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We study the statistical properties of recordings that contain time-dependent positions of a bead trapped
in optical tweezers. Analysis of such a time series indicates that the commonly accepted model, i.e., the
autoregressive process of first-order, is not sufficient to fit the data. We show the presence of a first-order
moving average part in the dynamical model of the system. We explain the origin of this part as an in-
fluence of the high-frequency CCD camera on the measurements. We show that this influence evidently
depends on the applied exposure time. The proposed autoregressive moving average model appears to
reflect perfectly all statistical features of the high-frequency recording data. © 2014 Optical Society of
America
OCIS codes: (000.3860) Mathematical methods in physics; (350.4855) Optical tweezers or optical

manipulation; (140.7010) Laser trapping; (170.4520) Optical confinement and manipulation.
http://dx.doi.org/10.1364/AO.53.00B254

1. Introduction

Optical tweezers are a versatile tool, which allows for
the manipulation of micrometer-sized particles non-
invasively, and to measure forces even on the pico-
Newton scale [1–3]. For these reasons, they have a
wide range of applications in many fields of biology
and soft condensed matter physics, including, e.g.,
stretching of DNA and other polymers [4,5], molecu-
lar motors research [6,7], and the analysis of colloidal
suspensions [8]. Optical tweezers technology is now
extensively developed and its applications multiply,
so the need for improved methods of calibration is
growing. The physics of the simplest situations, like
the motion of a trapped bead in water, is well-known;
however, studies of more complex environments re-
quire a thorough understanding of the experimental
data. In these newly developed areas, the measure-
ments performed using a CCD camera are especially
useful, because the camera provides a great deal of
diverse information and allows for the tracking of

many objects simultaneously. As shown in our analy-
sis below, in the case of high-frequency measure-
ments, the camera has a significant influence on
the measurements.

To explain this phenomenon, we start by recalling
briefly the classical Einstein theory of the optical
tweezers. A trajectory t↦X�t� of a colloidal particle
trapped in a viscous fluid by optical tweezers is a
solution of the equation of the force balance [9]

0 � FS � FO � FT; (1)

where

• FS � −β�dX∕dt� is the Stokes force (friction of
liquid) acting on the spherical bead with radius r
within the liquid with viscosity η, β � 6πηr;
• FO � −khX is the force caused by the optical

tweezers; we use harmonic approximation, i.e., as-
sume the potential is harmonic with stiffness kh;
• FT �

������������
kBTβ

p
dB∕dt is the thermal force: it mod-

els the exchange of momenta with particles of the
liquid; B is the Wiener process, i.e., the trajectory
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of a free Brownian particle (kB denotes Boltzmann
constant).

Substitution of the explicit formulas assures that
the above force balance condition is equivalent to
the following stochastic differential equation

dX � −dt · λX �DdB; (2)

where λ � kh∕β and D �
���������������
kBT∕β

p
. Its stationary

solution is known as the Ornstein–Uhlenbeck
process [10]

X�t� � D
Z

t

−∞
dB�s�e−�t−s�λ: (3)

As we see, a position of the bead is expressed as a
convolution of the changes of momenta dB with
the exponential function.

2. Recorded Data

The measurements (see Fig. 1) were performed with
holographic optical tweezers [11,12]. Our tweezers
were built on the biological Olympus IX71 micro-
scope with a holographic system added for optical
traps generation. As a light source we used single
mode laser diode (λ � 980 nm, Pmax � 450 mW). The
diode was single-mode pigtail fiber with NA � 0.14
and stabilized by fiber Bragg grating. The holograms
were written on the spatial light modulator (SLM)
HoloEye PLUTO_NIR and reconstructed by the mi-
croscope at the sample plane. All recordings were ob-
tained using high-speed camera MC1362 (Mikrotron
GmbH), CameraLink, CMOS sensor, 1280 × 1024.
The photos of the bead were taken in 150 × 160 pixels
resolution taken with exposure time 45 μs. The posi-
tion of the bead was determined as a mass center of
the recoded image [13]. Single analyzed time series
consisted of up to 6 × 104 frames taken with a
sampling frequency up to 104 fps. The test liquid
was pure water.

3. Sampling Process

The data obtained during processing of the recorded
frames are given in the form of a sequence of the
bead’s positions taken with a constant frequency. In-
stead of the continuous process X�t�, we observe
sampled process Xn as

Xn :� X�nΔt�; n ∈ f0; 1; 2;…g;Δt � const: (4)

Here, Δt is the interval between measurements, the
inverse of the sampling frequency. By direct calcula-
tion, one can confirm that the sampled Ornstein–
Uhlenbeck process has the property

Xn � aXn−1 � ξn; (5)

where a � e−λΔt is a constant and

ξn � D
Z

nΔt�Δt

nΔt
dB�s�e−λ�nΔt−s�: (6)

The above formula implies that all ξn aremutually in-
dependent Gaussian random variables with a mean
μ � 0 and variance σ2 � �D2∕2λ��e2λΔt − 1�; in other
words, the sequence of ξn is the Gaussian white noise.
Any process of type (5), for which the present valueXn
is a linear combination (regression) of the past values
and some external noise, is called an autoregressive
process, denotedAR.Here, the present value depends
explicitly on one past value Xn−1, so we call it AR of
first-order, denoted AR(1) [14]. The coefficient a
and, consequently, stiffness kh, can be estimated us-
ing classical regressionwith the sequence ofXn taken
as a variable y and shifted sequence of Xn−1 taken as
a variable x. The well-known least squares estimator
of the slope in this case reads [12]

â �
P

iXiXi−1P
i X

2
i

: (7)

To study the properties of the AR(1) process we
can express Xn as a function of ξn, using formula
(5) recursively:

Xn � a2Xn−2 � ξn � aξn−1

� ak�1Xn−k−1 � ξn � aξn−1 � � � � � akξn−k: (8)

The terms ak�1Xn−k−1 diminish with growing k
because a < 1, so we may write

Xn �
X∞
k�0

akξn−k: (9)

Note that the variables ξn−k for n − k < 0 are not ob-
served, because themeasurement starts at time zero.
Directly from this formula, a type of memory present
in the analyzed time series can be deduced. The
memory of the process is usually characterized by
the autocovariance function, which is defined as

acovX�i; j� :� cov�Xi; Xj�: (10)

For a stationary process the autocovariance depends
only on a difference of the times: acovX�i; j� �
acovX�k � i − j�. Using the identity cov�ξi; ξj� � δi;j,
directly from (9) we obtain that, for the AR(1) process

acovX�k� �
σ2

1 − a−2 a
−jkj: (11)

It is a geometric sequence and geometrically
decaying type of memory.

Very often, it is useful to analyze the process in the
Fourier space. In this space, the counterpart of the
autocovariance is the power spectral density (psd),
which we define as [15]
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psdX �ω� :�
X∞
k�−∞

acovX�k�e−iωk: (12)

The well-known formula for the Fourier-transform of
the geometric sequence yields that, for the AR(1)
process, the psd reads [15,16]

psdX�ω� �
σ2

1� a2 − 2a cos�ω� : (13)

The psd of a recorded time series can be estimated
using various methods based on numerical Fourier-
transform of data. Here, we use the smoothed perio-
dogram, a very popular and thoroughly studied
estimator [15,17]. The time series itself does not con-
tain information about the physical time scale, so the
periodogram is calculated in normalized, dimension-
less units in which the sampling frequency is one.
However, the psd is a function symmetric with re-
spect to ω � 0.5, so we only estimate its values in
the interval [0,0.5].

A comparison of the estimated psd with the one
corresponding to the AR(1) model (13) and calculated
for the estimated â, shows essential dissonance be-
tween these two for the high-frequency recording
(see Fig. 2). Unfortunately, it is difficult to find a
source of this effect only from analysis of the psd.
To show the origin of this effect, the partial autocor-
relation function must be used.

4. Partial Autocorrelation Analysis

Partial autocorrelation pacfX�k� of the stationary
series is the memory function, measuring a depend-
ence between Xi and Xi�k (it does not depend on
choice of index i), with influences from in-between
Xj, i < j < i� k removed [14,15]. This removal is
performed by subtracting the projections (in the
Hilbert space sense) onto the subspace of variables
Xi�1;…; Xi�k, and denoted PXi�1;…;Xi�k−1

. The defini-
tion of the pacfX�k� reads explicitly:

pacfX �k� :� corr�Xi − PXi�1;…;Xi�k−1
�Xi�;

Xi�k − PXi�1;…;Xi�k−1
�Xi�k��; (14)

where we additionally use the convention that
P∅ � 0.

The partial autocorrelation is a useful function, be-
cause removing these projections, we somewhat get
rid of the influence of the time evolution between mo-
ments i and j. This procedure helps clarify the analy-
sis of thememory. The pacf is ameasure of only direct
dependence between the values of the studied proc-
ess. To illustrate this point, let us derive the pacf of
the AR(1) process. The definition Xn � aXn−1 � ξn
immediately suggests that Xn directly depends only
on Xn−1, and this dependence has strength a. This ob-
servation can be easily supported by more strict rea-
soning. The subspace generated byXi�1;…; Xj−1 is the
same as the subspace generated by Xi�1; ξi�2;…; ξj−1.
The projection on the latter can be performed in a
straightforward manner using Eq. (8). After sub-
tracting the projection, Xj reduces to ξj, which is
orthogonal to every past value Xi. This supports
the intuitive result that, for the AR(1) process,

pacfX�k� �
8<
:
1; k � 0;
a; k � 1;
0; k > 1:

(15)

The partial autocorrelation can be estimated using
the Yule–Walker equations, which relate it to the au-
tocovariance [15]. This set of equations can be easily
solved numerically. For our data, the pacf for low
frequencies fits to the model (see Fig. 3). By two
dashed lines near zero we denote the level of an ex-
pected statistical error. Values between these lines
are statistically insignificant.

However, the high-frequency data have pacf of a
different type (see Fig. 4). It looks like a geometric
series with a negative rate, which indicates the
proper adjustment of the model.

5. Adjusted Model: ARMA(1,1) Process

It appears that a proper modification explaining the
data is addition of the first-order moving average MA
(1) part to the AR(1) model. The MA(1) part repre-
sents a process for which the present value depends
linearly on one past value of the external noise
(not the process itself), i.e., ξn � bξn−1 [14,15]. The
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Fig. 1. Plot of an exemplary trajectory recorded with sampling
frequency 5000 fps (1000 measurements).
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Fig. 2. Estimate of the psd (gray line) and the fitted AR(1) psd
(dashed black line) for recording made with sampling frequency
104 fps.
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complete model, with both AR(1) and MA(1) parts, is
called ARMA(1,1), and explicitly is expressed as

Xn � aXn−1 � ξn � bξn−1: (16)

Unfortunately, from this form it is not clear what is
the direct dependence between Xn and the past val-
ues of the process, because ξn−1 is not orthogonal to
these values. However, using the identity Xn−1 �
aXn−2 � ξn−1 � bξn−2, we may write ξn−1 � Xn−1−

aXn−2 − bξn−2. Substituting this equality into
Eq. (16), we obtain

Xn � �a� b�Xn−1 − abXn−2 − b2ξn−2: (17)

Now, wemay repeat this procedure using the identity
for ξn−2 and the above formula. Continuing recur-
sively, we obtain

Xn � �a� b�
X∞
k�1

�−b�k−1Xn−k: (18)

This formula shows the explicit form of dependence
between Xn and the past values Xn−k, therefore justi-
fyingwhy the partial autocorrelation has the formof a
geometric series fitting the behavior of the analyzed
data. The parameters a and b can be estimated using
least squares or maximum likelihood techniques
[14,15]. Performed fit returned b̂ � 0.212� 0.005
and â � 0.976� 0.001, which corresponds perfectly
to the ARMA(1,1) process with the pacf, drawn in
Fig. 4. The given uncertainties of â and b̂ are standard
deviations, estimated from a sample of ten trajecto-
ries with 60,000 observations in each. The obtained
sample of ten estimates of a can be considered
Gaussian on a standard level of significance 0.05 by

Shapiro–Wilk, Anderson–Darling, and Pearson χ2

tests, and the same is true for b. This agrees with
the well-known theory of long-trajectory asymptotics
of the used estimators [14]. These standard devia-
tions are only slightly greater than the deviations
for these estimators for such an ARMA(1,1) process
(which was checked byMonte Carlo simulation). This
means that measurement imperfections do not
distort the precision of estimation.

Of course, there is no possibility to rule out that
performed estimation is precise, although biased.
However, note that the obtained value â is consistent
with the measurements of the stiffness for lower
frequencies.

The ARMA(1,1) can be naturally explained as an
influence of the high-frequency CCD camera. When
the frequency of the sampling is high, the CCD ma-
trix has no time to fully refresh between subsequent
photos. The remainder of the last frame is still visible
on the current one (the recording is smudgy and
blurred), which causes the center of the mass posi-
tion Xn to include part of the value Xn−1 from the last
frame. Instead of Xn, we observe X 0

n � Xn � bXn−1.
Parameter b is exactly the amount of intensity left
from the last frame on the actual one, 0 < b < 1.
In this situation,

X 0
n � Xn � bXn−1

� a�Xn−1 � bXn−2� � ξn � bξn−1

� aX 0
n−1 � ξn � bξn−1; (19)

so X 0
n is the ARMA(1,1) process. It is straightforward

to obtain the autocovariance of this new process as

acovX 0 �k� � cov�Xn � bXn−1; Xn�k � bXn−1�k�
� �1� b2�acovX�k� � bacovX�k − 1�

� bacovX�k� 1�: (20)

As we can see, the autocovariance is the sum of three
geometric sequences. The form of the revised psd fol-
lows from the linearity of the Fourier-transform:

psdX�ω� � σ2
1� b2 � 2b cos�ω�
1� a2 − 2a cos�ω� : (21)

This revised psd fits the data perfectly (see Fig. 5).
Hence, the ARMA(1,1) in the case of high-frequency
recordings describes better the experimental data
than the commonly used AR(1) model.

6. Influence of the Exposure Time

The previous considerations prove the utility of the
ARMA(1,1) model; however, they do not imply that
the observed effect is due to the influence of the
CCD camera. To justify our claim, we provide further
experimental evidence. During all our previous mea-
surements, the exposure time for taking a frame was
45 μs. The longer exposition is, in most situations,
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Fig. 3. Partial autocorrelation estimated from the bead’s trajec-
tory for low-frequency sampling at 103 fps.
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Fig. 4. Partial autocorrelation estimated from the bead’s
trajectory for high-frequency sampling at 104 fps.
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used only when necessary (e.g., in cases of low illu-
mination), since the recording becomesmore blurred.
Therefore, if our conclusion is correct, then an in-
crease of the exposition time would incorporate an
MA(1) part, even for low frequencies. This indeed
is true, as seen in Fig. 6 and compared with Figs. 3
and 4.

The obtained effect is identical to the MA(1) part
(with coefficient b̂ � 0.172� 0.005) present for
high-frequency and low exposure time data. An ana-
logical operation, performed for larger sampling
frequencies, increases the value of the MA(1) coeffi-
cients. Unfortunately, a decrease of the exposition,
which would likely diminish the MA(1) part for
higher frequencies, is hard to obtain for technical
reasons, which leaves the described methodology
as the only practical way to deal with this influence.

7. Summary

We have shown that the high-frequency CCD camera
influences the recorded time series of positions of a
bead trapped in optical tweezers. By adding of the
MA(1) part to the classical AR(1) model, we have ob-
tained full agreement with the recorded data. The
proposed ARMA(1,1) model allows for a better under-
standing of the tweezers’ dynamics. We suggest that
the studied effect, which we explain by the slow

refreshment rate of the CCD matrix, has to be in-
cluded in more advanced studies, such as the inter-
actions of the optical tweezers with diverse complex
environments. We hope that this insight is a substan-
tial advance in the statistical analysis within this
area. Moreover, we stress that the described statisti-
cal methods are simple to use by nonstatisticians and
already implemented in many scientific environ-
ments, such as R-package and MATLAB.
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