison, the sandflats between MM and CIM do not contain seagrass patches. This area, located near one of two main channels flowing out of North River, is a potential corridor for crustaceans (crabs and shrimp) emigrating out of the upper North River estuary at night, and could be serving as a source of food. Therefore, these excursions could facilitate linkages within the estuarine seascape via nutrient exchange between unstructured habitats surrounding MM and the MM complex, similar to that observed in other ecosystems (e.g. coral reefs) (Beets et al. 2003), even if red drum are not consistently connecting distinct marsh complexes within this estuary. Following the flow of energy within coastal ecosystems is important for understanding the values and contributions of individual towards productivity within an estuary (Heck et al. 2008). Although these assumptions are speculative without direct measurements of nutrient exchange within the system, identifying the movement behaviors of fish with the capacity to facilitate this nutrient exchange is critical to identifying potential energy transport dynamics within this estuary.

The spatial and temporal scale at which ecological processes are observed can influence our understanding of dynamics within an ecosystem (Levine1992). For instance, over the time frame of this study, the distance between marsh complexes could play a crucial role in assessing linkages among them (i.e., marshes in our study were relatively far apart and therefore connectivity was low). However, considering previously reported daily movements for red drum ($3.4 \pm 0.6 \mathrm{~km}$; Dance and Rooker 2015), we do not anticipate that this drove our results. On average, the straight-line distance between marsh complexes in our array was less than two kilometers, except for the distances between BSM and both CIM and NRM, which were each ~ 5 km . We do acknowledge, however, that the location of MM in the middle of the study array
could have contributed to the higher degree of connectivity of this marsh complex relative to the other complexes we monitored.

Identifying variations in spatial and temporal movement patterns of animals can refine our understanding about life history patterns of fish and the value of the habitats they utilize (Secor et al. 2001; Drymon et al 2014; McMahon et al. 2012). Specifically, regional (upper vs lower estuary) and habitat-specific (marsh complexes) isolation of fish groups could have implications for population sampling regimes, identification of essential fish habitats for subadult red drum, and management of commercial and recreational fishing efforts. Our results support previous studies suggesting that individual red drum express high residency in specific locations (Dresser and Kneib 2007; Bacheler et al. 2009b; Reyier et al. 2011; Dance and Rooker 2015). Even fish that moved out of the study array did not appear to disperse with any apparent regularity. The lack of any defined relationship between time at liberty and distance from where they were released suggests that over the course of that time frame, those individuals likely established temporary residency in other locations along the route to the where they were recaptured. Future research could build off this study to further explore the dynamics of estuarine scale seascape linkages (e.g. between lower and upper estuary) as well as marsh complex specific residency patterns.

ACKNOWLEDGEMENTS

We would like to thank Abigail Poray, Chris Baillie, Michelle Brodeur, Sarah Coleman, and Erin Voigt for their help in the field. We are grateful to Lee Willis and the Red Fish Action Series, as well as Adam Tyler, in helping with fish collections. We thank Dr. Craig Harms for providing
training on implanting acoustic transmitters in fish. This work was funded by the North Carolina Marine Resources Fund. (Institutional Animal Care and Use Committee ID:241.0-A.)

REFERENCES

Able, K.W., Vivian, D.N., Petruzzelli, G., and Hagan, S.M. 2012. Connectivity Among Salt Marsh Subhabitats: Residency and Movements of the Mummichog (Fundulus heteroclitus). Estuaries and Coasts 35(3): 743-753. doi:10.1007/s12237-011-9471-x.

Afonso, P., Fontes, J., Holland, K.N., and Santos, R.S. 2009. Multi-scale patterns of habitat use in a highly mobile reef fish, the white trevally Pseudocaranx dentex, and their implications for marine reserve design. Mar. Ecol. Prog. Ser. 381(2): 273-286. doi:10.3354/meps07946.

Allgeier, J.E., Yeager, L.A., and Layman, C.A. 2013. Consumers regulate nutrient limitation regimes and primary production in seagrass ecosystems. Ecology 94(2): 521-529. doi:10.1890/12-1122.1

Bacheler, N.M., Paramore, L.M., Buckel, J.A., and Hightower, J.E. 2009. Abiotic and biotic factors influence the habitat use of an estuarine fish. Mar. Ecol. Prog. Ser. 377: 263-277. doi:10.3354/meps07805.

Bacheler, N.M., Paramore, L.M., Burdick, S.M., Buckel, J. a., and Hightower, J.E. 2009. Variation in movement patterns of red drum (Sciaenops ocellatus) inferred from conventional tagging and ultrasonic telemetry. Fish. Bull. 107: 405-419.

Baggio, J. a., Salau, K., Janssen, M. a., Schoon, M.L., and Bodin, Ö. 2011. Landscape connectivity and predator-prey population dynamics. Landsc. Ecol. 26: 33-45. doi:10.1007/s10980-010-9493-y.

Baillie, C.J., Fear, J.M., and Fodrie, F.J. 2015. Ecotone Effects on Seagrass and Saltmarsh Habitat Use by Juvenile Nekton in a Temperate Estuary. Estuaries and Coasts 38: 14141430. doi:10.1007/s12237-014-9898-y.

Barbour, A.B., Adams, A.J., and Lorenzen, K. 2014. Size-based, seasonal, and multidirectional movements of an estuarine fish species in a habitat mosaic. Mar. Ecol. Prog. Ser. 507: 263276. doi:10.3354/meps10837.

Beets, J., Muehlstein, L., Haught, K., and Schmitges, H. 2003. Habitat Connectivity In Coastal Environments: Patterns and Movements of Caribbean Coral Reef Fishes With Emphasis On Bluestriped Grunt. Gulf and Car. Res. 14(2): 29-42. doi:10.18785/gcr.1402.03.

Berkström, C., Gullström, M., Lindborg, R., Mwandya, A.W., Yahya, S.A.S., Kautsky, N., and Nyström, M. 2012. Exploring "knowns" and "unknowns" in tropical seascape connectivity with insights from East African coral reefs. Estuar. Coast. Shelf Sci. 107: 1-21. Elsevier Ltd. doi:10.1016/j.ecss.2012.03.020.

Bolden, S.K. 2000. Long-distance movement of a Nassau grouper (Epinephelus striatus) to a spawning aggregation in the central Bahamas. Fish. Bull. 98(3): 642-645.

Boström, C., Pittman, S.J., Simenstad, C., and Kneib, R.T. 2011. Seascape ecology of coastal biogenic habitats: Advances, gaps, and challenges. Mar. Ecol. Prog. Ser. 427: 191-217. doi:10.3354/meps09051.

Dance, M.A., and Rooker, J.R. 2015. Habitat- and bay-scale connectivity of sympatric fishes in an estuarine nursery. Estuar. Coast. Shelf Sci. 167: 447-457. Elsevier Ltd. doi:10.1016/j.ecss.2015.10.025.

Dresser, B.K., and Kneib, R.T. 2007. Site fidelity and movement patterns of wild subadult red drum, Sciaenops ocellatus (Linnaeus), within a salt marsh-dominated estuarine landscape. Fish. Manag. Ecol. 14: 183-190. doi:10.1111/j.1365-2400.2007.00526.x.

Drymon, J.M., Ajemian, M.J., and Powers, S.P. 2014. Distribution and dynamic habitat use of young bull sharks Carcharhinus leucas in a highly stratified Northern Gulf of Mexico estuary. PLoS One 9(5): 1-12. doi:10.1371/journal.pone.0097124.

Dudley, D.L., and Judy, M.H. 1973. Seasonal Abundance and Distribution of Juvenile Blue Crabs in Core Sound N.C. 1965-68. Chesap. Sci. 14(1): 51-55. doi:10.2307/1350703

Ergon, T., and Gardner, B. 2013. Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data. Methods Ecol. Evol.: 1-10. doi:10.1111/2041-210X.12133.

Facendola, J.J., and Scharf, F.S. 2012. Seasonal and Ontogenetic Variation in the Diet and Daily Ration of Estuarine Red Drum as Derived from Field-Based Estimates of Gastric Evacuation and Consumption. Mar. Coast. Fish. 4(1): 546-559. doi:10.1080/19425120.2012.699018.

Fodrie, F.J., Yeager, L.A., Grabowski, J.H., Layman, C.A., Sherwood, G.D., and Kenworthy, M.D. 2015. Measuring individuality in habitat use across complex landscapes: approaches,
constraints, and implications for assessing resource specialization. Oecologia 178(1): 7587. Springer Berlin Heidelberg. doi:10.1007/s00442-014-3212-3.

Hammerschlag, N., Heithaus, M.R., and Serafy, J.E. 2010. Influence of predation risk and food supply on nocturnal fish foraging distributions along a mangrove - seagrass ecotone. Mar. Ecol. Prog. Ser. 414: 223-235. doi:10.3354/meps08731.

Heck Jr, K.L., Carruthers, T.J.B., Duarte, C.M., Randall, A., Kendrick, G., Orth, R.J., and Williams, S.W. 2008. Trophic Transfers from Seagrass Meadows Subsidize Diverse Marine and Terrestrial Consumers. Ecosystems 11: 1198-1210. doi:10.1007/s10021-008-9155-y.

Hyndes, G.A., Nagelkerken, I., Mcleod, R.J., Connolly, R.M., Lavery, P.S., and Vanderklift, M.A. 2014. Mechanisms and ecological role of carbon transfer within coastal seascapes. Biol. Rev. Camb. Philos. Soc. 89: 232-254. doi:10.1111/brv.12055.

Ketchum, J.T., Hearn, A., Klimley, A.P., Peñaherrera, C., Espinoza, E., Bessudo, S., Soler, G., and Arauz, R. 2014. Inter-island movements of scalloped hammerhead sharks (Sphyrna lewini) and seasonal connectivity in a marine protected area of the eastern tropical Pacific. Mar. Biol. 161(4): 939-951. doi:10.1007/s00227-014-2393-y.

Levin, S.A. 1992. The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture Author(s): Simon A. Levin Source: Ecology 73(6): 1943-1967. doi:10.2307/1941447.

McCauley, D.J., Young, H.S., Dunbar, R.B., Estes, J. a., Semmens, B.X., and Micheli, F. 2012. Assessing the effects of large mobile predators on ecosystem connectivity. Ecol. Appl. 22(6): 1711-1717. doi:10.1890/11-1653.1.

Martin, C.W., Fodrie, F.J., Heck, K.L., and Mattila, J. 2010. Differential habitat use and antipredator response of juvenile roach (Rutilus rutilus) to olfactory and visual cues from multiple predators. Oecologia 162(4): 893-902. doi:10.1007/s00442-010-1564-x.

McMahon, K.W., Berumen, M.L., and Thorrold, S.R. 2012. Linking habitat mosaics and connectivity in a coral reef seascape. Proc. Natl. Acad. Sci. 109: 15372-15376. doi:10.1073/pnas. 1206378109 .

Meyer, J.L., Schultz, E.T., and Helfman, G.S. 1983. Fish Schools: An Asset to Corals. Science. 220(4601): 1047-1049. doi:10.1126/science.220.4601.1047

Nagelkerken, I., Sheaves, M., Baker, R., and Connolly, R.M. 2015. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish. 16(2): 362-371. doi:10.1111/faf. 12057.

Olds, A.D., Pitt, K.A., Maxwell, P.S., and Connolly, R.M. 2012. Synergistic effects of reserves and connectivity on ecological resilience. J. Appl. Ecol. 49(6): 1195-1203. doi:10.1111/jpe. 12002 .

Polis, G.A., Anderson, W.B., and Holt, R.D. 1997. TOWARD AN INTEGRATION OF LANDSCAPE AND FOOD WEB ECOLOGY: The Dynamics of Spatially Subsidized Food Webs. Annu. Rev. Ecol. Syst. 28: 289-316. doi:10.1146/annurev.ecolsys.28.1.289

Popple, I.D., and Hunte, W. 2005. Movement patterns of Cephalopholis cruentata in a marine reserve in St Lucia, W.I., obtained from ultrasonic telemetry. J. Fish Biol. 67: 981-992. doi:10.1111/j.0022-1112.2005.00797.x.

Reyier, E. a., Lowers, R.H., Scheidt, D.M., and Adams, D.H. 2011. Movement patterns of adult red drum, Sciaenops ocellatus, in shallow Florida lagoons as inferred through autonomous acoustic telemetry. Environ. Biol. Fishes 90: 343-360. doi:10.1007/s10641-010-9745-3.

Rosenblatt, A.E., and Heithaus, M.R. 2011. Does variation in movement tactics and trophic interactions among American alligators create habitat linkages? J. Anim. Ecol. 80: 786-798. doi:10.1111/j.1365-2656.2011.01830.x.

Scharf, F.S., and Schlight, K.K. 2000. Feeding Habits of Red Drum (Sciaenops ocellatus) in Galveston Bay, Texas: Seasonal Diet Variation and Predator-Prey Size Relationships. Estuaries 23(1): 128. doi: 10.2307/1353230.

Secor, D.H., Rooker, J.R., Zlokovitz, E., and Zdanowicz, V.S. 2001. Identification of riverine, estuarine, and coastal contingents of Hudson River striped bass based upon otolith elemental fingerprints. Mar. Ecol. Prog. Ser. 211(1968): 245-253. doi:10.3354/meps211245.

Sheaves, M. 2009. Consequences of ecological connectivity: the coastal ecosystem mosaic. Mar. Ecol. Prog. Ser. 391: 107-115. doi:10.3354/meps08121.

Simpfendorfer, C. a, Heupel, M.R., and Hueter, R.E. 2002. Estimation of short-term centers of activity from an array of omnidirectional hydrophones and its use in studying animal movements. Can. J. Fish. Aquat. Sci. 59: 23-32. doi:10.1139/f01-191.

Williams, A.B. 1955. A Contribution to the Life Histories of Commercial Shrimps (Penaeidae) in North Carolina. Bull. Mar. Sci. 5(2): 116-146.

TABLES
Table 1. Summary of 34 red drum tagged with acoustic transmitters and tracked within the array of VEMCO hydrophones within the Back Sound Estuary in central North Carolina. Fish ID's marked with an asterisk are fish that were recaptured by fishermen. Capture location indicates where fish were originally caught for this study: Jarret Bay (JB), North River Marsh (NRM), Middle Marsh (MM), Carrot Island Marsh (CIM), Northern North River (NNR).

Fish ID	Capture Location	Release Date	Total Length (mm)	Weight (kg)	Total Detections	Stations Visited	Marsh Complexes Visited	Days at Liberty (acoustics)	Days at Liberty (recapture)	Distance to recapture (km)
RD01	JB	7/13/2011	488	1.1	249	10	3	4	-	-
RD02	JB	7/14/2011	490	1.3	9	1	1	3	-	-
RD03*	JB	7/14/2011	490	1.4	0	0	0	0	420	5.13
RD04	JB	7/14/2011	480	1.1	977	2	1	23	-	-
RD05	JB	7/15/2011	514	1.6	396	4	2	15	-	-
RD06	JB	7/15/2011	515	1.5	15	1	1	3	-	-
RD07	JB	7/15/2011	503	1.3	126	5	1	126	-	-
RD08	NRM	8/16/2011	559	2	550	11	3	76	-	-
RD09	NRM	8/16/2011	520	1.6	499	1	1	37	-	-
RD10	NRM	8/16/2011	365	0.6	101	1	1	35	-	-
RD11	NRM	8/16/2011	505	1	151	4	1	28	-	-
RD12*	NRM	8/16/2011	340	0.6	0	0	0	0	425	14.25
RD13	JB	9/3/2011	565	2	14140	6	2	62	-	-
RD14	NRM	9/3/2011	341	0.6	138	4	2	30	-	-
RD15	NRM	9/13/2011	775	4	2159	9	2	46	-	-
RD16	NRM	9/13/2011	755	4.5	38	3	1	1	-	-
RD17*	NRM	9/13/2011	549	1.6	2610	8	3	34	2	0
RD18*	NRM	9/30/2011	563	1.6	1199	5	1	32	39	38
RD19	MM	9/30/2011	556	1.5	896	2	1	43	-	-
RD20*	CIM	9/30/2011	568	2	736	7	2	49	54	2.88
RD21	NRM	9/30/2011	600	2.3	2316	4	1	26	-	-
RD22	MM	10/4/2011	610	2.2	636	5	2	31	-	-
RD23	NRM	10/4/2011	562	1.6	110	6	3	5	-	-
RD24*	NNR	10/4/2011	645	2.6	1361	7	2	49	50	0
RD25*	NRM	10/4/2011	612	2.3	301	9	2	7	7	5.86
RD26	NRM	10/4/2011	585	1.9	700	6	2	48	-	-
RD27	JB	10/6/2011	600	2	1128	7	2	21	-	-
RD28	JB	10/6/2011	612	2.3	6786	10	2	75	-	-
RD29	MM	10/6/2011	556	1.6	193	4	2	52	-	-
RD30*	NNR	10/6/2011	638	2.8	105	3	1	7	10	9.21
RD31	NRM	10/6/2011	555	1.5	1	1	1	1	-	-
RD32	NRM	10/10/2011	550	1.6	12721	9	3	70	-	-
RD33*	CIM	10/10/2011	602	2.2	314	2	2	25	179	1.83
RD34	MM	10/10/2011	534	1.5	325	7	3	43	-	-

C		N	Subsequent Detection Location (=> 1 week)				
			BSM	CIM	MM	NRM	NonMarsh
	BSM	2457	86.57	0.00	12.70	0.00	0.73
	CIM	527	0.00	0.00	29.41	70.40	0.19
	MM	43743	1.89	1.39	88.71	0.94	7.07
	NRM	1805	0.00	0.00	0.00	100.00	0.00
	Non-Marsh	1684	14.55	0.00	67.52	0.00	17.93

FIGURES

Figure 1: Map of the hydrophone observation network labeled with station identification numbers. Hydrophones (marked by black dots) for associated marsh complexes are contained in individual labeled circles. Locations included are Northern North River (NNR), North River Marsh (NRM), Carrot Island Marsh (CIM), Middle Marsh (MM), and Back Sound Marsh (BSM). Map was produced using ArcGis for Desktop (ArcMap 10.5). Shoreline shapefiles obtained from ESRI and the North Carolina Department of Environmental Quality (NCDEQ).

Figure 2: Dispersal patterns for red drum throughout the study based on distributions of the three metrics measured, (total detections, number of fish, and relative occurrence) at hydrophones of known distances from the release location. Panels represent A) theoretical expectations of weekly detection distribution change through time; B) actual total detection distribution curves for each week of the study; C) weekly range of distribution values calculated from distribution curves for each metric used; and D) dispersal rates calculated for the three detection metrics.

Figure 3: Red drum activity space measured through time. Panels represent A) two theoretical patterns of cumulative activity space growth through time indicating that fish either continue to explore new areas over time (solid line) or continue to occupy the same areas repeatedly (dashed line); B) weekly measurements of the radius of the activity space and C) measured cumulative activity space growth throughout the 10 weeks of the study.

Figure 1.

Figure 2.

Figure 3.

