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MoviBed - sleep analysis using capacitive sensors 
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Abstract. Sleep disorders are a wide-spread phenomenon that can gravely af-

fect personal health and well-being. An individual sleep analysis is a first step 

in identifying unusual sleeping patterns and providing suitable means for fur-

ther therapy and preventing escalation of symptoms. Typically such an analysis 

is an intrusive method and requires the user to stay in a sleep laboratory. In this 

work we present a method for detecting sleep patterns based on invisibly in-

stalled capacitive proximity sensors integrated into the bed frame. These sen-

sors work with weak electric fields and do not disturb sleep. Using the move-

ments of the sleeping person we are able to provide a continuous analysis of 

different sleep phases. The method was tested in a prototypical setup over mul-

tiple nights. 
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1 Introduction 

Sleeping is the single most time-consuming activity of our lives - on average we 

spend approximately a third of our lives sleeping. It is peculiar that our knowledge 

regarding this very important activity remains limited. However, its importance be-

comes apparent as soon as sleep deprivation sets in. Work performance, well-being, 

concentration are negatively affected almost immediately, and may lead to severe 

long-term consequences if the situation is not remedied [1].  

Sleep can be distinguished into different phases, their frequency and duration form-

ing the basis for measuring the sleep quality of an individual person [2]. A popular 

method to distinguish those phases is based on recognizing the movement of a person 

throughout the night, a so called actigraphy [3]. The advent of small accelerometers 

based on microelectromechanical systems (MEMS) has made it possible to perform 

this type of screening at home, e.g. using wristbands or smartphones [4]. However, it 

still requires either a body-worn device or an external unit that is attached to the bed. 

Capacitive proximity sensors allow detecting the presence of a human body by 

means of weak oscillating electric fields. They have been applied to various applica-

tions for body parameter sensing in fields such as human-computer interaction or 

smart furniture, creating different interaction devices, or furniture that is able to sense 

occupation and posture [5–7].   



In this work we present MoviBed, an extension to one of our earlier prototypes [8]. 

This earlier prototype allowed detecting position and posture of one or two persons on 

a bed, based on static analysis of capacitive proximity sensors data. MoviBed allows 

the detection of sleep phases based on movement registered by an array of capacitive 

sensors that is attached to the bed frame. It uses dynamic data analysis to gather a 

measure of overall movement to detect sleep phases, as well as additional data regard-

ing single movements. The system was installed in an extended prototype and evalu-

ated for both detection of different movements and the analysis of different sleep 

phases. 

2 Related Works 

 

Fig. 1 Polysomnogram of a person in REM sleep (Source: 

http://en.wikipedia.org/wiki/File:Sleep_Stage_REM.png) 

The most common method and “gold standard” for determining sleep phases is 

producing a polysomnogram in a sleep laboratory. These devices are monitoring a 

large number of body activities, the most common being electrical brain activity 

(EEG), electrical muscle activity (EMG), eye movement (EOG), hear rate (ECG), 

breathing rate, acoustic detection of snoring, body posture, leg movement and blood 

oxygen levels. The result is a graph as shown in Fig. 1. It allows a precise analysis of 

various sleep disorders and distinguishing the different sleep phases. However, the 

equipment is quite invasive and requires the sleeping person being attached to numer-

ous measuring instruments.  

The recent advent of mobile technology has spawned numerous smartphones 

equipped with MEMS systems and microphones that can be used to detect movement 

in the sleep [4, 9]. The phone is usually placed on the mattress, e.g. below the pillow 



and tracks movement either by vibrations of the mattress or sounds the user generates 

when moving. A variety of personal health applications are available on all modern 

smartphone operating system, one example being WakeApp, providing an improved 

wake experience by adjusting alarm time according to the currently detected sleep 

phase [10].  

 

Fig. 2 Zeo sleep manager with electrode headband, base station and smartphone running the 

associated application 

A final category is made up of devices specifically designed for personal sleep 

analysis. Those provide a middle ground between intrusive laboratory environment 

and light-weight analysis by smartphones. One example is the Zeo Sleep Manager 

shown in Fig. 2. This device is comprised of an electrode headband that provides 

EEG measurements, a base station that is receiving and analyzing those signals and 

various applications for PC and smartphone that provide user interfaces for personal 

sleep analysis. Additionally there is a social networking component that allows com-

paring the individual sleep quality with other users of the system. 

3 Sleep Phase Recognition 

The most reliable way to track sleep phases is by using an electroencephalography 

(EEG); that is measuring the electrical activity of the brain by placing electrodes on 

the scalp. Various different types of neural oscillations can be distinguished - the most 

important for sleep phase detection are alpha waves, theta waves, delta waves and 

sleep spindles. The American Academy of Sleep Medicine (AASM) distinguishes 

three different phases of non-rapid eye movement sleep (NREM) and REM phase 

[11].  

 Stage 1 - occurs mostly in the beginning of sleep. It has slow eye movement, alpha 

waves disappear and the theta wave appears.  

 Stage 2 - dreaming is very rare and no eye movement occurs. The sleeper is quite 

easily awakened. EEG recordings have a tendency for characteristic "sleep spin-

dles" 



 Stage 3 - was previously divided into stages 3 and 4. It is slow-wave sleep (SWS) 

or deep sleep. Stage 3 used to be the transition between stages 2 and 4 where delta 

waves began to occur, while delta waves are dominant in stage 4.  

 REM sleep - is a phase of sleep characterized by random and rapid movement of 

the eyes. It is considered the lightest phase of sleep and occurs all through the night 

but gets longer close to morning. 

 

Fig. 3 Example of human sleep phases throughout the night 

A typical distribution of sleep phases throughout the night is shown in Fig. 3. It can 

be easily scene that the sleep is distributed into different cycles, whereas the sleeping 

person is moving through the different sleep phases until having a REM phase and 

then going back to deep sleep. If the only available data is body movements it is be-

coming more difficult to reliably determine the sleep phase. Studies have shown that 

the magnitude of movement is typically associated to the following phases in decreas-

ing order: wake, stage 1, REM, stage 2, stage 3 [12]. Another method is distinguish-

ing between awake phase, active sleep and quite sleep and takes into account the or-

der of those phases. This information allows to correlate the actual sleep phases with 

good certainty [13]. We have chosen this method for our system.  

4 Movement-detection using capacitive sensors 

Capacitive proximity sensors enable us to detect the presence of suitable object and 

their relative proximity to the electrode. Consequently a moving object will cause a 

change of sensor values. If we aggregate these data deviations from an array of sen-

sors we get a reliable measure of objects moving above the electrodes. In the case of 

MoviBed we can assume that there is a limited number of persons moving on top of 

the sensors and thus it is possible to associate the sensor values to movement. In the 

following we will present a suitable method to achieve a reliable detection of the 

movements of a sleeping person. We are following a similar approach as Salmi and 

Leinonen [13]. 

At any given time t a set of the latest values of all n sensors can be stored as a tuple 

in the following form:   
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As capacitive proximity sensors are particularly susceptible to external influences, 

such as temperature, humidity and other electric fields it is necessary to apply filtering 

on the sensor values. A suitable candidate is a median filter - a low-pass filter method 

that selects the median object of a sorted set of values, thus discarding outliers and 

strongly deviating values. This is particularly suited if transmission errors may occur. 

If a person is moving on the bed the value of all sensors in detection distance of the 

moved body parts will change accordingly, the most relevant example in our case 

being a person moving in its sleep. We can generate a measure of movement intensity 

by comparing the values at time t with those at time t-1 resulting in: 
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In subsequent calculations we will use   
⃗⃗  ⃗ as combined measurement. For distin-

guishing between wake, active sleep and quiet sleep we are solely interest in the most 

intense movement. Thus we are testing for the largest value over a set of m samples, 

generating the value   . 
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The value bt is affected by changes in the speed of movement. Therefor as a final 

step we generate a centered average value of order 2q-1: 
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The resulting value   ̅ allows us to quantify the intensity of movements over a giv-

en period. In order to extract an actual body movement from this value we have to 

quantify a threshold s(t) that is determined by the average of q previous values of    ̅ 

multiplied with a factor f that has to be evaluated individually for each configuration 

of bed and sensors. This threshold s(t) allows us to identify a movement m at any time 

t. This behavior is denoted in the following equations: 
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As previously mentioned it is difficult to determine sleep phases solely by monitor-

ing the movement. Instead following the example of Salmi and Leinonen and distin-

guish three phases - wake, active sleep and quiet sleep [13]. These are determined by 

dividing the sleep time into a three-minute epochs     and qualify these as active or 

quiet by counting the number of movements occurring in those intervals and compar-

ing it to the average amount of movements in all epochs   ̅̅ ̅ determined by the follow-

ing equations: 
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In consequence we determine the status of any epoch with this final equation: 
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These active and quiet periods can be semi-autonomously interpreted by humans in 

order to determine the actual sleep phases. For example initial activity for 20 to 40 

minutes followed by a quiet period can be attributed to a person falling asleep. Fol-

lowing quiet phases are a good indicator for deep sleep phases. 

5 MoviBed Prototype 

 

Fig. 4 MoviBed prototype [8] 

The Prototype uses existing hardware that has been created by Braun et al. [8] that 

uses the CapToolKit [14] to read from eight capacitive sensors and send their values  

to a PC using USB. Each of the sensors uses thin copper-foil as electrodes that are 

attached to the slatted frame of the bed, as shown in Fig. 4. On each bedside is one 

electrode placed below the head-area, two below the top and bottom torso-area and 

one below the feet. This way the whole body can interact with the sensors and most 

motions can be detected. The computer besides the bed runs a Java-program which 



reads the character-string encoded sensor-values via the RXTX library from the serial 

interface and processes the data in the way described in the previous chapter. To be 

read and analyzed later by this or other programs, all processed data of a recording 

can be saved in a comma-separated-file, together with its associated time and date, 

detected motions and epochs. For further investigation by a human gets the processed 

data in a simple GUI visualized. 

 

Fig. 5 graphical user interface of the prototype 

All movement-data are displayed in real-time in a linear graph, each detected mo-

tion is marked and labeled with its time and the epochs are visualized as coloring of 

the graphs background, in which active phases are shown in green and quiet phases in 

blue. This way the whole recording can be analyzed at one glance or in smaller time-

windows for a more detailed analysis. 

6 Evaluation 

We have performed two different evaluations of MoviBed. The first part is a test of 

the detection precision regarding different movements. The test person was perform-

ing the following chain of events: (1) Lying down and standing up again, (2) moving 

the left and right arms away from the body horizontally, (3) moving the arms up and 

down, (4) moving the left and right leg away from the body horizontally, (5) lifting 

the left and right leg, (6) rotating the head, (7) rotating the whole body. The test per-

son was asked to perform this sequence waiting 15 seconds between each event. Dis-

tinct values bt were recorded over time and plotted to get a measure for the detected 

movement intensity. 



 
lying down 

 
standing up 

 
moving the left arm horizontally 

 
moving the right arm horizontally 

 
moving the left arm up and down 

 
moving the right arm up and down 

 
moving the left leg horizontally 

 
moving the right leg horizontally 

 
lifting the left leg 

 
lifting the right leg 

 
rotating the head 

 
rotating the whole body left 

 
rotating the whole body right 

 

Fig. 6 Examples for movements and their associated value bt over time 



Fig. 6 gives an overview of some example sensor activities caused by (1) moving 

an arm and (2) moving the head alone. It can be observed that the head is causing a 

considerably smaller output compared to the arm. This can be attributed to the fact 

that the head is a smaller object and the movement does barely alter the shape of the 

body with respect to the sensor electrodes. Therefore we can group the movements 

into three different categories based on how distinct the sensor response is: 

 Strong response - lying down and standing up (1), rotating whole body (7), hori-

zontal leg movement (4) 

 Medium response - horizontal arm movement (2), lifting legs (5) 

 Weak response - lifting arms (3), rotating head (6) 

 

Fig. 7 Movement data over three hours in night one 

The second evaluation we performed was detecting movements in the sleep of a 

single person over three nights. Fig. 7 gives an example of three hours of the first 

night. We follow the methods presented by Salmi and Leinonen [13] to group the 

epochs and analyze the resulting data set. The exemplary analysis for the three hours 

shown in Fig. 7 results in the following sleep phases: (a) very active wake phase of 37 

minutes, (b) fallen asleep and spending 13 minutes in NREM phases 1 and 2, (c) 

about 20 minutes of deep sleep, (d) going back to phases 2 and 1, (e) first REM phase 

of 9 minutes, (f) approximately 4 minutes of light sleep, (g) deep sleep phase, (h) 

potential REM phase of 11 minutes, (i) potential light sleep and REM sleep. 

The cycles z1 and z2 denote full sleep cycles with the person moving from deep 

sleep to REM and back again. The first has a duration of 50 minutes and the second of 

90 minutes.  



  

Fig. 8 Anomalies in the second (left) and third (right) night 

In the second and third night we were able to monitor some anomalies; i.e. atypical 

phases of very high activity as shown in Fig. 8. The anomaly of night 2 shows a peri-

od of constant activity over 33 minutes. The subject was most likely in a restless wake 

phase. The anomaly of night 3 shows to very intensive phases of sensor activity over 

11 minutes each. The severity can’t be attributed to regular movements. We assume 

that the sensors were either affected by some external influence, e.g. irregular power 

supply or there was an error in the data processing that could not be reproduced. 

While this temporarily disturbed the sleep phase detection, the system recovered later 

in the night. 

Conclusively the system in most cases to reliably discern between wake, active 

sleep and quiet sleep allowing us to reproduce sleep phases with similar accuracy as 

Salmi and Leinonen [13]. 

7 Conclusion & Future Work 

On the previous pages we have presented MoviBed, a sensor-equipped bed for per-

sonal sleep analysis. Based on a platform for capacitive proximity sensing MoviBed is 

able to detect movement on the bed and associate it to different phases of sleep. We 

have presented a method to calculate movement measures from raw capacitive sensor 

values in order to associate different periods of time to phases of wakefulness, active 

sleep and quiet sleep. We have tested this method in  an extended prototype both for 

the capability to distinguish different movements, as well as for sleep phase recogni-

tion. We were able to reproduce the results of Salmi and Leinonen that introduced this 

method of movement-based sleep phase recognition, without requiring disturbing 

measurement devices typically used in full-scale sleep laboratories. Therefore 

MoviBed marks an important step in enabling regular customers to apply some minor 

sleep analysis in their own homes. 

Nonetheless MoviBed is but an intermediate step in this direction. We plan to re-

build the prototype using the OpenCapSense capacitive proximity sensing toolkit, that 

provides higher precision compared to the CapToolKit used in the current iteration 

[15]. We expect that this allows us to more precisely distinguish different movements 

and in addition get an idea about respiratory movements that allows additional reason-



ing about the current sleep phase [16]. This combination of body and respiratory 

movement furthermore allows detecting additional sleep disturbances, such as sleep 

apnea. Based on this future iteration we are planning to perform more precise bench-

marking in a sleep laboratory to get quantitative measurement about system capabili-

ties and reliability. This evaluation will include more users over a longer period of 

time, possibly also users with known sleep disorders. MoviBed can be easily integrat-

ed into home control environments to provide additional services, such as energy 

saving by shutting of appliances as soon as the user is falling asleep, or activating 

certain appliances as soon as he wakes up again. Another idea is to increase the num-

ber of sensors to allow reliably distinguishing between two persons on a single bed. 

Finally we would like to develop a portable version of MoviBed that will allow quick 

installation and tuning of the system in arbitrary bed configurations.  
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