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Moving Average Filter Based Phase-Locked Loops:

Performance Analysis and Design Guidelines
Saeed Golestan, Member, IEEE, Malek Ramezani, Josep M. Guerrero, Senior Member, IEEE, Francisco D.

Freijedo, and Mohammad Monfared Member, IEEE

Abstract—The phase locked-loops (PLLs) are probably the
most widely used synchronization technique in grid-connected
applications. The main challenge associated with the PLLs is
how to precisely and fast estimate the phase and frequency when
the grid voltage is unbalanced and/or distorted. To overcome
this challenge, incorporating moving average filter(s) (MAF) into
the PLL structure has been proposed in some recent literature.
A MAF is a linear-phase finite impulse response filter which
can act as an ideal low-pass filter, if certain conditions hold.
The main aim of this paper is to present the control design
guidelines for a typical MAF-based PLL. The paper starts with
the general description of MAFs. The main challenge associated
with using the MAFs is then explained, and its possible solutions
are discussed. The paper then proceeds with a brief overview
of the different MAF-based PLLs. In each case, the PLL block
diagram description is shown, the advantages and limitations
are briefly discussed, and the tuning approach (if available) is
evaluated. The paper then presents two systematic methods to
design the control parameters of a typical MAF-based PLL:
one for the case of using a proportional-integral (PI) type loop-
filter (LF) in the PLL, and the other for the case of using a
proportional-integral-derivative (PID) type LF. Finally, the paper
compares the performance of a well-tuned MAF-based PLL when
using the PI-type LF with the results of using the PID-type
LF, which provides useful insights into their capabilities and
limitations.

Index Terms—Moving average filter (MAF), phase-locked loop
(PLL), grid synchronization.

I. INTRODUCTION

PROPER synchronization with the utility grid, particularly

when the grid voltage is unbalanced and harmonically

distorted, is an issue of high importance for almost all grid-

connected power electronic equipment. In recent years, many

synchronization techniques have been proposed in literature.

They can be broadly classified into the open-loop and closed-

loop methods [1], [2].
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Fig. 1. Block diagram description of a typical single-phase PLL.

A variety of open-loop synchronization techniques can be

found in literature. The methods based on using the extended

Kalman filters (EKFs) [3], [4], the space vector filters (SVFs)

[3], the weighted least-square estimation (WLSE) algorithms

[5], [6], the cascaded delayed signal cancellation (CDSC) [7],

and the moving average filters (MAFs) [8] are among the

existing open-loop synchronization techniques.

The key feature of open-loop synchronization techniques

is that they are unconditionally stable. They typically yield

a satisfactory performance in terms of the phase/frequency

detection accuracy when the grid frequency is at, or close to,

its nominal value; however, their performance tends to worsen

when the input frequency deviates from its nominal value.

To overcome this problem, incorporating frequency estima-

tion/control algorithms into the open-loop schemes have been

proposed in [3]-[5], and [8]. However, this measure is usually

at the cost of increasing the implementation complexity. An

overview of different open-loop synchronization techniques

can be found in [9].

The closed-loop synchronization techniques are closed-loop

feedback control systems that regulate an error signal to zero.

They can be classified into two major categories: 1) the phase-

locked loops (PLLs) in which the error signal is made by the

difference between the estimated and reference phases; and 2)

the frequency-locked loops (FLLs) in which the error signal

is made by the difference between the estimated and reference

frequencies.

The PLLs are probably the most popular and widely used

synchronization technique within the areas of power electronic

and power system [10]-[11]. They typically consist of three

basic parts: a phase detector (PD), a loop filter (LF), and

a voltage-controlled oscillator (VCO) [12]. Fig. 1 shows the

block diagram description of a typical single-phase PLL.

Focusing on grid-connected applications, a major challenge

associated with the PLLs is how to precisely and fast estimate

the phase and frequency when the grid voltage is unbalanced

and/or distorted. To overcome this challenge, incorporating

different filtering techniques into the PLL structure have

been proposed in literature [13]-[39]. Among these filtering

techniques, the MAF is one of the most popular and widely
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used techniques owing to its simple digital realization, low

computational burden, and effectiveness.

The main objective of this paper is to present control design

guidelines for a typical MAF-based PLL. The paper starts

with a general description of the MAFs. The major problem

associated with the MAFs, that is their frequency-dependent

attenuation characteristics, is then addressed, and the possible

solutions are discussed. A comparison among these solutions is

also carried out, which provides a guideline for selecting the

proper method for a given application. The paper proceeds

with a brief overview of the different MAF-based PLLs. In

each case, the PLL block diagram description is shown, the

advantages and limitations are briefly discussed, and the tuning

approach (if available) is evaluated. Two systematic methods

to design the control parameters of a typical MAF-based PLL

are then presented: one for the case of using a proportional-

integral (PI) type LF in the PLL, and the other for the case of

using a proportional-integral-derivative (PID) type LF. Finally,

the paper compares the performance of a well-tuned MAF-

based PLL when using the PI-type LF with the results of

using the PID-type LF, which provides useful insights into

their capabilities and limitations.

II. DESCRIPTION AND IMPLEMENTATION ISSUES OF MAFS

MAFs are linear-phase finite impulse response (FIR) filters

that can act as ideal low-pass filters (LPFs) if certain con-

ditions hold [24], [40]. They are easy to realize in practice,

and are cost effective in terms of the computational burden. In

this section, the continuous-time description and the discrete-

time realization of MAFs are presented. The major problem

associated with using the MAFs is then addressed, and the

possible solutions are discussed.

A. Continuous-Time Description

A MAF with the input signal x(t) and the output signal

x̄(t) can be described in continuous-time domain by

x̄(t) =
1

Tw

t∫

t−Tw

x(τ)dτ (1)

where Tw is referred to as the window length. From (1), the

MAF transfer function can be simply obtained as

GMAF (s) =
x̄(s)

x(s)
=

1− e−Tws

Tws
. (2)

The transfer function (2) shows that the MAF requires a time

equal to its window length to reach steady-state condition.

Therefore, the wider the window length, the slower the MAF

transient response will be.

By substituting s = jω into (2), and performing some

simple mathematical manipulations, the magnitude and phase

expressions of the MAF can be obtained as

GMAF (jω) =

∣
∣
∣
∣

sin(ωTw/2)

ωTw/2

∣
∣
∣
∣
∠− ωTw/2. (3)

From (3), it can be noticed that, the MAF provides unity gain

at zero frequency, and zero gain at frequencies f = n/Tw

Fig. 2. Bode plots of MAF and its first-order counterpart for Tw = 0.01 s.

(n = 1, 2, 3, ...) in hertz. It means that the MAF passes the dc

component, and completely blocks the frequency components

of integer multiples of 1/Tw in hertz. This can be better

visualized through the MAF Bode plot shown in Fig. 2. The

window length Tw is considered to be 0.01 s. To provide

a means of comparison, the Bode plot of the first-order

counterpart of the MAF, i.e.,

GMAF (s)|e−Tws
≈

1−Tws/2
1+Tws/2

≈
1

Tw

2 s+ 1
(4)

is also shown in Fig. 2. Notice that (4) is obtained by

approximating the delay term in (2) by the first-order Padé

approximation. As shown, the MAF frequency response in-

cludes an infinite set of notches centered at 1/Tw = 100 Hz

and its integer multiples. Therefore, as mentioned before, the

MAF completely blocks these frequency components. It is an

interesting feature which enables the MAF to act as an ideal

LPF.

B. Discrete-Time Realization

Equation (1) defines the MAF in the continuous-time

domain. However, to realize it in practice, a discrete-time

definition is required. Assuming that the window length of the

MAF contains N samples (N is an integer which, as we will

see later, determines the MAF order) of its input signal, i.e.,

Tw = NTs where Ts is the sampling time, the discrete-time

description of MAF can be obtained, based on (1), as

x̄(k) =
1

N

N−1∑

i=0

x(k − i) (5)

where x(k) is the current sample.

The difference equation (5) can be expressed in Z-domain

as
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Fig. 3. Discrete-time realization of MAF.

X̄(z)= GMAF (z)X(z)

=
1

N

(

X(z) + z−1X(z) + ...+ z−(N−1)X(z)
)

=

(

1

N

N−1∑

i=0

z−i

)

X(z)

=
1

N

1− z−N

1− z−1
X(z). (6)

The implementation of the discrete transfer function

GMAF (z) is shown in Fig. 3. As shown, the MAF is compu-

tationally efficient; For a fixed window length, it requires only

one multiplication, one addition, and one subtraction.

C. Frequency-Adaptive MAF Implementation

Assume that the MAF has been designed to block the

sinusoidal disturbances of integer multiples of the frequency

fd in hertz, i.e., Tw = NTs = 1/fd (it will be shown later

that, for a typical MAF-based PLL, the disturbance frequency

fd is equal to twice the fundamental grid frequency (i.e.,

fd = 100 Hz in a 50 Hz system) in most practical cases).

The problem arises when the grid frequency, and as a result,

the disturbance frequency fd changes. In such a case, the MAF

cannot completely block the disturbance components. It is the

main challenge associated with using the MAFs.

To achieve a frequency-adaptive MAF, several approaches

have been proposed in literature. What all these approaches

have in common is the online adjustment of the MAF window

length according to the grid frequency variations. A brief

overview of these approaches is presented in the following.

In [25]-[28], the MAF window length is adapted to the

grid frequency variations by adaptively adjustment of the PLL

sampling frequency. It should be noticed that the PLL is a

small part of the control strategy in most cases. Therefore,

due to the restrictions and requirements of the control strategy,

implementation of a variable sampling rate PLL may not be

always possible.

Adjustment of the MAF order, N , according to the grid

frequency variations is another approach to make the MAF

frequency adaptive. To do this, different approaches can be

found in literature. In its simplest form, the MAF order can

be adjusted by rounding-down or rounding-up Tw/Ts to the

nearest integer, i.e.,

N = Nf = floor(Tw/Ts) (7)

N = Nc = ceil(Tw/Ts) (8)

where Tw = 1/f̂d (f̂d is an estimation of fd, and is calculated

using an estimation of grid frequency). Another approach,

suggested by Freijedo et al. [40], uses a look-up table to

adaptively adjust N . The look-up receives an estimation of

the grid frequency as input, and calculates the MAF order as

the nearest integer to Tw/Ts, i.e.,

N = Nr = round(Tw/Ts) (9)

where, again, Tw = 1/f̂d.

Originally developed for reducing the detection error in the

delayed signal cancelation (DSC) methods, the “mean value”

approach [41] can also be used to make the MAF frequency

adaptive. By using this approach, the MAF can be defined as

x̄(k) =
1

2




1

Nf

Nf−1
∑

i=0

x(k − i)+
1

Nc

Nc−1∑

i=0

x(k − i)



 (10)

where Nf and Nc are given in (7) and (8), respectively.

Notice that (10) has time-varying parameters. Therefore,

it cannot be represented in the transfer-function form in the

general case. However, for a given window length, it can be

represented by

X̄(z) = GMV
MAF (z)X(z)

=
1

2

(
1
Nf

+ 1
Nf+1

)

− 1
Nf

z−Nf − 1
Nf+1z

−(Nf+1)

1− z−1
X(z) (11)

where the superscript “MV” denotes the mean value approach.

Another solution, again developed for reducing the detection

error in the DSC methods, is the “weighted mean value”

approach [41]. By using this approach, the MAF can be

defined as

x̄(k) =
1− α

Nf

Nf−1
∑

i=0

x(k − i)+
α

Nc

Nc−1∑

i=0

x(k − i) (12)

where α is called the weighting factor. Obviously, when Tw =
NfTs, the weighting factor α should be equal to zero, and

when Tw = NcTs = (Nf+1)Ts, the weighting factor α should

be equal to one. Therefore, it can be defined in a simple form

as

α =
Tw −NfTs

Ts

. (13)

For a given window length, (12) can be represented in

transfer-function form by

X̄(z) = GWMV
MAF (z)X(z)

=

(
1−α
Nf

+ α
Nf+1

)

− 1−α
Nf

z−Nf − α
Nf+1z

−(Nf+1)

1− z−1
X(z) (14)

where the superscript “WMV” denotes the weighted mean

value approach.

Another approach is to incorporate the linear interpolation

method into the MAF, as shown in Fig. 4 [30]. By using this

approach, the MAF is defined as
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Fig. 4. Incorporating the linear interpolation method into MAF. The dashed
red line shows the linear interpolation to estimate the inter-sample value.

x̄(k) =
Ts

Tw





Nf−1
∑

i=0

x(k − i)

+α [(1− α)x(k −Nf + 1) + αx(k −Nf )]



(15)

where α is the same as that given in (13).

For a given window length, (15) can be represented in

transfer-function form by (16), where the superscript “LIP”

denotes the linear interpolation.

A natural thought to further improve the MAF performance

under frequency varying environments is to use a high-order

polynomial interpolation instead of the linear interpolation.

Considering the fact that the sampling time is very small, the

performance improvement by using the high order polynomial

interpolation will be very limited, and cannot counterbalance

the extra complexity.

To provide a comparison among these adaptive methods, we

perform the following procedure for each method: the distur-

bance frequency fd is changed from 96 Hz to 104 Hz, and

the magnitudes of MAF at different values of fd are obtained

and shown in Fig. 5. To provide a base for comparison, the

obtained result for a nonadaptive MAF (N = 100) is also

shown in this figure. The sampling time Ts is set to 0.0001
s in this study. As shown, the weighted mean value method

[Fig. 5(f)] and the linear interpolation method [Fig. 5(g)] give

the best results. Round-to-nearest-integer method [Fig. 5(d)]

and mean value method [Fig. 5(e)] can be considered as the

next best options.

III. MAF-BASED PLLS

This section provides an overview of different MAF-based

PLLs. In each case, the PLL general structure is shown,

the advantages and limitations are discussed, and the tuning

approach (if available) is evaluated.

A. PLLs With Nonadaptive MAF(s)

All PLLs reviewed in this section use nonadaptive MAF(s)

within their control loop(s). In some literature, this is justified

by the reason that the grid voltage frequency changes within

a limited range in most practical cases.

In [31] and [32], incorporating the MAF into the phase-

control loop of a conventional synchronous reference frame

PLL (SRF-PLL) are suggested. Fig. 6 shows the block diagram

description of this PLL, which is referred to as the MA-PLL.

The experimental results reported in [31] and [32] show that

including MAF within the phase control loop of a SRF-PLL

improves its filtering capability at the cost of slows down its

transient response. A design method for selecting the control

parameters of the MA-PLL is also suggested in [31]. In this

method, the dynamic of the MAF is approximated by a first-

order LPF with a time-constant of Tw, i.e., GMAF (s) ≈
1/(Tws+1), which is inaccurate [see (4)]. Besides, the design

method is based on a trial-and-error procedure, and, therefore,

is time-consuming.

In [34], a modified power-based PLL (pPLL), referred to as

the discrete Fourier transform (DFT) PLL is proposed. Fig. 7

shows a block diagram description of this PLL. The DFT-PLL

offers a high degree of immunity to the input signal harmonics

when the grid frequency is at, or close to, its nominal value.

However, it may suffer from a high double frequency error

when the grid frequency deviation from its rated value is high.

For accurate phase, frequency and amplitude detection ca-

pability under adverse grid conditions, a three-phase PLL, here

called the modified multiple reference frame (MRF) PLL, is

proposed in [35]. Fig. 8 shows the block diagram description

of this PLL. When compared to the original MRF-PLL [22],

the modification of this PLL is to replace the first-order LPFs

in the MRF network with nonadaptive MAFs, which improve

its filtering capability, particularly when the grid frequency is

at, or close to, its nominal value.

In [36], incorporating the MAFs (where they are called the

rectangular windows in [36]) into the control loops of the

enhanced PLL (EPLL) is suggested. A method to design the

LF gains for a windowed PLL is also suggested in [36]. In this

method, the characteristic equation of the PLL phase-control

loop is considered as

s2 + V kpGMAF (s)s+ V kiGMAF (s) = 0 (17)

where V is the input signal amplitude, and it is assumed

to be equal to 1 pu for the sake of simplicity, and kp and

ki are the proportional and integral gains of the PI-type

LF, respectively. The proportional and integral gains are then

defined as kp = 2ζωn and ki = ω2
n, where ζ is the damping

factor and ωn is the natural frequency. The design method

suggests to 1) select ζ = 1; 2) draw the root locus of the

closed-loop poles versus the natural frequency ωn; 3) obtain

ωn by selecting the location of the dominant poles; and 4)

———————————————————————————————————————————————————–

X̄(z) = GLIP
MAF (z)X(z) =

Ts

Tw

1−
(
α2 − α

)
z−(Nf−1) −

(
1 + α− 2α2

)
z−Nf − α2z−(Nf+1)

1− z−1
X(z) (16)
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 5. Magnitude of MAF at the disturbance frequency fd when fd is
changed from 96 Hz to 104 Hz (Tw = 1/fd, and Ts = 0.0001 s). (a)
Nonadaptive MAF, (b) Round-down to nearest integer method, (c) Round-up
to nearest integer method, (d) round to nearest integer method, (e) mean value
method, (f) weighted mean value method, and (g) linear interpolation method.

Fig. 6. Block diagram description of the MA-PLL.

Fig. 7. Block diagram description of the DFT-PLL.

Fig. 8. Block diagram description of the modified MRF-PLL.

calculate the proportional and integral gains using the selected

values for ζ and ωn. A drawback associated with this approach

is that it is a relatively time-consuming procedure, and it

may take some trial and error, depending on the designer’s

experience.

B. PLLs With Frequency-Adaptive MAF(s)

All PLLs reviewed in this section use frequency adaptive

MAF(s) in their control loop(s).

Fig. 9 shows the block diagram description of the MAF-

based PLL proposed in [37] and [38], which consists of a

conventional SRF-PLL and two frequency adaptive MAFs. As

shown, the estimated frequency by the PLL is used to make the

MAFs frequency adaptive, however, the adaptive mechanism

is not explained. The parameters design method suggested in

[37] and [38] is based on neglecting the dynamic of the MAF

and modeling the PLL as a second order system. This design

method, although simple, is not optimum at all.

To estimate the amplitude and angle of the fundamental

frequency positive and negative sequence components, a PLL

referred to as the double Matlab-PLL (mPLL) is proposed in

[9]. The block diagram description of this PLL is shown in

Fig. 10. As shown, the double mPLL employs two SRF-PLLs

with in-loop MAFs: one for the positive sequence and the
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Fig. 9. A conventional SRF-PLL with frequency adaptive MAFs.

Fig. 10. Block diagram description of the double mPLL.

other for the negative sequence. The estimated frequency by

the positive sequence SRF-PLL is used to make the MAFs

frequency adaptive.

In [26], a single-phase PLL for synchronization purposes

under adverse grid conditions is proposed. A simple block di-

agram of this PLL, here called the variable sampling frequency

PLL (VSF-PLL), is shown in Fig. 11. As shown, this PLL is

basically a pPLL; however its sampling period is adjusted to

adapt the MAF window length to the grid frequency variations.

The limitation of variable sampling rate PLLs was already

discussed in section II-C. To tune the control parameters of

this PLL, some z-domain design guidelines, mainly based on

a trial and error method, are also suggested in [26].

In [27], a three-phase PLL, referred to as the variable

sampling period filter PLL (VSPF-PLL) is proposed. The

VSPF-PLL uses the same idea of the VSF-PLL (Fig. 11).

Therefore, it has the same characteristics as the VSF-PLL.

A modification of this PLL is to use a PID controller (instead

of the PI controller) as the LF, which improves its dynamic

response during grid disturbances. Some design guidelines to

adjust the parameters of the PID-type LF are also suggested

in [27]. It is worth mentioning that the single-phase version

of VSPF-PLL can be found in [28].

Fig. 12 shows the block diagram of the proposed PLL in

[30], which can be considered as the modified version of the

PLL shown in Fig. 9. The main modifications are incorporating

two units, referred to as the initial phase angle detector and

the reconstructor, into the PLL structure which improve its

performance during grid disturbances. The linear interpolation

method is used in this PLL to make the MAFs frequency

adaptive.

Several other MAF-based PLLs can be found in [24], [42],

and [43].

Fig. 11. Block diagram description of the VSF-PLL.

Fig. 12. Block diagram description of the proposed PLL in [30].

IV. DESIGN GUIDELINES

In this section, some control design guidelines for MAF-

based PLLs are presented. A pPLL with in-loop MAF, shown

in Fig. 13, and a conventional SRF-PLL with in-loop MAF

(MA-PLL), shown in Fig. 14, are considered for this study.

In both of these PLLs, LF (s) is the transfer function of

the LF which can be a PI controller or a PID controller.

The nonadaptive MAF is considered in this study. The design

guidelines are based on the small-signal model of these PLLs,

which are derived in the following.

A. Small-Signal Modeling

First, the small-signal model of the pPLL is derived. Let

the single-phase input voltage of the pPLL be represented by

vin = V1 cos (ωt+ φ1)
︸ ︷︷ ︸

θ1

+V3 cos (3ωt+ φ3)
︸ ︷︷ ︸

θ3

+ · · · (18)

where Vh, θh, and φh (h = 1, 3, 5, · · · ) are the amplitude,

phase-angle, and initial phase-angle of the hth harmonic

component of the input voltage, respectively, and ω is the input

voltage angular frequency. Notice that the even harmonic com-

ponents and the dc offset are not considered, since they have

much smaller magnitudes than the odd harmonic components

in practice.

From Fig. 13, the MAF input signal p′ can be expressed as

p′ = 2vinis = V1 sin(θ̂1 − θ1) + V1 sin(θ̂1 + θ1)

+V3 sin(θ̂1 − θ3) + V3 sin(θ̂1 + θ3)

+ · · · (19)

Notice that each component of order h in the pPLL input leads

to two different components of orders h± 1 after multiplier if

ω = ω̂.
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Fig. 13. pPLL with in-loop MAF.

Fig. 14. MA-PLL.

Under a quasi-locked state (i.e., when θ1 ≈ θ̂1 and ω = ω̂),

(19) can be approximated by

p′ ≈ V1(θ̂1 − θ1) + f(2ω, 4ω, 6ω, · · · ). (20)

Using (20) and Fig. 13, the pPLL small-signal model

can be obtained as shown in Fig. 15, where D(s) =
−L [f(2ω, 4ω, 6ω, · · · )] (L denotes the Laplace operator).

Now, the small-signal model of the MA-PLL is derived. Let

the three-phase input voltages of the MA-PLL be represented

by

va =
∑

h=1,5,7,···

[
V +
h cos

(
θ+h
)
+ V −

h cos
(
θ−h
)]

vb =
∑

h=1,5,7,···

[
V +
h cos

(
θ+h − 2π

3

)
+ V −

h cos
(
θ−h + 2π

3

)]

vc =
∑

h=1,5,7,···

[
V +
h cos

(
θ+h + 2π

3

)
+ V −

h cos
(
θ−h − 2π

3

)]

(21)

where V +
h (V −

h ) and θ+h (θ−h ) (h = 1, 5, 7, 11, 13 · · · ) are the

amplitude and phase angle of the hth harmonic component of

the positive- (negative-) sequence of the input voltages, respec-

tively. The zero-sequence components are not considered, as

the Clarke (abc-to-αβ) transformation blocks them [13]. The

even harmonic components and dc offset are also neglected as

they have negligible magnitudes in most practical cases.

Applying the Clarke transformation to the three-phase input

voltages, yields

vα =
∑

h=1,5,7,···

[
V +
h cos

(
θ+h
)
+ V −

h cos
(
θ−h
)]

vβ =
∑

h=1,5,7,···

[
V +
h sin

(
θ+h
)
− V −

h sin
(
θ−h
)]
.

(22)

Applying the Park (αβ-to-dq) transformation to the αβ coor-

dinate voltage, yields the q-axis component vq as

vq(t) =
∑

h=1,5,7,···

[

V +
h sin

(

θ+h − θ̂+1

)

− V −

h sin
(

θ−h + θ̂+1

)]

.

(23)

Under a quasi-locked state (i.e., ω = ω̂ and θ+1 ≈ θ̂+1 ), (23)

can be approximated by

Fig. 15. Small-signal model of the pPLL.

Fig. 16. Small-signal model of the MA-PLL.

vq(t) ≈ V +
1

(

θ+1 − θ̂+1

)

+ f ′ (2ω, 4ω, 6ω, · · ·) . (24)

Using (24) and Fig. 14, the small-signal model of the MA-

PLL can be obtained as shown in Fig. 16, where D′(s) =
L [f ′(2ω, 4ω, 6ω, · · · )].

Notice that the pPLL and MA-PLL have the same small-

signal model. Therefore, a same design approach can be

applied to both PLLs. The accuracy of the small-signal models

will be confirmed later.

B. Selection of the MAF window length

The selection of the window length of the MAF is an

issue of high importance, and it should be done according

to the possible disturbance components in the PLL input

voltage(s). In the previous section, the odd harmonics and the

non-triplen odd harmonics were considered as the dominant

harmonic components in the input voltage(s) of the pPLL and

the MA-PLL, respectively. It was shown that, in the presence

of such harmonic components, the control loop of both PLLs

suffer from even harmonic ripples. Therefore, to cancel out

these ripples, the MAF window length should be set equal

to the half of the fundamental period of grid voltage, i.e.,

Tw = π/ω = 0.01 s in a 50 Hz system (remember that the

MAF blocks the sinusoidal components of integer multiples

of 1/Tw in hertz).

In this paper, the presence of dc offset and the even har-

monic components in the input voltage(s) of the PLLs under

study were neglected due to their much smaller magnitude than

the odd harmonic components in most practical cases. Any-

way, for those applications where they may have considerable

magnitudes, the MAF window length should be set equal to the

fundamental period of grid voltage, i.e., Tw = 2π/ω = 0.02 s

in a 50 Hz system.

C. PI-Type LF Parameters Design

In this section, a systematic method to design the control

parameters of a PI-type LF for the PLLs under study is

proposed. The suggested design approach is performed on

the MA-PLL, which is valid for the pPLL as well. The LF
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transfer function is LF (s) = kp + ki/s, where kp and ki are

the proportional and integral gains, respectively. The proposed

method is based on the symmetrical optimum method, which

is a standard design procedure in various applications, such

as electric motor drives [44], the frequency synthesizers [45],

and the grid synchronization PLLs [46]-[47].

According to the symmetrical optimum method, for a PLL

with an open-loop transfer function of the form

Gol = V
ωp(kps+ ki)

s2(s+ ωp)
(25)

the control parameters kp, ki, and ωp can be selected as

ωp = bωc (26a)

kp = ωc/V (26b)

ki = ω2
c/(bV ) (26c)

where ωc is the gain crossover frequency, and b is a design

constant which should be selected according to the required

transient response and stability margin. It is shown in the

following that this design procedure is applicable to the MA-

PLL.

From Fig. 16, the open-loop transfer function of MA-PLL

can be obtained as

Gol(s) =
θ̂+1
θe

∣
∣
∣
∣
∣
D′(s)=0

= V +
1 GMAF (s)LF (s)

1

s
. (27)

By substituting LF (s) = kp + ki/s, and approximating the

MAF with its first-order counterpart [see (4)], (27) can be

approximated by

GPI
ol (s) ≈ V +

1

kps+ ki

s2
(
Tw

2 s+ 1
) = V +

1

2
Tw

(kps+ ki)

s2
(

s+ 2
Tw

) . (28)

Comparing (25) and (28), it can be noticed that they are

the same transfer functions for ωp = 2/Tw and V = V +
1 .

Therefore, the same design procedure as that summarized in

(26) can be used to design the LF parameters (i.e., kp and ki)
of MA-PLL.

Substituting ωp = 2/Tw into (26a), yields the gain crossover

frequency ωc as

ωc =
2

bTw

. (29)

By substituting (29) into (26b) and (26c), we can obtain the

proportional and integral gains as

kp = 2
V

+

1
bTw

ki =
4

V
+

1
b3T 2

w

.
(30)

The design constant b is selected to be 2.4, as this value

makes the PLL transient response fast and well-damped, and

provides a phase margin (PM) of about 45◦ for the PLL which

guarantees its stability [47]. With this selection, and following

the suggested guidelines in previous section about selecting

the MAF window length, the control parameters of MA-PLL

Fig. 17. Bode plot of open-loop transfer function (27) when using the PI-type

LF. Parameters: Tw = 0.01, V +

1
= 1 pu, kp = 83.33, and ki = 2893.5.

can be calculated as

Tw = π/ω = 0.01
kp = 2/

(
V +
1 bTw

)
= 83.33

ki = 4/
(
V +
1 b3T 2

w

)
= 2893.5

(31)

Notice that to calculate the parameters, V +
1 = 1 pu, and ω =

2π50 rad/s were considered.

Fig. 17 shows the Bode plot of the open-loop transfer

function (27) using the designed control parameters. As shown,

the designed parameters result in a PM of 43.3◦ and a gain

margin (GM) of 14.1 dB, which guarantees the PLL stability.

Notice that the crossover frequency corresponds to the peak

of phase plot.

To evaluate the accuracy of the small-signal modeling, and

to confirm the validity of the approximation made during the

design procedure (i.e., approximating MAF with its first-order

counterpart), the transient response of the MA-PLL (Fig. 14)

is compared to the transient response of its small-signal model

(Fig. 16) when the MAF in the model is replaced by its first

order counterpart. The obtained results are shown in Fig. 18,

which confirms the accuracy of the small-signal model, as well

as the validity of the approximation.

In practice, the PLL is implemented in a discrete device.

Therefore, it seems to be more accurate to perform the LF

parameters tuning in the z-domain instead of the s-domain.

It should be noticed that the PLL bandwidth is much lower

than its sampling frequency. Therefore, the s-domain analy-

sis/tuning can provide an accuracy as good as that achievable

in z-domain. In addition, the analysis/tuning in the Laplace

domain is more convenient and straightforward than that in

the z-domain. For these reasons, the s-domain analysis/tuning

was considered here. Anyway, the designers who are interested

in a z-domain analysis/tuning, will find some z-domain control

design guidelines for a MAF-based PLL in [26].
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Fig. 18. Performance comparison between the MA-PLL and its small-signal
model (MAF in the model is replaced by its first-order counterpart) under

grid voltage disturbances. Parameters: Tw = 0.01, V +

1
= 1 pu, kp = 83.33,

and ki = 2893.5

D. PID-Type LF Parameters Design

In this section, a systematic method to design the control

parameters of a PID-type LF for the MA-PLL is proposed.

This method is valid for the case of pPLL as well.

Let the transfer function of the PID-type LF be of the form

LF (s) = k′p
1 + τis

τis

1 + τds

1 + βτds
(32)

where k′p is the proportional gain, and τi and τd are the integral

and derivative time constants, respectively. The term 1+βτds
in the denominator produces a high frequency pole in order to

filter the derivative action of the PID controller. For this reason,

it is referred to as the derivative filter, and β is referred to as

the derivative filter factor. A typical value for β is 0.1.

By substituting (32) into (27), and approximating the MAF

with its first order counterpart, the open-loop transfer function

of MA-PLL becomes

GPID
ol (s) ≈ V +

1 k′p
1

Tw

2 s+ 1

1 + τis

τis

1 + τds

1 + βτds

1

s
. (33)

According to (33), it can be noticed that the phase delay caused

by the MAF can be compensated by selecting the derivative

time constant equal to half the window length, i.e., τd = Tw/2.

With this selection, and considering that the derivative filter

(which corresponds to a high frequency pole) has a small effect

on the PLL dynamics, (33) can be simplified to

GPID
ol (s) ≈ V +

1 k′p
1 + τis

τis2
. (34)

Using (34) and Fig. 16, the closed-loop transfer function of

the MA-PLL can be obtained as

GPID
cl (s) =

GPID
ol (s)

1 +GPID
ol (s)

≈
V +
1 k′ps+ V +

1 k′p/τi

s2 + V +
1 k′p
︸ ︷︷ ︸

2ζωn

s+ V +
1 k′p/τi
︸ ︷︷ ︸

ω2
n

.

(35)

The closed-loop transfer function (35) is a standard second-

order transfer function with a zero, and is characterized by

two parameters: 1) the damping factor ζ; and 2) the natural

Fig. 19. PM versus the natural frequency ωn. Parameters: Tw = 0.01, V +

1
=

1pu, ζ = 0.707, τd = Tw/2, β = 0.1, τi = 2ζ/ωn, k′p = 2ζωn/V
+

1
.

frequency ωn. Typically, a value of 0.707 is recommended as

the optimum value for the damping factor ζ. However, selec-

tion of the natural frequency ωn depends on the application

requirements. In most applications, a fast dynamic response

for the PLL is desirable, which requires a high value for the

natural frequency ωn. However, it should be noticed that a

very high value for ωn may jeopardize the MA-PLL stability

because of presence of the MAF within its control loop. This

fact can be better visualized through the curve plotted in Fig.

19, which shows the PM variations of MA-PLL as a function

of ωn. Notice that the exact open-loop transfer function (27)

is used to obtain this plot. As shown, the PM decreases as

ωn increases. Therefore, as mentioned before, the value of

ωn cannot be arbitrary increased, and it should be chosen

carefully.

In most control texts, a PM within the range of 30◦−60◦ is

recommended. In this paper, a PM in the middle of this range,

i.e., PM = 45◦, is selected, which corresponds to ωn ≈ 2π20
rad/s as shown in Fig. 19.

With these selections for ζ and ωn, and following the

suggested guidelines in section IV-B about selecting the MAF

window length, the control parameters can be calculated as

Tw = π/ω = 0.01
k′p = 2ζωn/V

+
1 = 177.69

τi = 2ζ/ωn = 0.01125
τd = Tw/2 = 0.005

(36)

Again, to calculate the parameters, V +
1 = 1 pu, and ω = 2π50

rad/s were considered.

Fig. 20 shows the Bode plot of the open-loop transfer

function (27) using the designed control parameters. As shown,

the PID-type LF can provide a higher bandwidth (a faster

dynamic response) than that obtained by the PI-type LF

without jeopardizing the PLL stability.

V. NUMERICAL RESULTS

In this section, the MA-PLL (Fig. 14) is numerically simu-

lated in the MATLAB/Simulink environment for two different
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Fig. 20. Bode plot of the open-loop transfer function of (27) when using

the PID-type LF. Parameters: Tw = 0.01, V +

1
= 1 pu, k′p = 177.69,

τi = 0.01125, τd = 0.005, and β = 0.1.

cases: one for the case of using the PI-type LF [control

parameters values are given in (31)], and the other for the

case of using the PID-type LF [the control parameter values

are given in (36)]. In both cases, the MAF is considered to be

nonadaptive. Throughout the simulation studies, the sampling

frequency of the MA-PLL is fixed to 10 kHz, and the nominal

angular frequency is set to 2π50 rad/s.

A. Frequency step change

Fig. 21 shows the simulations results for the MA-PLL when

the grid voltage undergoes a frequency step change of +5 Hz.

As shown, the PID-type LF results in much better transient

response than the PI-type LF. The 2% settling time, i.e., the

time after which the estimated frequency by the MA-PLL

reaches and remains within 0.1 Hz of its final value, is about

37 ms for the case of using the PID-type LF, while it is about

74 ms for the case of using the PI-type LF. The phase-error

overshoot is about 19.2◦ for the case of using the PI-type LF,

while it is about 7.8◦ for the case of using the PID-type LF.

B. Phase-angle jump

Fig. 22 shows the simulations results when the grid voltage

undergoes a phase-angle jump of +40◦. Again, the PID-type

LF results in a shorter transient time. The 2% settling time,

i.e., the time after which the phase error reaches and remains

within 0.8◦ neighborhood of zero, is about 37 ms for the case

of using the PID-type LF, while it is about 75 ms for the case

of using the PI-type LF. However, the PID-type LF results in a

frequency overshoot of about 16.7 Hz, which is almost twice

of that for the case of using the PI-type LF.

C. Unbalanced and harmonically distorted grid conditions

Fig. 23 shows the steady-state peak-to-peak phase error

of the MA-PLL under off-nominal grid frequency conditions

(a)

(b)

Fig. 21. Simulations results when the grid voltage undergoes a frequency
step change of +5 Hz.

(a)

(b)

Fig. 22. Simulations results when the grid voltage undergoes a phase angle
jump of +40◦.

(2π51 rad/s and 2π55 rad/s) and in the presence of fundamen-

tal negative sequence component and the low-order harmonic

components in its input signals. This figure shows that

• For both PI-type and PID-type LFs, the phase error of

the MA-PLL increases with increasing its input harmonic

content (or its unbalance level) or increasing the deviation

of the grid frequency from its nominal value.

• The PI-type LF results in a much better disturbance

rejection capability than the PID-type LF. This conclusion

can also be confirmed through the closed-loop Bode plots

shown in Fig. 24.



IEEE TRANSACTIONS ON POWER ELECTRONICS 11

(a) (b)

(c) (d)

Fig. 23. Steady-state peak-to-peak phase error of the MA-PLL under off-nominal grid frequency condition and in the presence of fundamental negative
sequence component and the low-order harmonic components in its input signals. (a) PI-type LF and ω = 2π51 rad/s, (b) PI-type LF and ω = 2π55 rad/s,
(c) PID-type LF and ω = 2π51 rad/s, and (d) PID-type LF and ω = 2π55 rad/s.

• Contrary to the case of using the PI-type LF, which yields

acceptable results even under large frequency deviations,

the obtained results for the case of using the PID type

LF are acceptable just when the grid voltage frequency

is close to its nominal value.

According to these results, we recommend to use the

frequency-adaptive MAF in the MA-PLL when the PID-type

LF is employed. For the case of using the PI-type LF in the

MA-PLL, the frequency adaptation of the MAF may not be

required for most practical purposes.

It should be noted that, for the case of pPLL, the control

loop suffers from a double frequency sinusoidal ripple with the

same amplitude as the fundamental voltage component [see

(19) and (20)]. Notice that this ripple is a by-product of the

PD’s multiplication function which continues to be present

even if the pPLL input signal is a clean sine wave. This high

amplitude ripple makes the frequency adaptation of the MAF

necessary for the pPLL, particularly when the PID-type LF is

used.

D. Noise Contamination

In practical applications, the noise contamination is in-

evitable. Therefore, the noise immunity is a feature of high

importance for the PLLs. This section evaluates the level of

MA-PLL noise immunity. To perform a thorough simulation,

the dynamics of the anti-aliasing filter is also considered in

this study. The anti-aliasing filter is an analog filter in practice

which is used before analog to digital conversion to limit the

noise bandwidth [48].

The input signal in this study is a balanced three-phase

set of signals with the amplitude of 1 pu which are con-

taminated with a zero-mean white Gaussian noise of variance
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Fig. 24. Closed-loop Bode plots of the MA-PLL.

σ2 = 0.05. This corresponds to a signal-to-noise-ratio (SNR)

of SNR = 10 log
(

1
2σ2

)
= 10dB. The noisy waveform is

sampled as a rate of 100 kHz, and is then fed to a digital anti-

aliasing filter. This high sampling rate is to avoid the aliasing

effects [49]. Here, the anti-aliasing filter is made by three

digital first-order LPFs with the cutoff frequency of 2π4000
rad/s. The outputs of anti-aliasing filter are then downsampled

to 10 kHz to perform the PLL algorithm. Throughout this

study, the grid voltage frequency is fixed at its nominal value.

Fig. 25 shows the simulation results in this condition. The

description of plots are as follows. Fig. 25(a) shows the

noise-contaminated three-phase input signals (SNR=10 dB).

Fig. 25(b) shows the output signals of the anti-aliasing filter.

The SNR at the output of anti-aliasing filter is numerically

calculated, which is about 19 dB. Figs. 25(c) and (d) show

the three-phase output signals of the MA-PLL when using the

PI-type and PID-type LFs, respectively. The SNR is about 44

dB when using the PI-type LF, while it is about 40 dB for the

case of using the PID-type LF. Thus, as expected, the PI-type

LF results in a higher degree of noise immunity. The estimated

frequencies by the MA-PLL using the PI-type LF (gray line)

and PID-type LF (black line) are shown in Fig. 25(e). These

plots more clearly show the higher noise immunity of MA-

PLL when using the PI-type LF.

VI. CONCLUSION

The main objective of this paper was to present control

design guidelines for a typical MAF-based PLL. We started

the study with a general description of the MAFs, followed

by their discrete-time realization. The practical challenge

associated with the MAFs, which is their frequency-dependent

attenuation characteristics, was then briefly discussed. Online

adjustment of the sampling frequency, online adjustment of

the MAF’s order, using the mean value method, using the

weighted mean value method, and using the interpolation

techniques were mentioned as the possible solutions to over-

come this challenge. To provide a guideline for selecting

the appropriate method for a given application, a comparison

(a)

(b)

(c)

(d)

(e)

Fig. 25. Simulations results when the input signal is contaminated with a
zero mean white Gaussian noise of variance 0.05.
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among these solutions was also carried out. An overview of

the different MAF-based PLL was then given in the paper.

Two systematic methods to design the control parameters of

a typical MAF-based PLL were then presented: one for the

case of using a PI-type LF in the PLL, and the other for the

case of using a PID-type LF. Finally, the paper compared the

performance of a well-tuned MAF-based PLL when using the

PI-type LF with the result of using the PID-type LF. It was

shown that the PID-type LF can provide a higher bandwidth (a

faster dynamic response) than that achievable by the PI-type

LF, but at the cost of reduced noise immunity and disturbance-

rejection capability.
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Oct. 2012.

[10] S. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, “Dynam-
ics assessment of advanced single-phase PLL structures,” IEEE Trans.

Ind. Electron., vol. 60, no. 6, pp. 2167-2177, Jun. 2013.

[11] S. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, “Advan-
tages and challenges of a type-3 PLL,” IEEE Trans. Power Electron., vol.
28, no. 11, pp. 4985-4997, Now. 2013.

[12] R. M. Santos Filho, P. F. Seixas, P. C. Cortizo, L. A. B. Torres, and
A. F. Souza, “Comparison of three single-phase PLL algorithms for UPS
applications,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 2923-2932,
Aug. 2008.

[13] Y. F. Wang, and Y. W. Li, “Grid synchronization PLL based on cascaded
delayed signal cancellation,” IEEE Trans. Power Electron., vol. 26, no.
7, pp. 1987-1997, Jul. 2011.

[14] F. Cupertino, E. Lavopa, P. Zanchetta, M. Sumner, and L. Salvatore,
“Running DFT-based PLL algorithm for frequency, phase and amplitude
tracking in aircraft electrical systems,” IEEE Trans. Ind. Electron., vol.
58, no. 3, pp. 1027-1035, Mar. 2011.

[15] M. Karimi-Ghartemani, M. Mojiri, A. Safaee, J. A. Walseth, S. A.
Khajehoddin, P. Jain, and A. Bakhshai, “A new phase-locked loop system
for three-phase applications,” IEEE Trans. Power Electron., vol. 28, no.
3, pp. 1208-1218, Mar. 2013.

[16] A. V. Timbus, R. Teodorescu, F. Blaabjerg, M. Liserre, and P. Rodriguez,
“PLL algorithm for power generation systems robust to grid voltage
faults,” in Proc. 37th IEEE PESC, Jeju, Korea, Jun. 2006, pp. 1-7.

[17] M. Rashed, C. Klumpner, and G. Asher, “Repetitive and resonant control
for a single-phase grid-connected hybrid cascaded multilevel converter,”
IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2224-2234, May 2013.

[18] F. A. S. Neves, H. E. P. de Souza, M. C. Cavalcanti, F. Bradaschia,
and E. Bueno, “Digital filters for fast harmonic sequence components
separation of unbalanced and distorted three-phase signals,” IEEE Trans.

Ind. Electron., vol. 59, no. 10, pp. 3847-3859, Oct. 2012.

[19] X. Guo, W. Wu, and Z. Chen, “Multiple-complex coefficient-filter-based
phase-locked loop and synchronization technique for three-phase grid-
interfaced converters in distributed utility networks,” IEEE Trans. Ind.

Electron., vol. 58, no. 4, pp. 1194-1204, Apr. 2011.

[20] S. Golestan, M. Monfared, and F. D. Freijedo, “Design-oriented study of
advanced synchronous reference frame phase-locked loops,” IEEE Trans.

Power Electron., vol. 28, no. 2, pp. 765-778, Feb. 2013.

[21] F. Gonzalez-Espin, E. Figueres, and G. Garcera, “An adaptive
synchronous-reference-frame phase-locked loop for power quality im-
provement in a polluted utility grid,” IEEE Trans. Ind. Electron., vol.
59, no. 6, pp. 2718-2731, Jun. 2012.

[22] P. Xiao, K. A. Corzine, and G. K. Venayagamoorthy, “Multiple reference
frame-based control of three-phase PWM boost rectifiers under unbal-
anced and distorted input conditions,” IEEE Trans. Power Electron., vol.
23, no. 4, pp. 2006-2017, Jul. 2008.

[23] F. D. Freijedo, A. G. Yepes, O. Lopez, A. Vidal, and J. Doval-
Gandoy, “Three-phase PLLs with fast postfault retracking and steady-
state rejection of voltage unbalance and harmonics by means of lead
compensation,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 85-97,
Jan. 2011.

[24] E. Robles, S. Ceballos, J. Pou, J. L. Martin, J. Zaragoza, and P. Ibanez,
“Variable-frequency grid-sequence detector based on a quasi-ideal low-
pass filter stage and a phase-locked loop,” IEEE Trans. Power Electron.,
vol. 25, no. 10, pp. 2552-2563, Oct. 2010.

[25] P. Sumathi, and P. A. Janakiraman, “Integrated phase-locking scheme for
SDFT-based harmonic analysis of periodic signals,” IEEE Trans. Circuits

Syst. II, Exp. Briefs, vol. 55, no. 1, pp. 51-55, Jan. 2008.

[26] M. A. Perez, J. R. Espinoza, L. A. Moran, M. A. Torres, and E. A.
Araya, “A robust phase-locked loop algorithm to synchronize static-power
converters with polluted AC systems,” IEEE Trans. Ind. Electron., vol.
55, no. 5, pp. 2185-2192, May 2008.

[27] I. Carugati, S. Maestri, P. G. Donato, D. Carrica, and M. Benedetti,
“Variable sampling period filter PLL for distorted three-phase systems,”
IEEE Trans. Power Electron., vol. 27, no. 1, pp. 321-330, Jan. 2012.

[28] I. Carugati, P. Donato, S. Maestri, D. Carrica, and M. Benedetti,
“Frequency adaptive PLL for polluted single-phase grids,” IEEE Trans.

Power Electron., vol. 27, no. 5, pp. 2396-2404, May 2012.

[29] J. Rohten, J. Espinoza, F. Villarroel, M. Perez, J, Munoz, P. Melin,
and E. Espinosa, “Static power converter synchronization and control
under varying frequency conditions,” in 39th IEEE Annual Conference of

Industrial Electronics, IECON, 2012, pp. 786-791.

[30] L. Wang, Q. Jiang, L. Hong, C. Zhang, and Y. Wei, “A novel phase-
locked loop based on frequency detector and initial phase angle detector,”
IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4538-4549, Oct. 2013.

[31] A. Ghoshal, and V. John, “A method to improve PLL performance under
abnormal grid conditions,” in Proc. NPEC, Bangalore, India, Dec. 2007.

[32] F. D. Freijedo, J. Doval-Gandoy, O. Lopez, and E. Acha, “Tuning of
phase-locked loops for power converters under distorted utility condi-
tions,” IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 2039-2047, Dec. 2009.

[33] N. Ama, F. Martinz, L. Matakas, Jr, and F. Junior, “Phase locked loop
based on selective harmonics elimination for utility applications,” IEEE

Trans. Power Electron., vol. 28, no. 1, pp. 144-153, Jan. 2013.

[34] L. Liu, H. Li, Z. Wu, and Y. Zhou, “A cascaded photovoltaic system
integrating segmented energy storages with self-regulating power alloca-
tion control and wide range reactive power compensation,” IEEE Trans.

Power Electron., vol. 26, no. 12, pp. 3545-3559 , Dec. 2011.

[35] L. Shi, and M. L. Crow, “A novel phase-locked-loop and its application
in STATCOM system,” in Proc. North American Power Symposium, 2010

(NAPS ’10), pp. 1-5.

[36] M. Karimi-Ghartemani, S. A. Khajehoddin, P. K. Jain, and A. Bakhshai,
“Derivation and design of in-loop filters in phase-locked loop systems,”
IEEE Trans. Instrum. Meas., vol. 61, no. 4, pp. 930-940, Apr. 2012.

[37] F. P. Marafao, S. M. Deckmann, and E. K. Luna, “A novel frequency
and positive sequence detector for utility applications and power quality
analysis,” in proc. ICREPQ’04 conf., Barcelona, Spain, Apr. 2004.

[38] M. S. Padua, S. M. Deckmann, and F. P. Marafao, “Frequency-adjustable
positive sequence detector for power conditioning applications,” in Proc.

IEEE Power Electron. Spec. Conf., 2005, pp. 1928-1934.



IEEE TRANSACTIONS ON POWER ELECTRONICS 14

[39] A. Nicastri, and A. Nagliero, “Comparison and evaluation of the PLL
techniques for the design of the grid-connected inverter systems,” in Proc.

IEEE Int. Symp. Ind. Electron., Jul. 2010, pp. 3865-3870.
[40] F. D. Freijedo, J. Doval-Gandoy, O. Lopez, and E. Acha, “A generic

open-loop algorithm for three-phase grid voltage/current synchronization
with particular reference to phase, frequency, and amplitude estimation,”
IEEE Trans. Power Electron., vol. 24, no. 1, pp. 94-107. Jan. 2009.

[41] J. Svensson, M. Bongiorno, and A. Sannino, “Practical implementation
of delayed signal cancellation method for phase-sequence separation,”
IEEE Trans. Power Del., vol. 22, no. 1, pp. 18-26, Jan. 2007.

[42] D. Jovcic, “Phase locked loop system for FACTS,” IEEE Trans. Power

Syst., vol. 18, no. 3, pp. 1116-1124, Aug. 2003.
[43] A. M. Salamah, S. J. Finney, and B. W. Williams, “Three-phase phase-

lock loop for distorted utilities,” IET Electr. Power Appl., vol. 1, no. 6,
pp. 937-945, Nov. 2007.

[44] W. Leonard, Control of Electrical Drives. Berlin, Germany: Springer-
Verlag, 1990.

[45] K. Shu and E. Sanchez-Sinencio, CMOS PLL Synthesizers-Analysis and

Design. New York: Springer-Verlag, 2005.
[46] V. Kaura and V. Blasko, “Operation of a phase locked loop system under

distorted utility conditions,” IEEE Trans. Ind. Appl., vol. 33, no. 1, pp.
58-63, Jan, 1997.

[47] S. Golestan, M. Monfared, F. D. Freijedo, J. M. Guerrero, “Design and
tuning of a modified power-based PLL for single-phase grid connected
power conditioning systems,” IEEE Trans. Power Electron., vol. 27, no.
8, pp. 3639-3650, Aug. 2012.

[48] M. Karimi-Ghartemani, and H. Karimi, “Processing of symmetrical
components in time-domain,” IEEE Trans. Power Sys., vol. 22, no. 2,
pp. 572-579, 2007.

[49] M. Karimi-Ghartemani, “A novel three-phase magnitude-phase-locked
loop system,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 53, no. 8,
pp. 17921802, Aug. 2006.

Saeed Golestan (M’11) received the B.Sc. degree in
electrical engineering from Shahid Chamran Univer-
sity of Ahvaz, Iran, in 2006, and the M.Sc. degree
in electrical engineering from Amirkabir University
of Technology, Tehran, Iran, in 2009.

He is currently a Lecturer with the Department
of Electrical Engineering, Abadan Branch, Islamic
Azad University, Iran. His research interests include
phase-locked loop and nonlinear filtering techniques
for power engineering applications, power quality,
and distributed generation systems.

Malek Ramezani received the B.Sc. and M.Sc.
degrees in electrical engineering from Shahid Cham-
ran University of Ahvaz, Iran, in 2007 and 2010,
respectively.

He is currently a Lecturer with the Department
of Electrical Engineering, Abadan Branch, Islamic
Azad University, Iran. His research interests include
distributed generation, microgrid, and sustainable
energy systems.

Josep M. Guerrero (S’01-M’04-SM’08) was born
in Barcelona, Spain, in 1973. He received the B.S.
degree in telecommunications engineering, the M.S.
degree in electronics engineering, and the Ph.D.
degree in power electronics all from the Technical
University of Catalonia, Barcelona, Spain, in 1997,
2000, and 2003, respectively.

He was an Associate Professor with the De-
partment of Automatic Control Systems and Com-
puter Engineering, Technical University of Catalo-
nia, where he currently teaches courses on digital

signal processing, field-programmable gate arrays, microprocessors, and re-
newable energy. Since 2004, he has been responsible for the Renewable
Energy Laboratory, Escola Industrial de Barcelona. He has been a visiting
Professor at Zhejiang University, Hangzhou, China, and the University of
Cergy-Pontoise, Pontoise, France. In 2012, he was the Guest Professor Chair
at Nanjing University Aeronautics and Astronautics. Since 2011, he has been
a Full Professor of microgrids at the Institute of Energy Technology, Aalborg
University, Aalborg, Denmark, where he is the responsible of the microgrids
research program. His research interests are oriented to different Microgrids
aspects, including power electronics, distributed energy storage systems,
hierarchical and cooperative control and energy management systems, and
optimization of microgrids and islanded minigrids.

Dr. Guerrero is an Associate Editor for the IEEE TRANSACTIONS ON
POWER ELECTRONICS, the IEEE TRANSACTIONS ON INDUSTRIAL
ELECTRONICS, and the IEEE Industrial Electronics Magazine. He has been
the Guest Editor of the IEEE TRANSACTIONS ON POWER ELECTRON-
ICS Special Issues: Power Electrics for Wind Energy Conversion and Power
Electronics for Microgrids; and the IEEE TRANSACTIONS ON INDUS-
TRIAL ELECTRONICS Special Sections: Uninterruptible Power Supplies
systems, Renewable Energy Systems, Distributed Generation and Microgrids,
and Industrial Applications and Implementation Issues of the Kalman Filter.
He currently chairs the Renewable Energy Systems Technical Committee of
the IEEE Industrial Electronics Society.

Francisco D. Freijedo received the M.Sc. degree
in physics from the University of Santiago de Com-
postela, Santiago de Compostela, Spain, in 2002, and
the Ph.D. degree from the University of Vigo, Vigo,
Spain, in 2009.

From 2005 to 2011, he was a Lecturer with the
Department of Electronics Technology of the Uni-
versity of Vigo. He is currently working in the wind
power industry as a control engineer. His research
interests are in the areas of ac power switching
converters technology.

Mohammad Monfared (S’07-M’10) received the
B.Sc. degree in electrical engineering from Ferdowsi
University of Mashhad, Iran, in 2004, and the M.Sc.
and Ph.D. degrees (both with honors) in electrical
engineering from Amirkabir University of Technol-
ogy, Tehran, Iran, in 2006 and 2010, respectively.

He is currently an Assistant Professor at Ferdowsi
University of Mashhad, Iran. His research interests
include power electronics, motor drives, renewable
energy systems, energy conversion, and control and
applications.


