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Abstract

Large high-quality datasets of human body shape and kinematics lay the foundation for

modelling and simulation approaches in computer vision, computer graphics, and biome-

chanics. Creating datasets that combine naturalistic recordings with high-accuracy data

about ground truth body shape and pose is challenging because different motion recording

systems are either optimized for one or the other. We address this issue in our dataset by

using different hardware systems to record partially overlapping information and synchro-

nized data that lend themselves to transfer learning. This multimodal dataset contains 9

hours of optical motion capture data, 17 hours of video data from 4 different points of view

recorded by stationary and hand-held cameras, and 6.6 hours of inertial measurement units

data recorded from 60 female and 30 male actors performing a collection of 21 everyday

actions and sports movements. The processed motion capture data is also available as real-

istic 3D human meshes. We anticipate use of this dataset for research on human pose esti-

mation, action recognition, motion modelling, gait analysis, and body shape reconstruction.

1 Introduction

Capturing, modelling, and simulating human body shape and kinematics has been an area of

intense study in the fields of biomechanics, computer vision, and computer graphics, with

applications including human-machine interactions [1], assistive healthcare [2], clinical diag-

nostics [3], and realistic computer animation pipelines [4–6]. In order to obtain body pose and

kinematics at a resolution that is fine enough to make inferences about identity, action, and

particularly stylistic features, we need large, high-quality datasets that can be used in both gen-

erative and discriminative contexts. An unsolved challenge is to create datasets that combine

video recordings of humans in motion in unconstrained scenarios with information on

ground truth about the dynamic pose and shape of the recorded individuals.
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Research in computer vision has focused on understanding humans and their behaviour

from images or videos. Obtaining reliable, high-accuracy data about the “true” pose and shape

and its changes over time, however, requires sensors that might interfere with the ecological

validity of the image or video. For instance, optical motion capture has the potential to provide

3D pose and body shape [7], but conflicts with wearing normal clothing, leaves visible markers

in the video, and can only be used in a laboratory environment. Other sensors, such as inertial

measurement units (IMU), can be hidden under clothing and are feasible to capture humans

in natural settings, but do not provide absolute location information and suffer from drift.

One approach to eliminating this drift in IMU data is to detect the 2D joints of the body in a

simultaneously recorded video [8]. Thus, limitations of one hardware system can partially be

overcome by combining it with recordings of another.

No available single hardware system is able to capture people in a natural setting and simul-

taneously provide high precision ground truth data of body shape and pose. All publicly avail-

able datasets suffer from this limitation to some degree [9–13]. Some are also limited in that

they either contain data of only a small number of different actors, use single hardware systems

for motion recording, or provide unsynchronized data across different hardware systems. We

address these limitations in our dataset by providing subsets of data with partially overlapping

information that lend themselves to transfer learning. Our dataset contains five different sub-

sets of synchronized and calibrated video, optical motion capture, and IMU data. Each subset

features the same 90 female and male actors performing the same set of 20 predefined everyday

actions and sports movements, plus one self-chosen movement.

An important advantage of our dataset is that the full-body motion capture recordings are

also available as realistic 3D human meshes represented by a rigged body model as part of the

AMASS database [7]. Because we recorded the same actors with varying combinations of sen-

sors, these animated meshes can also be used as ground truth body shape for the recording

subsets with sparse markers and natural clothing. In addition to the MoSh++ formulation

used in AMASS, we calculated the skeletal pose using the biomechanics formulation provided

by the Visual3D software [14]. The synchronized and calibrated motion capture system and

stationary video cameras allow computing and augmenting accurate frame-by-frame overlay

of 3D skeletal pose and body surface in camera and motion capture coordinates. For our natu-

ral clothing captures, we recorded the motions using IMU sensors and video cameras, with

and without additional sparse motion capture markerset. The sparse optical markerset could

be combined with the IMU data to accurately extract end-effector locations and infer body

pose.

This multi-modal dataset is designed for a variety of challenges including gait analysis,

human pose estimation and tracking, action recognition, motion modelling, and body shape

reconstruction from monocular video data and different points of view. To our knowledge,

this is one of the largest datasets in terms of the recorded number of actors and performed

actions, and the first dataset with synchronized pose, pose-dependent and pose-independent

body shape, and video recordings. The fact that we recorded the same actions from the same

actors with varying combination of sensors makes our dataset unique.

2 Methods

2.1 Subjects

90 people (60 women, 30 men) with no reported neurological or musculoskeletal conditions

that affected their ability to perform common sports movements were recruited from the local

Kingston community. Participant characteristics are provided in Table 1. The experimental

procedure was approved by the General Research Ethics Board of Queen’s University,
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Table 1. Participant characteristics of the 60 women and 30 men.

Women Men

ID Age Height [cm] Weight [kg] BMI [kg/m2] Handedness ID Age Height [cm] Weight [kg] BMI [kg/m2] Handedness

2 33 152 54 23.37 right 1 25 184 92 27.17 right

6 26 155 59 24.56 right 3 26 167 59 21.16 right

7 22 175 73 23.84 right 4 26 178 80 25.25 right

8 22 160 52 20.31 right 5 23 180 73 22.53 right

9 23 157 48 19.47 right 11 27 178 90 28.41 right

10 24 175 63 20.57 right 13 26 178 77 24.30 right

12 26 162 68 25.91 right 15 21 181 72 21.98 right

14 21 157 61 24.75 right 18 25 170 65 22.49 right

16 26 163 68 25.59 right 19 18 167 60 21.51 left

17 26 167 65 23.31 right 20 29 173 60 20.05 right

21 21 160 55 21.48 right 22 28 170 66 22.84 right

24 20 160 55 21.48 right 23 25 173 73 24.39 right

25 21 166 55 19.96 right 26 24 178 63 19.88 right

30 19 178 68 21.46 right 27 23 163 64 24.09 right

32 20 168 57 20.20 right 28 25 183 80 23.89 right

34 21 155 41 17.07 left 29 24 177 61 19.47 right

38 32 157 53 21.50 right 31 28 175 64 20.90 right

39 21 175 77 25.14 right 33 21 175 60 19.59 right

40 21 175 56 18.29 right 35 29 176 72 23.24 right

44 20 162 75 28.58 right 36 29 174 74 24.44 left

45 18 165 48 17.63 right 37 21 169 63 22.06 right

48 18 144 68 32.79 right 41 28 178 100 31.56 right

49 23 155 45 18.73 right 42 21 165 63 23.14 right

50 18 155 59 24.56 right 43 21 175 80 26.12 right

51 18 167 63 22.59 right 46 21 188 84 23.77 right

52 20 162 54 20.58 right 47 18 175 80 26.12 left

53 23 179 60 18.73 right 60 21 178 73 23.04 right

54 18 165 70 25.71 right 71 18 173 59 19.71 right

55 20 161 62 23.92 right 75 19 162 86 32.77 right

56 19 176 72 23.24 right 87 18 185 76 22.21 right

57 17 170 61 21.11 right

58 18 158 52 20.83 right

59 18 170 68 23.53 right

61 18 167 74 26.53 right

62 17 177 69 22.02 right

63 18 160 58 22.66 right

64 18 165 49 18.00 right

65 19 174 58 19.16 right

66 18 162 50 19.05 right

67 18 174 59 19.49 right

68 20 174 57 18.83 right

69 19 161 65 25.08 right

70 17 178 68 21.46 right

72 20 158 60 24.03 right

73 18 162 57 21.72 right

74 19 171 61 20.86 right

(Continued)
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Kingston, and was performed in accordance with the Declaration of Helsinki. All participants

provided written informed consent that their data (including their video footage) can be used

by other researchers. The two individuals depicted in this manuscript gave written informed

consent (as outlined in PLOS consent form) to include their photographs in this publication.

2.2 Acquisition setup

An optical motion capture system, stationary and hand-held video cameras, and inertial mea-

surement unit (IMU) sensors were used to record the dataset. Fig 1 shows the top-view floor

plan of the capture room with the motion capture and video cameras arranged to cover a space

of approximately 3 by 5 meters to allow subjects to perform their movements without spatial

restrictions. In the following sections, the details of the hardware and software systems along

with their calibration and synchronization process details are provided.

2.2.1 Hardware and software systems. 2.2.1.1 Optical motion capture system. 15 Qualisys

Oqus 300 and 310 cameras (Qualisys AB, Sweden, https://www.qualisys.com/) were used. The

cameras were set to normal mode (full field of view) with a resolution of 1.3 MP and captured

the 3D location of passive reflective markers of 0.7 cm diameter with a frame rate of 120 frames

per second (fps). The Qualisys Track Manager (QTM) software was used for the acquisition of

the optical motion capture data and for setting the synchronization triggering signal that was

sent to the Grasshopper video cameras that were connected to the motion capture system.

2.2.1.2 Video cameras. Video data were collected using two hand-held smartphone cameras

and two stationary computer vision cameras. For the hand-held cameras, the rear camera of

the iPhone 7 (Apple Inc., USA, https://www.apple.com/) was used. The camera has a resolu-

tion of 1920 × 1080 pixels and contains the Sony IExmor RS, CMOS sensor. The video data

was recorded with a frame rate of 30 fps. As computer vision cameras, we used RGB Grasshop-

per2 cameras (FLIR Systems Inc., USA, https://www.flir.com/) with a resolution of 800 × 600

pixels, 72 dpi, 24-bit depth and Sony ICX285 CCD sensors. The recording with these cameras

was also done with a frame rate of 30 fps. The FlyCapture software provided by FLIR Inc. was

used for setting up the cameras’ acquisition features and for processing the synchronization

triggering signal coming from the motion capture system. We also integrated the MATLAB

Table 1. (Continued)

Women Men

ID Age Height [cm] Weight [kg] BMI [kg/m2] Handedness ID Age Height [cm] Weight [kg] BMI [kg/m2] Handedness

76 19 164 61 22.68 right

77 19 170 63 21.80 right

78 18 150 46 20.44 right

79 19 168 77 27.28 right

80 19 155 70 29.14 right

81 18 165 59 21.67 left

82 17 168 59 20.90 right

83 18 178 61 19.25 right

84 20 165 63 23.14 right

85 19 174 64 21.14 right

86 18 168 59 20.90 right

88 19 168 57 20.20 right

89 21 165 54 19.83 right

90 32 165 58 21.30 right

https://doi.org/10.1371/journal.pone.0253157.t001
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Image Acquisition Toolbox as it supports the Grasshopper computer vision cameras and pro-

vides blocks and functionalities such as hardware triggering, configuring acquisition parame-

ters and recorded data format, and previewing the recorded data.

2.2.1.3 Inertial measurement unit sensors. The Noitom Neuron Edition V2 (Noitom LTD,

China, https://www.noitom.com/) was used which comes as a bodysuit attached with 17 IMU

sensors (Figs 2 and 3). Each sensor is composed of a 3-axis gyroscope, 3-axis accelerometer, and

3-axis magnetometer working at 120 Hz. In addition to the acceleration data, the IMU suit pro-

vides computed 3D displacements, velocity, quaternions, and rotational velocity for each joint (all

represented in an initial global coordinate system). The IMU sensors’ dynamic range, accelerom-

eter range, and gyroscope range are 360 deg, ±16 g, and ±2000 deg/s, respectively. The static error

of the sensors is less than 1 deg for all roll, pitch, and yaw angles. The AXIS NEURON software

provided by Noitom LTD was used for setting the acquisition features, calibration of the sensors,

data capturing, validation of the recorded data, and for exporting the files to different formats.

2.3 Data collection

Participants went through five data capturing sequences. The sequences differed in the hard-

ware systems used to capture the motions, in participants’ clothing (minimal, or normal), and

Fig 1. Top view sketch of the capture room set-up. The positions of the video cameras and motion capture cameras
were arranged to cover a space of approximately 3 by 5 meters.

https://doi.org/10.1371/journal.pone.0253157.g001
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whether or not there was a rest pose between successive motions. An overview of the different

capture rounds is provided in Table 2. In each sequence, participants performed the same pre-

defined set of 20 movements in a randomized order and additionally one self-chosen move-

ment, based on verbal instructions by the experimenter. The movements included everyday

actions and sports movements: (1) walking, (2) jogging, (3) running in place, (4) side gallop,

(5) crawling, (6) vertical jumping, (7) jumping jacks, (8) kicking, (9) stretching, (10) crossing

arms, (11) sitting down on a chair, (11) crossing legs while sitting, (13) pointing, (14) clapping

hands, (15) scratching one’s head, (16) throwing and catching, (17) waving, (18) taking a pic-

ture, (19) talking on the phone, (20) checking one’s watch, (21) performing a self-chosen

movement. To allow for more variation in performed movements in each action class, we did

not set any constraints on how exactly each action had to be performed.

2.3.1 Data capture sequence “F”. This sequence was captured using the 67 MoSh motion

capture marker layout [15]. Subjects wore tight-fitting minimal clothing in order to minimize

marker movement relative to the body. The markers were attached to the actors’ skin and

clothes using double-sided tape. In addition to the motion capturing, video material was

recorded using two stationary Grasshopper cameras and the rear cameras of two hand-held

iPhones 7. For details on the synchronization of the motion capture system and the stationary

cameras, see Synchronization Section. Participants performed the actions separated by a rest

A-pose. The motivation for this capture round was to obtain accurate full skeletal (pose) infor-

mation and frame-by-frame body shape parameters without any artefacts imposed by clothing.

Therefore, this round is suitable for 2D or 3D pose estimation and tracking, and 3D shape

reconstruction.

2.3.2 Data capture sequences “S1” and “S2”. For these two sequences, subjects wore the

IMU bodysuit and a reduced optical motion markerset layout of 12 motion capture markers

that were attached to their body (4 markers placed on the head, 2 on each ankle and 2 on each

wrist). In addition, the actions were recorded using synchronized computer vision cameras

(see Synchronization section), and iPhone 7 rear cameras. In “S1” there was a rest A-pose

between the actions, whereas in “S2” there was a natural transition between the performed

actions. The reason for choosing a small motion capture markerset was that it provides sparse,

but accurate data for some of the main end-effectors including the head, wrists, and ankles,

and at the same time allows participants to wear natural clothing.

2.3.3 Data capture sequences “I1” and “I2”. These two sequences were captured with

participants wearing the IMU suit under their normal clothing. Additionally, video material

was recorded using the hand-held iPhone 7 and stationary Grasshopper video cameras.

Fig 2. Example pictures of one female and one male actor wearing the IMU suits used for the capture rounds S1,
S2, I1, and I2.

https://doi.org/10.1371/journal.pone.0253157.g002
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Fig 3. Placement of IMU sensors on the body.

https://doi.org/10.1371/journal.pone.0253157.g003
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Motions in “I1” are separated by a rest A-pose, whereas there is a natural transition between

the actions in “I2”.

2.4 Preprocessing

2.4.1 Motion capture data. A cubic polynomial gap filling was automatically done in the

QTM software for gaps of less than or equal to 5 frames. The trajectories were then labelled

manually using the integrated trajectory identification tool. The resulting labelled trajectories

were then exported to a C3D format.

2.4.2 Video data. Each data capture sequence was recorded in one piece, without stopping

the recording between the different actions. Therefore, the recorded sequences by the com-

puter vision cameras were manually trimmed into individual single actions and the time-

stamps (frame numbers) of start and end of each action were exported. Based on the time-

stamps, the corresponding synchronized motion capture and IMU data were also trimmed

into the same individual single actions.

2.4.3 IMU data. The original IMU data stored in calculation file format (.calc) were
re-organized and converted into MATLAB .mat files to get the data in a more readable

structure.

2.5 Calibration

2.5.1 Motion capture cameras. The calibration of the motion capture cameras was done

before each recording session following the measurement protocol in the Qualisys Track Man-

ager software [16]. The software allows computing the orientation and position of each camera

in order to track and perform calculations on the 2D data for conversion into 3D data. The

average residual error of the calibration was kept below 0.8 mm and the calibration was

repeated if this threshold was not met.

2.5.2 Video cameras. To compute the intrinsic parameters of the Grasshopper computer

vision cameras and lens distortion parameters, the MATLAB Single Camera Calibrator [17–

19] was used, where focal length (F 2 R2), optical center (C 2 R2), skew coefficient (S 2 R),
and radial distortion (D 2 R2) are estimated for each camera. The average re-projection error

was kept to less than 0.2 pixel, and the calibration was repeated for higher error values. No cali-

bration was performed for the iPhone cameras.

2.5.3 IMU device. 2.5.3.1 Model posture calibration: Before starting each session, a four-

step calibration process was required to calibrate the actor’s posture. The four-step calibration

process is performed by the actor posing in a steady pose, A pose, T pose, and S pose.

2.5.3.2 Neuron calibration: IMU sensors might accumulate some calculation errors over

time. This usually causes posture computation problems such as drifting. Therefore, each indi-

vidual IMU sensor should be calibrated after some time of usage. However, to make sure that

Table 2. Overview of the five different capture rounds.

Data Capture Sequence F S1 S2 I1 I2

Motion capture markerset 67 12 12 – –

Video capture yes yes yes yes yes

IMU no yes yes yes yes

A-pose between motions yes yes no yes no

Actor clothing minimal normal clothing normal clothing normal clothing normal clothing

Length (min per person) *2.7 *2.7 *1.7 *2.7 *1.7

F = full motion capture markerset, S = sparse motion capture markerset + IMU, I = IMU; 1 = with rest A-pose, 2 = without rest A-pose.

https://doi.org/10.1371/journal.pone.0253157.t002
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recordings are accurate enough, we calibrated the sensors before collecting data from each

subject following the Noitom Axis Neuron user manual [20].

2.5.4 Motion capture and video cross-calibration. To cross-calibrate the motion cap-

ture system with the two Grasshopper computer vision cameras, the location of world points

was aligned onto the camera coordinates. For that, the extrinsic parameters which represent

the rotation R 2 SO(3) and translation T 2 R3 from the motion capture system’s coordinate

system (world coordinates) to the camera coordinates were estimated using the semi-auto-

mated method proposed by Sigal et al. [9]. The trajectory of a single moving marker was

recorded by the synchronized motion capture and video cameras for> 2000 frames. Given

the recorded 3D positions of the marker in motion capture coordinates as world points and

the 2D positions of the marker in the camera frame as image points, the problem of finding

the best 2D projection can be formulated as a Perspective-n-Point (PnP) problem where the

Perspective-Three-Point (P3P) algorithm [21] is used to minimize the re-projection error as

follows:

min
R;T

XN

n¼1

kP2D½n� � f ðP3D;R;T;KÞ½n�k
2
; ð1Þ

where n is the frame number, N> 2000 is the total number of recorded frames, f is the pro-

jection function and K is the set of camera intrinsic and lens distortion parameters. The 2D

position of the single marker was located using a Hough circle transform [22] and double-

checked manually frame-by-frame.

To validate the computed extrinsic parameters, the parameters were evaluated on a separate

single marker capture session. The average re-projection RMS error on this test run was

around 0.8 cm. Synchronization and calibration were additionally validated by careful visual

inspection of the accuracy of overlaid joint and mesh positions on the video data for a random

selection of multiple rounds. The examples shown in Fig 4 are representative for the quality of

the whole database.

2.6 Synchronization

2.6.1 Motion capture and video data. For the data capture sequences “F”, “S1”, and “S2”,

the motion capture system and the cameras had to be time-synchronized. In our setup, the

video cameras were triggered by the synchronization signal from the QTM software of the

motion capture system through ethernet. Due to the frame rate limits in the video cameras, the

synchronization frequency was divided by 4 which reduced the video capture frame rate to 30

fps. The iPhone cameras were not synchronized with the motion capture cameras.

2.6.2 Motion capture and IMU data. To use both IMU and motion capture data in the

sequences “S1” and “S2” in a data fusion scenario, these modalities needed to be synchronized

in frame. To this end, the cross-correlation between the z-axis location of ankles was used

which was pre-computed in these two modalities. The two coordinate systems were not

aligned, however, the differences between the orientation of the two z axes are negligible: the z

axis of the IMU coordinate system is oriented towards gravity, while z axis in motion capture

coordinate system is perpendicular to the floor. Because the motion capture system was syn-

chronized with the video cameras, we additionally obtained synchronized IMU and video

data.

Suppose pjz½n� and ~pjz½n� are the z component of tracked position of joint j at time-step n

recovered by the motion capture and IMU systems, respectively (we are using the 3D positions

provided by the IMU software instead of double-integrating over accelerations). The
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synchronization parameters, temporal scale α and temporal shift τ, are found by maximizing:

max
a;t

X1

n¼�1

pjz½n�~p
j
z½anþ t�; ð2Þ

where the integral is the cross-correlation between pjz½n� and scaled version of ~p jz½n�. The opti-

mal parameters, by which the highest peak in cross-correlation is achieved, were found using

an exhaustive search for 0.9� α � 1.1 (search step-size = 0.001) and −200� τ� 200. The sec-

ond term in the summation in Eq 2 was evaluated using spline interpolation. We found α = 1

for all samples meaning that there was no scaling. To ensure that the optimized parameters

were robust, we normalized the resulted cross-correlation (Eq 2) to the maximum of 1 and

only accepted those where the distance between first and second peak was higher than 0.3.

Only in 3 out of all “S1” and “S2” rounds the parameters got rejected and the synchronization

was repeated. Finally, we did a visual inspection of all accepted samples.

2.7 Skeleton and body shape extraction

The motion capture data collected in “F” was processed using two different pipelines to com-

pute the skeleton: Visual3D [14] (C-Motion Inc., USA, https://c-motion.com/) and MoSh++

[7, 15] (https://amass.is.tue.mpg.de/). The data collected in “S” was processed using Visual3D

and the same formulas for computing head, wrists, and ankles joint positions. Example images

of one female and male participant in rest A-pose with overlaid joint locations and mesh are

shown in Fig 4.

2.7.1 Visual3D software. Visual3D is a biomechanics analysis software for 3D motion

capture data [14]. In our Visual3D pipeline, the pelvic segment was created using CODA [23]

and the hip joint positions were estimated using Bell and Brand’s hip joint center regression

[24, 25]. The upper body parts were estimated using the Golem/Plug-in Gait Upper Extremity

Fig 4. Front and side view of aligned video frame, joint locations, and estimated body mesh (computed by MoSh+
+) for one female and male participant.

https://doi.org/10.1371/journal.pone.0253157.g004
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model [26]. The resulting skeleton at each frame is represented by 20 joints in two different

formats: 1) in local joint transformations, that is the orientation and translation of each joint

relative to the coordinate system of its parent joint in the kinematic tree, and 2) as global 3D

joint locations.

2.7.2 MoSh++. MoSh++ is an approach which estimates the body shape, pose, and soft tis-

sue deformation directly from motion capture data [7]. Body shape and pose are represented

using the rigged body model SMPL [4] where the pose is defined by joint angles and shape is

specified by shape blend shapes. MoSh++ achieves lower errors compared to the original

MoSh framework [15], which used the SCAPE body model [27]. It uses a generative inference

approach whereby the SMPL body shape and pose parameters are optimized to minimize

reconstruction errors. The skeletal joint locations are computed using a linear regression func-

tion of mesh vertices. The estimated SMPL body is extended by adding dynamic blend shapes

using the dynamic shape space of DMPL to simulate soft tissue deformations. Each frame in

the “MoSh-ed” representation includes 16 SMPL shape coefficients, 8 DMPL dynamic soft-tis-

sue coefficients, and 66 SMPL pose coefficients as joint angles (21 joints + 1 root). MoSh-ed

data of our motion capture recordings was computed in collaboration with the authors of

AMASS [7].

The main difference between MoSh++ and Visual3D is that the models are optimized for

different applications. MoSh++ is a better choice for character animation, and pose estimation

and tracking, whereas Visual3D is preferred for gait analyses and biomechanics. MoSh++, on

the one hand, can provide an estimate of joint transformations for all joints even if marker

occlusion occurs. However, the estimated joint locations can be noisy when occlusions

occur and the error may propagate to other joints. This is because MoSh++ uses distributed

information by regressing from the inferred body mesh to the skeleton joints. For character

animations, however, precise joint locations are often not important. For gait analysis and bio-

mechanics applications, on the other hand, an accurate estimation of joint locations is crucial.

Visual3D achieves this by doing the computations locally where each joint location is com-

puted only from the surrounding markers. The only drawback of Visual3D representation

compared to MoSh++ is that the joints cannot be computed at all if one of contributing mark-

ers is occluded. In the database, we indicated the time-stamps of the frames where such occlu-

sions occurred.

3 Data records

Table 3 shows the file structures of the raw and processed data which are provided in the

MoVi Dataverse repository [28], with naming conventions and detailed descriptions.

3.1 Raw data

Raw video data from the computer vision cameras is provided as .avi video files to avoid any

artefacts added by compression methods. Raw motion capture data stored as .qtm files that

are only readable by the QTM software and .c3d and raw IMU data stored in .xml and .
calc file formats are not included in the MoVi database. However, these files can be provided

by the corresponding author upon request.

3.2 Processed data

The processed full markerset motion capture data (capture round “F”) is provided in two dif-

ferent versions based on the post-processing pipeline (MoSh++/AMASS and Visual3D). We

provide joint angles and 3D joint locations computed by both pipelines along with the associ-

ated kinematic tree, information about the occlusions and optical marker data. Both versions
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are provided as .mat format for each subject. The .mat file also contains body pose-indepen-

dent shape parameters provided by the MoSh++ pipeline as SMPL blend shape coefficients

[4]. Given pose-independent shape parameters and joint angles, corrective pose-dependent

shape parameters and the resulting surface mesh represented as frame-by-frame 3D vertices

can be computed. Due to the reduced markerset, the motion capture data collected in rounds

“S1” and “S2” were only processed using the Visual3D pipeline for extracting the head, wrists,

and ankles’ joint positions provided as .mat files. Synchronized IMU data were computed by

processing the .calc files and converting them to .mat format which provides raw accelera-

tion data, displacement, velocity, quaternions, and angular velocity. The .bvh files generated

by the IMU software are also provided in the repository.

4 Applications

The MoVi dataset is currently the only synchronized and cross-calibrated video, motion cap-

ture, and IMU dataset that provides accurate 3D body shape and pose. Importantly, by using

different combinations of hardware systems to record the same actors and motions, the dataset

provides overlapping information that can facilitate training models for body shape recon-

struction, and pose estimation and tracking from video data.

For body shape reconstruction tasks, our dataset provides 3D body shape based on the

SMPL model which does not only provide pose-independent shape parameters, but also pose-

dependent shape parameters, and therefore allows for more accurate shape representation.

For body pose estimation tasks, our dataset contains two formats of body pose representa-

tions based on motion capture data, Visual3D [14] and SMPL/MoSh++ [4, 7]. Visual3D is a

biomechanical model that provides accurate estimation of joint locations if no marker

Table 3. Naming conventions and structure of all files available in the database. hIDi 2 {1,2,. . .,90} indicates the subject number,hroundi 2 {F,S1,S2,I1,
I2} the data collection round, and hcamerai 2 {PG1,PG2,CP1,CP2} the camera type where PG stands for the computer vision cameras and CP for the cellphone
cameras.

Data Type File Name Description

Video Data hroundi_hcamerai_Subject_hIDi.hformati avi video data from the computer vision cameras (PG1, PG2) for rounds F, S1, and S2, and
mp4 video data from the cellphone cameras (CP1, CP2) for all rounds (F, S1, S2, I1, and I2)
and all subjects (1-90). Note that we provide code to trim the video sequences to single motion
clips for round F.

Camera
Parameters

cameraParams_hcamerai.hformati Contains the camera intrinsic calibration data for camera PG1 and PG2 in .mat, .npz, and .
pkl formats. These parameters are fixed for the whole dataset.

Extrinsics_hcamerai.hformati Contains the camera extrinsics parameters for camera PG1 and PG2 (rotation matrix and
translation vector) in .mat, .npz, and .pkl formats.

Motion
Capture Data

F_amass_Subject_hIDi.mat Contains the full markerset motion capture data (round F) processed by MoSh++ in the
AMASS project and augmented with 3D joint positions and metadata for each subject (1-90).
All files are compressed and stored as F_AMASS.tar. The original npz files and the
rendered animation files are available at https://amass.is.tue.mpg.de/. Note that we provide
code to trim the motion capture sequences to single motion clips.

F_v3d_Subject_hIDi.mat Contains the full markerset motion capture data (round F) processed by Visual3D and
augmented with metadata for each subject (1-90). All files are compressed and stored as
F_Subjects_hIDi_hIDi.tar as containers of 45 subjects (e.g., ID 1-45, ID 46-90).

S_v3d_Subject_hIDi.mat Contains the motion capture data from rounds S1 and S2 processed by Visual3D and
augmented with metadata. All files are compressed and stored as S_V3D.tar.

IMU Data imu_Subject_hIDi.mat Contains the processed IMU calculation files augmented with metadata. Each file contains the
data collected in all rounds (S1, S2, I1, I2). The files are compressed as
IMUmatlab_Subject_hIDi_hIDi.tar containers of 15 subjects (e.g., ID 1-15, ID 16-30
etc).

imu_Subject_hIDi.bvh Contains IMU in .bvh format. Each file contains the data collected in all rounds (S1, S2, I1,
I2). The files are compressed as IMUbvh_Subject_hIDi_hIDi.tar containers of 15
subjects (e.g., ID 1-15, ID 16-30 etc).

https://doi.org/10.1371/journal.pone.0253157.t003
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occlusions occur, and is therefore suitable for motion modelling and gait analysis. MoSh++

provides an estimate of all joint locations (although noisy when occlusions occur), and is there-

fore more suitable for pose estimation and tracking tasks. In addition to capture round F with

full optical marker set, we used a sparse set of optical markers in rounds S1 and S2 to reduce

the visual artefacts in the video material. The sparse marker set still provides ground truth 3D

position of the main joints while still featuring natural clothing. MoVi also provides challeng-

ing action types that are useful for training robust pose estimation models, such as cross-legged

sitting and crawling, but that are not commonly seen in other datasets with ground truth 3D

pose.

The large number of 90 individual actors who performed the same set of actions, provides

high diversity across performers in terms of action type, action execution, style, and modalities

(video, motion capture, and IMU) which are important factors for research on action recogni-

tion (see e.g., [29] who used our dataset for action recognition). This is also important for

frameworks for designing character animation that focus on modelling the natural stochasti-

city and diversity of the movements (e.g, [5]).

5 Usage notes

To support easy accessibility and usage of our dataset in different research fields, processed

and raw data are provided in the data repository. Not all raw data are part of the MoVi data-

base. However, all raw data can be made available upon request by the corresponding author.

Preprocessing code can also be made available to users who are interested in working on raw

data or reproducing processed data along with other datasets.

The motion capture and IMU data were processed and organized in .mat file format, in a

way that they can be easily used for any of the challenges mentioned above. In the following

Github repository, we provide scripts for easy importing of these .mat files into both

MATLAB and Python environments: https://github.com/saeed1262/MoVi-Toolbox. In addi-

tion to the import scripts, all of the needed scripts for preparation, processing, and visualiza-

tion are also provided in the Github repository. Detailed instructions on how to access the

dataset and the license agreement for using the dataset are provided on the dataset website

(https://www.biomotionlab.ca/movi). The original .npz files of the processed motion capture

data using the MoSh++ method are provided as part of the AMASS dataset (https://amass.is.

tue.mpg.de). AMASS provides a unified environment to integrate and compare our dataset to

other existing optical motion capture datasets.

6 Code availability

The customMATLAB and Python scripts for processing the data are provided on the follow-

ing Github repository: https://github.com/saeed1262/MoVi-Toolbox. The repository contains

all the necessary tools for file reading, conversion, processing, and visualization. An additional

tutorial is provided on how to use the dataset.

7 Summary

The MoVi dataset includes five data subsets that were recorded using synchronized video,

optical motion capture and IMU hardware systems to provide partially overlapping informa-

tion across the different subsets. It features the same 60 female and 30 male actors who repeat

the same set of 21 everyday motions and sports movements in each data subset. In total, MoVi

contains 9 hours of optical motion capture data, 17 hours of video data recorded from 4 differ-

ent points of view with both hand-held and stationary cameras, and 6.6 hours of IMU data. To

our knowledge, our dataset is the largest dataset in terms of the number of subjects and
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performed motions, and the first dataset with synchronized pose, pose-dependent and pose-

independent body shape, and video recordings.
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