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Abstract. Like many species, movement patterns of southern elephant seals (Mirounga
leonina) are being influenced by long-term environmental change. These seals migrate up to
4,000 km from their breeding colonies, foraging for months in a variety of Southern Ocean
habitats. Understanding how movement patterns vary with environmental features and how
these relationships differ among individuals employing different foraging strategies can provide
insight into foraging performance at a population level. We apply new fast-estimation tools to
fit mixed effects within a random walk movement model, rapidly inferring among-individual
variability in southern elephant seal environment–movement relationships. We found that seals
making foraging trips to the sea ice on or near the Antarctic continental shelf consistently
reduced speed and directionality (move persistence) with increasing sea-ice coverage but had
variable responses to chlorophyll a concentration, whereas seals foraging in the open ocean
reduced move persistence in regions where circumpolar deep water shoaled. Given future cli-
mate scenarios, open-ocean foragers may encounter more productive habitat but sea-ice for-
agers may see reduced habitat availability. Our approach is scalable to large telemetry data sets
and allows flexible combinations of mixed effects to be evaluated via model selection, thereby
illuminating the ecological context of animal movements that underlie habitat usage.

Key words: correlated random walk; habitat; latent variable; random effects; southern elephant seals;
spatial ecology; telemetry; template model builder.

INTRODUCTION

Long-term environmental change is influencing south-

ern elephant seal (Mirounga leonina) populations, with

their trajectories linked to the success of individuals’ for-

aging migrations (Hindell et al. 2017). These seals migrate

long distances from breeding colonies to forage, encoun-

tering a range of environmental conditions during many

months at sea (Hindell et al. 2017). Foraging strategies

vary among seals and are often associated with open

ocean or Antarctic continental shelf habitats, with individ-

uals showing fidelity to these over several years (Authier

et al. 2012). Understanding how seal movements vary

with environmental conditions and how these relation-

ships may differ among individuals can yield insight into

population-level foraging performance and habitat usage.

Yet, quantifying how individuals differently respond to

their environment is a challenge due to a paucity of acces-

sible analytical tools that can efficiently account for

among-individual differences in movement patterns.

Spatial habitat modeling approaches often are used to

infer habitat usage and preference from animal move-

ment data (Aarts et al. 2008). Most of these approaches

infer preference or selectivity from a combination of

observed (presence) and simulated (pseudo-absence)
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locations (Aarts et al. 2008) but are blind to the ecologi-

cal mechanisms, such as density dependence (McLough-

lin et al. 2010), movement, and individual behavior

(Bestley et al. 2013, Auger-M�eth�e et al. 2017), underly-

ing those preferences.

Although high individual variation is common in studies

of animal movement, models that explicitly account for

among-individual variability in inferred movement–envi-

ronment relationships are rare (e.g., McClintock et al.

2013). These random effects or hierarchical models can be

computationally demanding, inhibiting realistic analysis of

ever-growing animal movement data sets. There is a need

for efficient movement modeling approaches, accessible to

ecologists, where responses to environmental, physiologi-

cal, and/or social predictors can be inferred using flexible

combinations of fixed and random terms (mixed effects) to

account for variability among moderate to large numbers

(tens to hundreds) of individuals.

We present a mixed-effects modeling approach for ani-

mal movement data that takes advantage of new fast-

estimation tools. Our model estimates time-varying

movement persistence (autocorrelation in speed and

directionality) along animal movement trajectories. We

focus here on showing how the approach can be used to

infer relationships between animal movement patterns

and the environmental features they encounter. The

model can be fit rapidly and flexibly with single or multi-

ple random effects, enabling inference across individuals

and assessment of the extent to which relationships may

differ among them. We apply our approach to infer how

southern elephant seals employing different foraging

strategies, ice-bound vs. open ocean (pelagic) trips, may

respond differently to their environment. This represents

a step towards bridging models of animal movement

and habitat preference (e.g., Avgar et al. 2016), which in

future may converge in a more complete framework.

METHODS

We build our modeling approach in three steps. First,

we define a basic model that can be used to estimate

changes in move persistence along an animal’s observed

trajectory. Second, we expand the model to infer how

these changes may be related to environmental variables.

Any combination of other extrinsic or intrinsic variables

could be modelled, provided they are measured at loca-

tions and/or times consistent with the telemetry data.

Third, we add random effects to the model to enable

inference about how these movement–environment rela-

tionships may differ among individual animals.

Time-varying move persistence

We focus on estimating the persistence (sensu Patlak

1953) of consecutive pairs of animal relocations (steps)

along an entire movement trajectory. Move persistence,

which captures autocorrelation in both speed and direc-

tion, has been modelled as an average across entire

movement trajectories (Jonsen 2016), indicating whether

that trajectory is, on average, uncorrelated (i.e., a simple

random walk), correlated (i.e., a correlated random

walk), or somewhere in between. Allowing move persis-

tence to vary along a trajectory means it can be used as

an index of behavior (Breed et al. 2012), identifying seg-

ments of relatively low or high persistence

dt ¼ ctdt�1 þ gt (1)

where displacements dt ¼ xt � xt�1 and dt�1 ¼ xt�1�xt�2

are the changes in an animal’s location x at times t and

t� 1. The random variable gt ¼ Nð0;RÞ, with variance–

covariance matrix R specifying the magnitude of variabil-

ity in the two-dimensional movements. ct is the time-vary-

ing move persistence between displacements dt and dt�1.

ct is continuous-valued between 0 (low move persistence;

Appendix S1: Fig. S1a, c) and 1 (high move persistence;

Appendix S1: Fig. S1b, c). To avoid potential parameter

identifiability issues between ct and R, we set the covari-

ance term in R to 0 but this constraint could be relaxed to

better account for correlation in movements in the east-

west and north-south directions. We assume ct follows a

simple random walk in logit space

logitðctÞ ¼ logitðct�1Þ þ et (2)

where the random variable et ¼ Nð0;rcÞ represents vari-
ability in move persistence along an animal’s track.

This process model (Eqs. 1 and 2) can be fit (1) to

location data with minimal error, (2) to state-space fil-

tered location data, or (3) coupled with an observation

model for error-prone data. We focus on the second case

with locations occurring at regular time intervals, but

this could be relaxed (e.g., Auger-M�eth�e et al. 2017).

The time-varying move persistence model can be used

to objectively identify changes in movement pattern.

Here ct forms the behavioral index but unlike switching

models (e.g., Michelot et al. 2017), these changes occur

along a continuum (0–1) rather than as switches between

discrete states.

Move persistence in relation to environment

To make inferences about the factors associated with

move persistence, we can model ct as a linear function of

environmental predictors measured at each location or

time. With this approach, we replace the random walk

on logit(ct) (Eq. 2) with a linear regression of covariates

on logit(ct)

logitðctÞ ¼ b0 þ b1mt;1 þ � � � þ bnmt;n þ et (3)

where b0, b1; . . .; bn are the fixed intercept and regression

coefficients, mt;1; . . .;mt;n are the predictor variables, and

et ¼ Nð0;rcÞ are the random errors. This model can be

fit to a single animal track, or to multiple tracks pooled

together. Typically, we wish to make inference across
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multiple individual tracks and assess the extent to which

relationships may differ among individuals.

Incorporating individual variability

To account for variation among individual responses

to environment, we can expand Eq. 3 to a mixed-effects

regression of covariates on logit(ct), within the behav-

ioral model

logitðct;kÞ ¼ ðb0 � b0;kÞ þ ðb1 � b1;kÞmt;1;k

þ � � � þ ðbn � bn;kÞmt;n;k þ et
(4)

where k indexes individual animals, the b’s are the fixed

intercept and slope terms as in Eq. 3, b0;k is a random

deviation for the intercept of the kth individual,

b1;k; . . .; bn;k are random deviations for the slopes of the

kth individual and mt;1;k; . . .;mt;n;k are the covariates

measured along the kth individual’s track. As in Eq. 3,

the random variable et is the fixed effects errors. We use

an unstructured covariance matrix for the random effects.

Estimation

In principle, any combination of fixed and random

effects can be specified within the movement model

described in Eqs. 1 and 4. Here we use TMB to fit the

move persistence models (Auger-M�eth�e et al. 2017). The

TMB package allows complex latent variable mixed

effects models to be specified in C++ and fit efficiently

via maximum likelihood using reverse-mode auto-differ-

entiation and the Laplace approximation (Kristensen

et al. 2016). The Laplace approximation avoids the need

for high-dimensional integration, which massively

speeds calculation of the marginal likelihood. Compar-

ing Bayesian and TMB versions of a location-filtering

model, Auger-M�eth�e et al. (2017) found a 30-fold

decrease in computation time for the TMB fit with no

loss of accuracy. All code for fitting these models in R is

available online.7,8

Data and analysis

We use Argos telemetry data collected from 24 adult

female southern elephant seals. The seals were captured

at Iles Kerguelen (49.35° S, 70.22° E) between late Jan-

uary and mid-March in 2009 and 2013–2015, at the end

of their annual molt. Animal handling and instrument

attachment details can be found elsewhere (McMahon

et al. 2008). These data were sourced from the Australian

Integrated Marine Observing System (IMOS) deploy-

ments at Iles Kerguelen and are publicly available (http://

imos.aodn.org.au). The tracks comprise a mixture of sea

ice foraging trips on or near the Antarctic continental

shelf (12 seals; Appendix S2: Fig. S1a) and entirely pela-

gic foraging trips in sub-Antarctic waters (12 seals;

Appendix S2: Fig. S1b). Prior to fitting the move persis-

tence models, we used a TMB implementation of a state-

space model (SSM; Auger-M�eth�e et al. 2017) to filter the

observed locations, accounting for error in the Argos

telemetry, and to regularize the filtered locations to a 12-

h time interval (see Appendix S2 for details).

We fit the move persistence model (mpm; Eqs. 1 and

2) to the state-space filtered seal tracks. Fitting to fil-

tered tracks accounts for some of the uncertainty inher-

ent in telemetry data but potential effects of residual

location uncertainty should be examined post-analysis.

To ascertain whether ct adequately captures changes in

the seals’ movement patterns, we compare the ct-based

behavioral index to discrete behavioral states estimated

from a switching state-space model (Jonsen 2016) fitted

using the bsam R package. Details on how we fit the

bsam model are in Appendix S3. We then fit the move

persistence mixed effects model (mpmm; Eqs. 1 and 4)

to the same state-space filtered seal tracks to infer how

the seals’ movement behavior may be influenced by envi-

ronmental features encountered during their months-

long foraging trips. In both analyses, we fitted separate

models to the ice and pelagic foraging trips. For the

mpmms, we specified mixed effects models with random

intercept and slopes to account for variability among

individual seals. We fit all possible combinations of fixed

and random effects and use AIC and likelihood ratios to

find the best supported model for each set of tracks.

We examined three potential environmental correlates

of elephant seal move persistence: sea ice cover (the pro-

portion of time the ocean is covered by ≥85% ice; ice),

chlorophyll a concentration (near-surface summer clima-

tology in mg/m3; chl) and the salinity difference between

600 and 200 m depths (based on winter climatology aver-

aged over 1955–2012 in psu; saldiff). These variables are

known predictors of elephant seal habitat preference (Hin-

dell et al. 2017) and foraging (C. R. McMahon et al., un-

published data). Data sources and processing details are

provided in Appendix S3. The environmental data values

were extracted at each state-space filtered location. As

saldiff is only calculated in areas where the bathymetry is

deeper than 600 m this covariate is only relevant to the

pelagic foragers (Appendix S4: Fig. S1). Similarly, ice was

excluded from the models fit to seals making pelagic for-

aging trips as they spent little time in regions with sea-ice

cover (Appendix S3: Fig. S1; Appendix S4: Fig. S1). R

code for the model selection is in Appendix S5.

RESULTS

Time-varying move persistence (mpm)

The ice-bound seals exhibited similar movement pat-

terns (Fig. 1a), with high move persistence on their out-

bound migrations and lower move persistence near the

Antarctic continent in areas of higher sea-ice coverage.

7 https://doi.org/10.5281/zenodo.1489317
8 https://doi.org/10.5281/zenodo.1489319
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Return migrations to Iles Kerguelen were more variable,

with some individuals moving persistently and others

meandering, possibly foraging en route. Pelagic foraging

seals (Fig. 1b) migrated approximately 2,000 km either

east or west of Iles Kerguelen in relatively persistent fash-

ion. Less persistent movements occurred at the distal ends

of these migrations, although seals travelling to the west of

Iles Kerguelen had markedly less persistent and slower

movements, suggestive of more intense search and forag-

ing, compared to those travelling to the east (Fig. 1b).

The ct-derived behavioral index is comparable but not

identical to the discrete behavioral states estimated from

the bsam switching state-space model (SSSM)

(Appendix S3: Fig. S1). The ct index captured the same

changes in movement pattern but the magnitudes of

those changes generally were smaller. Fitting the move

persistence model, including the SSM filtering step, was

almost 500 times faster than fitting the bsam SSSM

(Appendix S3: Table S1).

Individual variability in move-persistence–environment

relationships (mpmm)

Sea-ice strategy.—The best supported model for ele-

phant seals foraging in the sea-ice zone included fixed

and random coefficients for both the proportion of ice

cover and chlorophyll a concentration (Table 1). On

average, seals had movements that became less persistent

or directed as sea-ice cover and chlorophyll a concentra-

tion increased (Fig. 2a, b). Among individuals, the rela-

tionship with ice was consistently negative but the

degree to which move persistence declined differed

markedly (Fig. 2a), whereas the relationship with chl

was highly variable with four individuals having strong

negative relationships and the rest weak to moderately

positive relationships (Fig. 2b; Z = �1.04, P = 0.3).

Using the fixed effects from the best model, the predic-

tion of ct over the spatial domain implies that seal move

persistence changes, suggestive of search and foraging

FIG. 1. Maps of SSM-filtered southern elephant seal tracks originating from Iles Kerguelen. (a) Ice-bound foraging trips were
predominantly directed to locations south of 60° S, whereas (b) pelagic foraging trips are predominantly north of 60° S. Each loca-
tion is colored according to its associated move persistence (ct) estimated from the move persistence model.
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behaviors, south of 65° S (south of the black contour

line, Fig. 2d).

Pelagic strategy.—The best supported model for ele-

phant seals foraging in the open ocean included fixed

and random coefficients for the salinity difference

between 600 and 200 m depths (saldiff, Table 1). On

average, seals had movements that became strongly less

persistent as the salinity difference decreased (Fig. 2c).

Among individuals, this relationship was moderately

variable with two individuals exhibiting relatively small

changes in move persistence over the full range of

saldiff (Fig. 2c). The spatial prediction of ct implies

that animals generally adopt a movement pattern sug-

gestive of search or forage once beyond the mid-lati-

tudes near Kerguelen Island where saldiff is largest

(i.e., south of the black contour line, in oceanic waters,

or north in the vicinity of the Subantarctic Front;

Fig. 2e).

DISCUSSION

Southern elephant seals employing specific foraging

strategies respond to different environmental factors.

Our modeling approach clearly identifies these

responses, including strong decreases in move persis-

tence associated with increasing ice coverage (sea-ice for-

agers) and decreasing salinity difference (pelagic

foragers). Move persistence responses were relatively

consistent among seals adopting either a sea-ice or a

pelagic foraging strategy, but substantial individual vari-

ability in foraging location was evident.

Those animals whose forage migrations went towards

the Antarctic continent showed low move persistence

once in areas of higher sea ice coverage. Some individu-

als also showed positive responses to elevated chloro-

phyll a concentrations, targeting productive coastal

polynya areas (Labrousse et al. 2018); however this was

not a consistent response with many others foraging far-

ther offshore in the marginal sea-ice zone where chloro-

phyll a concentrations are lower (Appendix S4: Fig. S1).

This pattern might be suggestive of density-dependent

habitat selection, whereby seals distribute themselves so

that foraging success is consistent across habitats of dif-

fering value (Morris 2011).

For the pelagic foraging animals, our results indicated

seals moved persistently away from the region in which

salty Circumpolar Deep Water was confined to depths

(i.e., where the salinity difference was highly positive).

The majority then adopted a lower move persistence in

areas where the Circumpolar Deep Water shoaled (salin-

ity difference closer to zero, southern areas) with four

animals targeting the vicinity of the Subantarctic Front

(salinity difference negative) where cold, fresh Antarctic

Intermediate Water subducts saline Subantarctic surface

waters (northwestern areas, Appendix S4: Fig. S1).

Future climate scenarios project stronger westerly

winds, leading to intensified ocean overturning circulation

(Gao et al. 2018). With increased upwelling of nutrient-

rich Circumpolar Deep Water, we might expect enhanced

near-surface ocean productivity to benefit pelagically for-

aging southern elephant seals in future. Expectations for

sea-ice foraging seals are highly uncertain due to complex

physical processes occurring over the Antarctic

TABLE 1. Model rankings by the change in the Akaike information criterion (DAIC) and likelihood ratios (LR) for the move
persistence mixed effects model’s (mpmm) fit to the 12 sea-ice and 12 pelagic foraging seals.

Strategy Model formula df DAIC LR Time (s)

Sea ice ~ ice + chl + (ice + chl | id) 12 �9,954.21 �9,978.21 4.76

~ ice + chl + (chl | id) 9 0.78 6.78 3.61

~ ice + chl + (1 | id) 7 21.06 31.06 4.17

~ ice + (1 | id) 6 21.08 33.08 2.63

~ ice + chl + (ice | id) 9 23.59 29.59 5.76

~ ice + (ice | id) 8 24.14 32.14 4.55

~ chl + (chl | id) 8 219.74 227.74 4.09

~ chl + (1 | id) 6 245.16 257.16 3.48

~ 1 + (1 | id) 5 339.28 353.28 2.79

Pelagic ~ saldiff + (saldiff | id) 8 �13,897.26 �13,913.26 3.87

~ saldiff + chl + (saldiff | id) 9 1.68 �0.32 4.96

~ saldiff + chl + (chl | id) 9 3.25 1.25 3.97

~ saldiff + chl + (1 | id) 7 29.81 31.81 4.04

~ saldiff + (1 | id) 6 36.35 40.35 3.21

~ chl + (chl | id) 8 51.37 51.37 4.54

~ chl + (1 | id) 6 107.41 111.41 4.19

~ 1 + (1 | id) 5 129.93 135.93 2.34

~ saldiff + chl + (saldiff + chl | id) 12 NA NA 6.02

Notes: Absolute AIC and deviance for the best ranked model are on the first rows. All other DAIC and LR values are relative to
these values. Time is the computation time to convergence. Random effects are in parentheses. chl, a concentration; ice, The predic-
tor variables fit are sea ice cover; id, individual animal identifier; NA, model failed to converge; saldiff, salinity difference between
600 and 200 m.

January 2019 MOVEMENT RESPONSES TO ENVIRONMENT Article e02566; page 5
R

e
p
o
r
ts



FIG. 2. Fixed (red) and random (blue) effects relationships between move persistence ct and (a) the proportion of ice cover (ice)
and (b) chlorophyll a concentration (chl) for ice-foraging seals and (c) between ct and the salinity difference (saldiff) between 600
and 200 m for pelagic foraging seals. All three panels display both random intercept and slopes, as per the best ranked models in
Table 1. Spatial predictions of ct based on the fixed effect coefficients for the best fitting models for ice foraging seals for (d) ice-
foraging seals and (e) pelagic-foraging seals. The ct = 0.75 contour (black line) is displayed to aid delineation of predicted high
move persistence (ct[ 0:75; green–yellow) and low move persistence regions (ct � 0:75; green–blue). The southern boundaries of
the Antarctic Circumpolar Current (d) and the Subantarctic Front (e) are displayed for reference (white lines).
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continental shelf. However, projections of reduced sea-ice

extent and duration may lead to reduced availability of

foraging and/or resting habitat.

While the ultimate source of observed individual differ-

ences in movement–environment relationships is often

unclear, three non-exclusive explanations seem likely. First,

we often use relatively few predictors and these may indi-

rectly or imperfectly represent the proximate influences to

which predators are actually responding (i.e., prey density

and/or distribution). This may inflate apparent individual

differences in predator movement. Modeling more direct

indices of prey, and/or reducing error within covariates by

accounting for location uncertainty, may help to reduce

apparent variation among individuals.

Second, individual variation is likely a real feature of

foraging ecology (Magurran 1993), where individual

quality and personality may confer real differences in for-

aging behavior with relatively little difference in fitness

(Stamps 2007). For example, consistent boldness in forag-

ing can generate important ecological trade-offs, effecting

increases in growth and/or mortality rates (Stamps 2007).

Third, the inclusion of multiple random effects raises

the possibility of over-fitting, especially when the number

of individual tracks is low. Artificial variability, propagat-

ing from uncertainty in the locations and/or environmen-

tal covariates, could lead to spurious inference of strong

individual differences in foraging behavior. A study design

with repeat tagging of the same individuals would help

resolve the issue. Ultimately, researchers must take care to

address potential sources of error in their data and to use

prior knowledge of their study species to guide model

selection and interpretation.

Interpreting among-individual variability in move-

ment–environment responses can be aided by consider-

ing established ecological theory. For example, density-

dependent habitat selection and functional responses to

prey availability likely underpin inferred relationships

(Mason and Fortin 2017). Accounting for such effects

when fitting and interpreting resource selection func-

tions and habitat preference models can clarify under-

standing and thereby assist forecasting of species’

distributions (McLoughlin et al. 2010).

Modeling approach and extensions

Our model is composed of a linear mixed effects regres-

sion embedded within a correlated random walk process

model for animal movement behavior. While the linear

mixed effects approach allows flexible combinations of

fixed and random effects, there is scope for further

enhancement. In many cases parametric, linear fixed

effects may not adequately capture the complexity of

movement–environment relationships and a nonparamet-

ric approach using penalized splines may improve infer-

ence (Langrock et al. 2017). Given the serial dependence

structure of telemetry data, the unstructured covariance

matrix we used for the random effects could be replaced

with a first-order autoregressive covariance structure

(Brooks et al. 2017). Diagnosing lack of fit in latent vari-

able models can be problematic as there is no observed

response variable. One-step-ahead prediction residuals

provide a useful validation tool and can be estimated when

fitting the model (Thygesen et al. 2017). Finally, there is a

need to incorporate location uncertainty when sampling

environmental covariates from spatially gridded remote-

sensing data. This can be done using multiple imputation

methods as implemented in momentuHMM R package

(McClintock and Michelot 2018), i.e., random draws of

the environmental variables from the uncertainty of the

state-space filtered location estimates.

Recent advances in habitat modeling methods (e.g.,

Avgar et al. 2016) hold promise for capturing the cur-

rently missing behavioral context in species’ habitat pref-

erences and space use. Here we model animal movement

as a mixed effects function of environmental variables to

gain deeper insight into how individuals and popula-

tions may actually use habitat. Our approach does not

account for availability/accessibility of habitat in any

way but this clearly must be considered when inferring

habitat preferences. A reasonable approach for this

might be to simulate animal tracks from our movement

process model, examining implications of including/ex-

cluding environmental covariates. Pseudo-absence tracks

can be combined into a habitat accessibility surface to

condition spatial prediction of animal behavior from our

process model (e.g., Raymond et al. 2015).

Our results show that TMB allows fast estimation of

multiple fixed and random effects in an animal movement

process model. Dramatically faster computation times

allow analyses of movement–environment relationships in

large telemetry data sets (hundreds of animals). This

computation speed also opens up possibilities for more

realistic models of animal movement, where warranted,

perhaps by incorporating the third dimension for diving

or flying animals and/or high-volume accelerometry data.

The process model used here differs markedly from the

state-space model used by Bestley et al. (2013). Bestley

et al. (2013) used discrete behavioral state Markov-

switching embedded in a correlated random walk process

model (Jonsen 2016). Here, we used time-varying move

persistence ct as a behavioral index that varied continu-

ously between 0 and 1. This continuous index provides

another tool for characterising animal movement patterns

and for making inferences about their environmental dri-

vers. In some cases, a continuous index may offer more

nuanced insight into variable but unknown behavioral

sequences (Breed et al. 2012), whereas discrete states may

offer more flexibility in capturing the known structure of

animal movement patterns (Michelot et al. 2017).

Telemetry data obtained at the level of individuals

poses a challenge to scale up to populations (Morales

et al. 2010). Our approach enables multiple fixed (popu-

lation) and random (individual) effects in movement–en-

vironment relationships to be fit simply and quickly.

This provides a feasible solution to analysing increas-

ingly large and detailed data sets, and for harnessing
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individual-to-population level information on animal

movement responses to environment.
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