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Abstract

Background: Accelerometers are useful tools for biologists seeking to gain a deeper understanding of the daily

behavior of cryptic species. We describe how we used GPS and tri-axial accelerometer (sampling at 64 Hz) collars to

monitor behaviors of free-ranging pumas (Puma concolor), which are difficult or impossible to observe in the wild.

We attached collars to twelve pumas in the Santa Cruz Mountains, CA from 2010-2012. By implementing Random

Forest models, we classified behaviors in wild pumas based on training data from observations and measurements

of captive puma behavior.

Results: We applied these models to accelerometer data collected from wild pumas and identified mobile and

non-mobile behaviors in captive animals with an accuracy rate greater than 96%. Accuracy remained above 95% even

after downsampling our accelerometer data to 16 Hz. We were further able to predict low-acceleration movement

behavior (e.g. walking) and high-acceleration movement behavior (e.g. running) with 93.8% and 92% accuracy,

respectively. We had difficulty predicting non-movement behaviors such as feeding and grooming due to the small size

of our training dataset. Lastly, we used model-predicted and field-verified predation events to quantify acceleration

characteristics of puma attacks on large prey.

Conclusion: These results demonstrate that accelerometers are useful tools for classifying the behaviors of cryptic

medium and large-sized terrestrial mammals in their natural habitats and can help scientists gain deeper insight into

their fine-scale behavioral patterns. We also show how accelerometer measurements can provide novel insights on the

energetics and predation behavior of wild animals. Lastly we discuss the conservation implications of identifying these

behavioral patterns in free-ranging species as natural and anthropogenic landscape features influence animal energy

allocation and habitat use.
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Background
One of the major logistical challenges to studying animal

behavior lies in our inability to continuously observe

free-ranging animals [1]. While recent technological ad-

vancements in the design and versatility of bio-logging

devices (e.g., Global Positioning System (GPS) tags) have

substantially improved our capacity to monitor animals,

our ability to document behavior continually through

time and space remains limited [2]. For example, when

studying the impacts of habitat fragmentation on large

carnivores, it is important to understand how landscape

variables influence population connectivity and animal

movement, resting, and hunting patterns [3]. Accurately

discerning these behaviors at a fine scale is almost im-

possible from location data alone, but critical for inform-

ing conservation management decisions [4].

In the last decade, accelerometer sensors have emerged

as useful tools for remotely monitoring animal behavior

[5,6]. By continuously measuring body movement and pos-

ture, accelerometers allow scientists to infer the behavior
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and energy expenditure of the instrumented individual

[7]. Accelerometers have been used to study a wide range

of behavior and physiology research topics, including for-

aging, reproduction, activity, energy budgets, and locomo-

tion [7,8]. While accelerometry has been used successfully

to differentiate behaviors across a variety of taxa, most

accelerometer-based behavioral studies have focused on

marine animals including marine mammals, sea turtles,

sharks, and seabirds [8].

Few studies have used accelerometers to document be-

havioral budgets of wild terrestrial animals. Wilson et al.

[9] recently used a combination of comprehensive tri-axial

accelerometer measurements and extremely fine scale

GPS data to describe second-by second hunting behavior

in cheetahs (Acinonyx jubatus). Another study on chee-

tahs and one on oystercatchers (Haematopus ostralegus)

also indicated that our understanding of wildlife behavior

is enhanced by even limited accelerometer data compared

to GPS data alone [5,10]. Both of these studies used short

temporal segments (i.e., a few seconds) of accelerometer

measurements every few minutes, calibrated with field ob-

servations to predict behavior between successive GPS lo-

cations. However, many animals cannot be observed easily

in the wild and sampling behavior for a few seconds every

few minutes does not necessarily reflect the animal’s

primary activity during that time segment.

Here we describe the use of accelerometer measurements

and observations of captive animals to predict behavior in

wild pumas (Puma concolor). Like most large felids, pumas

are cryptic animals and infrequently observed in their

natural environment [11], making it difficult to document

the fine-scale behavioral patterns of this species. Our pri-

mary objectives were to use continuous accelerometer

measurements (sampling at 64 Hz), in combination with

periodic GPS readings, to distinguish different behaviors

in free-roaming pumas (Puma concolor), describe the

accelerometer signatures of puma predation events, and

determine the sufficient accelerometer sampling frequency

for categorizing these behaviors.

Results
Behavioral measurements

We paired observations of captive pumas performing

activities including resting, feeding, moving, and grooming

with accelerometer measurements to build a classification

algorithm to categorize those behaviors in the wild animals.

Using 2 captive pumas (1 male and 1 female), we docu-

mented 2142 discrete behavioral observations, including

walking, grooming, resting, feeding, and fast movement

and their corresponding accelerometer measurements

(Table 1). From 2010-2011, we outfitted 12 wild pumas

(5 males, 7 females) with GPS collars and accelerometer

sensors (Table 2). Due to mechanical or software failure

in the onboard accelerometer sensors or SD cards, we

removed six individuals from analyses entirely and

extracted 4-26 days of accelerometer data from each of

the remaining individuals (Table 2).

Mobility model classification of captive puma activity

Our mobility model, which segregated puma activity into

mobile and non-mobile periods, correctly classified move-

ments 96.17% of observed movement behaviors. The

model identified Amp M (the amplitude of the dominant

frequency for the magnitude of the measurements; refer to

Table 3 for variable names and descriptions), DFZ (domin-

ant frequency of the Z-axis), and SDM (standard deviation

of the magnitude) as the most important variables for pre-

dicting mobility. We observed little loss of predictive

power down to 16 Hz for our mobility model when we

down-sampled our accelerometer measurements from

64 Hz to 32, 16, 8, 4 and 2 Hz (Figure 1).

Behavior model classification of captive puma activity

Our second and more comprehensive behavioral model

categorized the puma’s movement behaviors into low accel-

eration (e.g., walk) and high acceleration (e.g., trotting and

running) movements, and the non-movement behaviors

into resting, eating, and grooming behaviors. This behavior

Table 1 Total 2 second observations (N) of captive puma

behaviors classified by mobility class and behavior class

Mobility Behavior N

Yes Low acceleration movement 564

Yes High acceleration movement 50

No Resting 1167

No Eating 284

No Grooming 77

Table 2 Total accelerometer and GPS data gathered from

free-ranging pumas from 2010-2011

Puma ID Sex Accelerometer days sampled GPS Available

2 F 26.72 Yes

5 M 14 Yes

7 F 9.42 Yes

16 M 16 Yes

17 M 14 Yes

28 F 4 Yes

4 M 8.23** Yes

11 F 0.66 No

13 F 20.35* Yes

20 F 11.2 No

27 M 0 Yes

30 F NA** Yes

*only two axes accurately measured. **date/time inaccurately recorded.

Bolded, italicized IDs indicate individuals used in analyses.
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model predicted captive puma resting, low, and high accel-

eration movement behaviors with 96.8%, 93.8%, and 92% ac-

curacy, respectively. The model predicted feeding behavior

with 65.7% accuracy but failed to detect grooming (0%)

(Table 4). This behavior model identified SDM, DFZ, and

SDZ as the most important variables for classification.

Model predictions of wild puma activity

We found a strong positive relationship between our

model predictions of percent mobility and the distance

traveled by wild pumas between successive 15-minute

GPS points (β = 5.245 standard error = 0.174, p < 0.001),

which further supports the model’s overall classification

accuracy. Random effects were not significant.

Our 24-hour activity budgets for individual pumas show

a general pattern of decreased movement activity in the

daytime and increased activity at night (Figure 2). Males

were more active than females (t = 13.37, p = 0) and more

often spent over 50% of their hourly increments moving

(15% for males versus 1% for females). Males were more

active nocturnally (6PM to 6AM; t =15.22, p = 0) whereas

females did not display a significant nocturnal movement

preference (t = 0.59, p = 0.28). However, even for pumas of

the same sex, individuals exhibited considerable variability

in their activity. For example, 2F and 7F, both females with

kittens, moved very little even during dawn and dusk,

whereas 28F, a female without kittens, was much more

active and even moved regularly throughout the daytime.

A territorial male, 5M, exhibited one peak in activity

around midnight whereas the two other males experi-

enced a decrease in activity around midnight. When de-

tailed GPS information was available, the actual distance

traveled by pumas strongly corroborated the proportion

of time we predicted movement (Figures 3 and 4).

We tested whether puma predation events, identified

from GPS data, were defined by clusters of high acceler-

ation movements. We observed a sustained cluster of high

acceleration movements, as identified by the behavior

model, in the time period between one GPS sampling inter-

val before the start of a predation event through the end of

the first quartile of the event (Figure 5, Additional file 1:

Figure S1). When compared to other clusters of high

Table 3 Labels and explanations of parameters extracted

from accelerometer data and used in RF models

predicting puma behavioral classification [12,13]

Parameter Label Definition

Axes X, Y, Z X, Y, Z axes

Magnitude M Square root of the sums of
squares of the acceleration in
the X, Y and Z axes

Dynamic body
acceleration (in g)

ODBA X,
ODBA Y,
ODBA Z,

Mean of dynamic
acceleration value along X, Y,
and Z axes

Overall dynamic body
acceleration

ODBA Sum of ODBA X, ODBA Y,
ODBA Z

Dominant power
spectrum

Amp X,
Amp Y, Amp
Z, Amp M

Amplitude of dominant
frequency

Dominant frequency (Hz) DFX, DFY,
DFZ, DFM

Frequency at dominant
power spectrum

Standard Deviation of
dynamic body
acceleration and
magnitude

SDX, SDY,
SDZ, SDM

Standard Deviation of
dynamic acceleration and
magnitude in window

Figure 1 The accuracy of predictions by the mobility model

remains high until the data is sampled below 8 Hz (top graph).

The correlation between the mobility model predictions and the

distance traveled declines steadily as the data is down-sampled

(bottom graph).

Table 4 Cross-validation of actual (rows) and predicted

(columns) behaviors of captive animals as categorized by

the behavior model

Feed Groom Rest High Low Percent accurate

Feed 179 0 67 0 38 63.7

Groom 20 0 54 0 1 0

Rest 26 1 1130 0 10 96.8

High 0 0 0 46 4 92

Low 24 0 9 2 529 93.8

High and low represent high and low acceleration movements.
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acceleration movement, which may not necessarily be asso-

ciated with predation events, 4 of our 6 potential predation

events were ranked among the top 10% for cluster size

(or length) and 3 of 6 for maximum magnitude (Figure 6).

We recorded sustained, high acceleration movements for

female puma predation incidents, likely because they were

subduing large, adult deer. In comparison, the male puma

predation incidents we identified consisted of fewer high

acceleration movements because their targeted prey were

fawns during the data collection period.

Figure 2 Predicted average hourly activity across a 24-hour period for all pumas (+1 SD). These behavioral dairies are averaged over

25.64 days (2F), 13 days (5M), 8.42 days (7F), 13 days (17M), 16 days (16M) and 4 days (28F).

Figure 3 15 minute movement distances measured directly from subsequent GPS locations (solid) and associated predicted movement

activity based on accelerometry (dashed) for pumas 28F and 16M. While we would not expect activity levels to be perfectly correlated with

linear movement distances, the level or correspondence between these two measures provides a field-based assessment of the ability of accelerometer

measurements to predict movement activity.

Wang et al. Movement Ecology  (2015) 3:2 Page 4 of 12



From the limited predation incidents we analyzed, we

noted that the amount of time it took to kill prey was related

to the age and size of both the predator and prey species.

Based on the duration of the high acceleration movements,

fawns were killed by males in less than one minute whereas

females took over two minutes to kill large bucks and an

unknown prey species.

Discussion and conclusion
Our aim in this study was to use accelerometer measure-

ments recorded on captive animals as a proxy to classify be-

havior in wild animals. Using Random Forest models, we

were able to accurately predict periods of non-movement,

low acceleration (i.e., stalking, walking), and high acceler-

ation movements (i.e., trotting and running) in unobservable

wild animals. This insight allowed us to better document

puma movement patterns and activity levels throughout the

day and to identify individual and sex differences.

Our model identified Amp M, DFZ, and SDM as the

top ranked predictors of puma mobility. The first two

variables are strongly tied to the periodicity of the move-

ment since Amp M is the dominant power spectrum of

the magnitude and DFZ is the dominant frequency of

the Z-axis, which measures the heave (up-down motion)

of the animal. For terrestrial quadrupeds, movement be-

haviors result in cyclic accelerometer patterns that are

dominated by one frequency because the accelerations

are primarily produced by footfalls and body movements

(Figure 7) [14]. These dominant frequencies correspond to

footfall patterns and can be used for biomechanical and en-

ergetics analyses [15,16]. The third parameter identified is

the standard deviation of the magnitude, which is higher

during mobile than non-mobile behaviors. Taken together,

these parameters can clearly distinguish movement behavior,

which is characterized by higher acceleration and period-

icity, from non-movement activities. The tight association

between footfall frequency and the dominant frequency of

the accelerometer measurements bodes many promising

avenues for calculating daily energetic expenditure [15].

Most current research on animal movement uses GPS or

radio-telemetry collars [2], which only allow researchers to

measure locations sporadically throughout each day. How-

ever, with GPS tags sampling at a low temporal resolution,

it is difficult to distinguish between an animal that moves

500 meters in a straight line in a short time period from an

animal that is active for longer but meanders only a short

distance in a nonlinear fashion [17]. In contrast, accelerom-

eters take near continuous measurements, thus providing

fine-scale documentation of animal behavior while the in-

strument is activated [1]. The enhanced dataset from con-

tinuously sampling accelerometers can yield detailed

information on behavior (e.g. whether the animal is travel-

ing or potentially hunting) and energy expenditure between

successive GPS fixes [15].

With continual advancements in biologging technologies,

some tag designs now include GPS sensors that work syner-

gistically with accelerometers (i.e. accelerometer-informed

GPS), allowing for more flexible and intelligent GPS sam-

pling intervals [9,17]. Such accelerometer-informed GPS

tags also reduce battery consumption (thereby prolonging

field deployment) by only recording GPS data points when

the animal is actively moving [17]. Accelerometers could

also be programmed to trigger onboard cameras like Kitty-

cam, which was used to document domestic cat predation

on wildlife [18], to more efficiently quantify hunting at-

tempts and kills of small prey that are difficult to identify

using GPS data alone. Cameras on wild animals can also be

used to verify behaviors (e.g. footfall counts for energetics)

Figure 4 15 minute GPS locations and associated predicted movement activity for 28F.
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predicted by models generated using accelerometer

data [19].

We noted that puma predation events were associated

with high acceleration movements, which were predicted

by the behavior model. Although clusters of high acceler-

ation movement occurred throughout the day, the events

that we classified as kills had raw accelerometer readings

with magnitudes that were generally longer and larger com-

pared to other events (Figures 5 and 6). Additionally, there

were several other prolonged high acceleration movement

clusters of similar or even larger magnitudes that were

not associated with identified kills. These events may

have been unidentified kills or unsuccessful hunting

attempts.

In our study, accelerometer sensors provided new in-

sights on the variability and duration of predation events

identified by GPS locations and confirmed by subsequent

field validations. While predation by females on adult prey

occurred over several minutes and included some of the

highest magnitude ranges, events involving larger-bodied

male pumas and smaller juvenile prey were not as extreme.

More broadly, we may be able to characterize predation

and attempted predation events of other medium and large

bodied mammals using paired accelerometer and GPS data

and corroborating these predictions with field visitations of

kill site GPS clusters [3]. Combining such detailed loca-

tional and acceleration information can reveal the dur-

ation, energetic expenditure, and chase sequence of

Figure 5 Plots of two predation events by puma 2F. The top panel for each plot illustrates the number (N) of high acceleration movements

per minute over a period of two days. The dark grey rectangle highlights the period of time associated with the predation event as verified

independently from field visits to clusters of GPS locations. The bottom panel shows the raw accelerometer measurements in units of gravity g for the

Z-axis. The bottom inserts magnify a one-minute period of accelerometer measurements from selected large clusters to show the magnitude and

duration of the acceleration during those high acceleration events. The arrow indicates when we hypothesize the kill event to have occurred.
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puma predation events and help scientists gain more

insight about the hunting behavior of pumas [15].

Our behavior model was weak at predicting feeding

events and was not able to predict grooming behaviors.

This is most likely due to the complexity of identifying

non-locomotive motion [7] and to the relatively few in-

stances of these behaviors observed in the captive

pumas. While grooming is a relatively unimportant be-

havior to identify, accurately predicting feeding events is

crucial in understanding behavior and energetics. We

believe these issues can be overcome in the future

through a variety of innovative strategies. Studies on

oystercatchers, cheetahs, and other species have used ac-

celerometers to identify feeding bouts in terrestrial ani-

mals with some success [5,10]. However, both studies

were able to observe the collared individual engaging in

these behaviors and use that information to classify add-

itional events. While we are unable to directly observe

pumas in the wild, we may be able to record their feed-

ing behavior using cameras placed at bait sites or fresh

carcasses [20]. Using this information, we could then

identify accelerometer sequences that correspond with

feeding in the field and then use that to identify future

feeding events. Additionally, we could perform more

Figure 6 Histograms showing how the size (top) and magnitude (bottom) of clusters of predicted high acceleration movements

associated with predation events compare to those not associated with predation events for pumas 2F, 5M, 7F and 16M. Bins containing

values corresponding to verified predation events are highlighted in red and accented by an arrow. Kills by 2F and 7F at the far right of the

histogram were of adult deer whereas those of 16M and 5M in the center of the histogram were of fawns.
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feeding trials with captive pumas using whole deer and

raccoon carcasses so as to more closely mimic their dietary

habits in our study area.

Integrating accelerometer technology into dataloggers

has great potential for animal behavioral research and is

being increasingly adopted in ecological and conserva-

tion studies [4,8]. Data derived from accelerometers can

also be used to assess how animals respond behaviorally

and energetically to anthropogenic influences [15,21].

For example, pumas and other large carnivores may

change their overall activity levels and hunting patterns,

thus impacting their caloric demands, when moving

through human dominated habitats [3,22,23]. Addition-

ally, caloric expenditure by pumas can be calculated

more accurately using our accelerometer derived activity

budgets and footfall frequencies than from GPS informa-

tion alone [14,15,24].

Our research demonstrates that accelerometers can suc-

cessfully predict movement behaviors in animals that are

difficult to observe in the wild. However, more complex

behaviors, such as feeding, might only be accurately identi-

fied with additional observations from captive and wild an-

imals. Accelerometer sensors can be used with any

terrestrial mammal to create a complete activity budget,

catalogue behaviors, including predatory ones, and poten-

tially measure energetic expenditure as well as foraging ef-

ficiency. We believe this ability to link behavior, spatial

location, and energy expenditure has the potential to pro-

vide novel insights into how landscape structure influences

the allocation of energy to different behaviors [25]. Such

information would be valuable for conservation and man-

agement issues by revealing the detailed responses of

individual animals to their surrounding landscape.

Methods
Study species and area

Pumas are territorial, apex predators that live in diverse

habitats throughout the Americas [26]. Individuals are pri-

marily nocturnal and solitary, although females will typic-

ally raise and accompany cubs for 15-21 months after

birth. In our study area in the Santa Cruz Mountains of

California (37° 10.00’ N, 122° 3.00’ W), pumas primarily

feed on black-tailed deer (Odocoileus hemionus columbia-

nus) but occasionally on other species, including wild

boars (Sus scrofa), raccoons (Procyon lotor) and domestic

cats [3].

Our 1,700 km2 study area encompasses a diverse land-

scape ranging from dense, urban development to large

tracts of intact and relatively undisturbed native vegeta-

tion primarily comprised of redwood and Douglas fir,

oak woodland, or coastal scrub communities. It is

bisected by a large freeway and further crisscrossed by

numerous smaller roads providing access to rural houses

Figure 7 Two-second windows of Z-axis acceleration for four behaviors with associated dominant frequencies and dominant

power spectrums.
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and developments. The climate is Mediterranean, with

precipitation concentrated between November and April.

Elevation ranges from sea level to 1155m.

Captive animal data collection and analysis

We used custom-built collars [15,27] equipped with a tri-

axial accelerometer sampling continuously at 64Hz to

monitor behavior in captive and wild pumas. The tri-axial

accelerometer was mounted such that the x-, y-, and z-

axes were parallel to the anterior-posterior, the transverse,

and the dorsal-ventral planes of the animal, respectively.

Captive pumas were housed and trained by the Colorado

Parks and Wildlife (Foothills Wildlife Research Facility)

[15]. We outfitted one adult male and one adult female

puma with a test accelerometer collar during training ses-

sions. We observed the collared animals and recorded

their behaviors both manually and with a video camera.

We conducted 1-2 trials per animal during two different

visits, totaling 2 hours and 40 minutes of recorded behav-

ioral observations for collar-outfitted captive pumas. At

the end of each visit, we retrieved the collar and down-

loaded the data.

We reviewed all recordings of captive pumas and cate-

gorized behaviors into mobile (e.g., slow movement, fast

movement) or non-mobile (e.g., resting, feeding, groom-

ing) activities. We divided observations into 2-second

segments encompassing only one behavior type and ex-

tracted the corresponding accelerometer data (Figure 7).

Animal activities were constrained into the above 5 classi-

fications, and we did not catalogue transitions between be-

haviors since they occurred very quickly (≤1s). We chose

2-second windows because this duration accommodated

at least 2 full strides of the animal within the 20 m test

track used for captive puma filming and calibration trials.

To compare across collars we converted all accelerom-

eter data into units of g (1 g = 9.8 m s−2) using tag spe-

cific calibration values derived prior to deployment. The

process of calibrating the accelerometers consists of gen-

tly tumbling the collar and measuring the body-frame

output of the accelerometer triad [28]. In the case of a

perfectly calibrated accelerometer, the locus of points

would all be attached to a sphere centered at the origin

with a radius of 1g. Due to null shift errors, the sphere is

centered off the origin, and scale factor errors transform the

sphere into an ellipsoid. We developed a custom MATLAB

8.0 (The MathWorks, Inc., Natick, Massachusetts, United

States) script to extract the null shift and scale factor errors

by fitting an ellipse to the data two axes at a time, and com-

bining the resultant parameters.

Accelerometer measurements were deconstructed into

static and dynamic components [7]. Static acceleration

relates to the inclination of the accelerometer with re-

spect to the earth’s gravitational field and thereby reflects

the posture of the animal. Dynamic acceleration relates

to changes in velocity resulting from patterns of locomo-

tion and generally reflects the movement of the animal.

We subtracted static acceleration from collar measure-

ments using 2-second windows [29], and then extracted

16 predictor variables from the three-accelerometer axes

and the magnitude from each 2-second segment of dy-

namic acceleration (see Table 1). We also applied a Fast

Fourier Transform to accelerometer measurements to

extract the dominant frequency and dominant power

spectrum values of each behavior.

We selected Random Forests (RF) [30] as our modeling

tool to predict unobserved behaviors in wild animals based

on measurements of observed behaviors in captive animals.

RF is a relatively novel and powerful machine learning tool

that works well for non-linear and complex ecological data

not easily fitted by traditional methods such as generalized

linear models [31]. RF also makes it possible to make accur-

ate predictions from datasets with correlated variables and

to compare conditional variable importance measures,

which identify the extent to which specific predictor

variables influence classification accuracy [31]. A higher

measure of variable importance indicates that the variable

exerts greater influence on the response relative to other

predictors with lower values [32].

Our first model (mobility model) segregated mobile

from non-mobile behavior. To build our model using

RF, we fit 500 classification trees to a randomly selected

subsample (n = 1000, without replacement) of captive

puma data using a random subset of 5 predictor vari-

ables for each split in the tree [32,33]. Predictions made

by all trees for each observation were then tallied, with

classification assigned by the majority result and ties

decided randomly. Model prediction accuracies were

calculated by comparing predicted and actual classifi-

cations. We then obtained unbiased variable importance

estimates using a permutation procedure described in

Strobl [32]. We built our second model (a more compre-

hensive behavior model) using the same methodology to

predict five classes of behaviors: low acceleration move-

ment (e.g., walking), high acceleration movements (e.g. trot-

ting, running), resting, eating, and grooming. We fit all of

our models and calculated variable importance estimates

using the Party package [34] in the R statistical program

(vers. 2.15.1) [35].

We created down-sampled datasets of accelerometer data

at 32, 16, 8, 4, and 2 Hz to explore the influence of sam-

pling frequency on model prediction accuracy. Using the

down-sampled datasets, we built additional mobility models

and assessed model accuracy as described previously.

Wild animal data collection and analysis

We captured wild pumas (5 males, 7 females) from

2010-2012 using trailing hounds, cage traps, or leg hold

snares as described in Wilmers et al. [3]. Each animal
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was tranquilized using Telazol and outfitted with an off-

the-shelf GPS/VHF collar (Vectronics Aerospace GPS

PLUS model) combined with the custom-built archival

3-axis accelerometer tag [27], which was incorporated

into the battery casing (total collar weight = 480 g) Data

collected by the accelerometer were recorded in an on-

board 8GB microSD card, which is capable of storing

more than 200 days of accelerometer measurements.

We programmed each collar to acquire a GPS fix every

4 hours and had a mean fix rate of 86% (±1%) from 4 or

more satellites. For animals captured prior to April 2011, we

programmed accelerometers to record at a duty-cycle of

2 weeks on, 4 weeks off commencing immediately upon

capture. While accelerometers were recording, the collars

were programed to acquire additional GPS fixes at 5-minute

intervals between 8PM and 9PM local time for one week

(GPS intensive sampling period). After April 2011, we

programmed accelerometers to operate at cycles of two

consecutive days every week beginning 5 days after the

animal was captured to extend battery life while optimiz-

ing data collection. When accelerometers were recording,

collars recorded additional GPS locations every 15 minutes

during a 24-hour period from noon to noon (GPS inten-

sive sampling period). We retrieved all collars either dur-

ing a recapture of the animal (n = 8) or following its death

(n = 4; 2 depredations, 2 unknown causes). The Animal Care

and Use Committee at UC Santa Cruz approved all animal-

handling procedures (IACUC Protocol #Wilmc1101).

We downloaded all available accelerometer data and

removed the first 24 hours of data following anesthesia.

We then converted accelerometer data into units of g as

described in the previous section.

We used our captive puma-derived mobility and behav-

ior models to predict free-ranging puma behavior from ac-

celerometer data obtained from wild puma collars that

collected at least one day of both accelerometer and GPS

data. Because we could not observe behavior in wild ani-

mals, we tested the accuracy of our mobility model’s pre-

dictions by fitting a linear mixed effects model to GPS

data using the lme4 package [36]. Specifically, we tested

whether our mobility model predictions were positively

correlated with the distance traveled by pumas between

GPS points. We used the distance between successive

15-minute GPS points as our response variable and

treated our model-predicted percentage of time spent

moving as a fixed effect with puma ID as a random effect.

We expected that longer-distance GPS movements would

be correlated with a higher percentage of model-predicted

movement activity, and that this relationship might vary

by individual pumas. For example, during a 15-minute

gap between successive GPS points, we used the mobility

model to predict the percentage of time the puma was ac-

tively moving. If we mostly predicted movement, we

would expect that the distance between the two GPS

points to be generally larger than if we mostly predicted

non-movement.

We constructed 24-hour movement budgets for all

pumas to document the proportion of time pumas spent

moving throughout the day. To determine the proportion

of time spent moving for each one-hour period (e.g., 1AM

to 2AM), we calculated the number of increments during

which we predicted mobile activity and divided that by the

total number of predictions we recorded between those

time periods. From our behavior model, we generated

24-hour behavioral budgets for our five behavior classes.

Using the results from our behavior model, we tested

whether predation events were associated with periods

of high acceleration movement. We used six feeding

events by four pumas on five deer and one unknown

species to examine the corresponding high accelerom-

eter movements. When feeding, pumas generally remain

with the carcass over several GPS acquisitions. We used

this information to estimate the duration of the feeding

event as the interval of time between the first and last

GPS location at the kill site. We also added the four-

hour interval prior to the first GPS location associated

with the site to the feeding duration since it is possible

that the puma made a kill during this period of time.

Five of these feeding events were visited and verified by

field personnel, and one was classified as a kill with 80%

probability using a predation model developed by Wilmers

et al. [3]. From observations of captive puma behavior, we

know that faster and more intense movements, such as

running and jumping, lead to accelerometer readings with

ranges spanning 3-5 g or more. We expected that preda-

tion events would be associated with clusters of high ac-

celeration movements as pumas attack and wrestle with

their prey. To screen for possible predation events, we

identified clusters of high acceleration movements with a

magnitude range exceeding 3.4 g, or two standard devia-

tions above the average and calculated the duration and

the maximum magnitude of the event. We defined a clus-

ter to be two or more successive high acceleration move-

ments separated by no more than three minutes between

consecutive behaviors. We expected that if high acceler-

ation movements were associated with predation events,

we would see a cluster of high acceleration movements in

the first quartile of each predation event. Compared to

non-predation clusters of high acceleration movements,

we also expected the size and maximum magnitude of the

cluster representing a potential predation event to be in

the top 10% of those measurements across all clusters.

Additional file

Additional file 1: Figure S1. Plots of predation events by pumas 5 M,

7 F, and 16 M, analogous to Figure 2. The top panel for each plot

illustrates the number (N) of high acceleration movements per minute
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over a period of two days. The dark grey rectangle highlights the period

of time associated with the predation event as verified independently

from field visits to clusters of GPS locations [3]. The bottom panel shows

the raw accelerometer measurements in units of gravity g for the Z-axis.

The bottom insets magnify a one-minute period of accelerometer

measurements from selected large clusters to show the magnitude

and duration of the acceleration during those high acceleration events.

The arrow indicates when we hypothesize the kill event to have

occurred [15].
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