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Abstract

For a two-group comparative study, a stratified inference procedure is

routinely used to estimate an overall group contrast to increase the preci-

sion of the simple two-sample estimator. Unfortunately most commonly

used methods including the Cochran-Mantel-Haenszel statistic for a binary
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outcome and the stratified Cox procedure for the event time endpoint do

not serve this purpose well. In fact, these procedures may be worse than

their two-sample counterparts even when the observed treatment allocations

are imbalanced across strata. Various procedures beyond the conventional

stratified methods have been proposed to increase the precision of estima-

tion when the naive estimator is consistent. In this paper, we are interested

in the case when the treatment allocation proportions vary markedly across

strata. We study the stochastic properties of the two-sample naive estima-

tor conditional on the ancillary statistics: the observed treatment allocation

proportions and/or the stratum sizes, and present a biased-adjusted estima-

tor. This adjusted estimator is asymptotically equivalent to the augmenta-

tion estimators proposed under the unconditional setting (Zhang and others,

2008). Moreover, this consistent estimation procedure is also equivalent to

a rather simple procedure, which estimates the mean response of each treat-

ment group first via a stratum-size weighted average and then constructs the

group contrast estimate. This simple procedure is flexible and readily appli-

cable to any target patient population by choosing appropriate weights for

each treatment effect estimate. All the proposals are illustrated with the data

from a cardiovascular clinical trial, whose treatment allocations are imbal-

anced. Ancillary statistic; Augmentation estimation procedure; Conditional

inference; CMH statistic; Mixture population

1 Introduction

In a comparative, randomized study, suppose that we are interested in estimating

an overall group difference, θ, between a treatment and a control via their indi-

vidual population parameters, τ2 and τ1, respectively. For example, τ is the mean
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value of the study subject’s outcome variable and θ = τ2 − τ1. Assume that the

study utilizes a M : 1 random treatment allocation rule for assigning patients to

the treatment and control groups. Although the primary analysis of the study is

generally based on a two-sample empirical counterpart θ̂ of θ, a stratified infer-

ence procedure is often utilized to increase the estimation precision for θ̂ (Val-

liant, 1993; Miratrix and others, 2013). Moreover, when the observed allocation

proportions of patients assigned to either arm vary substantially across strata, a

stratified estimator θ̂S , has been generally perceived as less biased than θ̂.

Unfortunately a number of routinely used stratified procedures cannot be guar-

anteed to increase the precision nor reduce the bias for estimating θ, especially

when θ is non-linearly related to τ1 and τ2. As an example, consider a simple case

where the outcome is a binary variable and θ is the odds ratio (OR) of the event

rates τ′s. That is,

θ =
τ2/(1 − τ2)
τ1/(1 − τ1)

.

The two-sample empirical counterpart is

θ̂ =
τ̂2/(1 − τ̂2)
τ̂1/(1 − τ̂1)

,

where τ̂ j is the observed empirical counterpart of τ j, j = 1, 2. For a large ran-

domized study, θ̂ is consistent for θ. Now, suppose that one considers a stratified

inference procedure with K strata to estimate θ. Let the observed stratum sizes be

n1, n2, · · · , nK and n =
∑K

k=1 nk. For the jth group in the kth stratum, let the group

size be n jk, the true event rate be τ jk, π̂k = n2k/nk and ŵk = nk/n, j = 1, 2; k =

1, · · · ,K. A commonly used stratified estimate for θ is based on the Cochran-

Mantel-Haenszel (CMH) statistics (Mantel and Haenszel, 1959), which results in

θ̂S =

∑K
k=1 τ̂2k(1 − τ̂1k)π̂k(1 − π̂k)ŵk∑K
k=1(1 − τ̂2k)τ̂1kπ̂k(1 − π̂k)ŵk

,
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where τ̂ jk is the observed empirical counterpart of τ jk. Note that even when nk →

∞ and π̂k → M/(M + 1), k = 1, · · · ,K, θ̂S converges to

θS =

∑K
k=1 τ2k(1 − τ1k)wk∑K
k=1(1 − τ2k)τ1kwk

,

where wk, the limit of ŵk, is the mixing proportion of the kth stratum in the study

population. In general, θS , θ, and therefore, θ̂S is an inconsistent estimator.

Moreover, θS is not a simple weighted average of the stratum-specific OR’s as

usually interpreted by the practitioners. Here, the kth weight is proportional to

(1 − τ2k)τ1kwk, a rather complex form of the underlying stratum-specific event

rates.

In survival analysis, a stratified inference procedure, which is routinely used

for comparing two groups, is to estimate the hazard ratio (HR) θ under a two-

sample proportional hazards model (Cox, 1972). Here, the outcome variable is

the time to a specific event. The corresponding stratified method is the stratified

Cox procedure (Cox, 1972; Mehrotra and others, 2012), which suffers from the

same limitation of the CMH method for the binary outcome. More details will be

given in Section 4 of this paper.

Alternatives to aforementioned conventional stratified procedures have been

studied extensively when the simple estimator θ̂ is consistent. For this case, the

goal is mainly to increase the estimation precision of θ̂ with the baseline covariate

information (Koch and others, 1998; Zhang and others, 2008; Moore and van der

Laan, 2009; Rosenblum and van der Laan, 2010; Tian and others, 2012). The per-

formance of such alternative estimation procedures are assessed under an “uncon-

ditional” setting by considering all possible realizations of the estimator generated

under the random treatment allocation rule utilized in the study. Now, suppose that

(i) π̂′ks, the observed proportions of study patients assigned to the treatment group,

5
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vary substantially across strata, and/or (ii) ŵ′ks, the observed proportions of the

patients in each stratum, are substantially different from the underlying w′ks. Then

generally, for the case with a practical sample size, the observed naive estimate

θ̂ would not be close to θ. It is not clear, however, how to empirically quantify

the bias of θ̂. One possible approach to handle this problem would be based on

a conditional inference principle via ancillary statistics for the treatment differ-

ence θ (Kalbfleisch, 1975). For the present case, both the empirical proportions

of patients assigned to the treatment {π̂k, k = 1, · · · ,K} and the empirical pro-

portions of the strata {ŵk, k = 1, · · · ,K} are ancillary statistics. The distribution

of (θ̂ − θ) conditional on such ancillary statistics would be more “relevant” and

informative than its unconditional counterpart to study the stochastic behavior of

θ̂ (Senn, 1989; Pocock and others, 2002). Specifically, we consider all realiza-

tions of θ̂ generated from the random allocation rule utilized in the study, but

{(π̂k, ŵk), k = 1, · · · ,K} of each realized sample would be the same as its observed

counterparts. By doing so, the individual realizations in the above conditional

sample space are obtained under the experimental condition similar to the ob-

served one. In this paper, using this procedure, one can empirically quantify the

bias of θ̂ and then obtain a consistent estimator for θ by modifying θ̂. It is in-

teresting to note that the above modified estimator is identical or asymptotically

equivalent to the augmentation estimators proposed by Zhang and others (2008);

Tsiatis and others (2008) and Tian and others (2012) under the unconditional set-

ting. Moreover, the above modified estimator is also equivalent to a rather simple

estimator obtained via a mixture estimation procedure across strata. Specifically,

for the above example for θ being the OR, we first estimate the overall event rate

for the control arm using a weighted average of stratum-specific event rate es-
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timates, where the weight for the kth stratum-specific estimate is wk, the target

proportion of patients from the kth stratum. Similarly, we estimate the overall

event rate for the treated arm. Then, we construct the OR estimate with these two

overall event rate estimates. The details are given in Sections 2 and 3. In Section

4, we apply the proposal to the case with the censored event time observations.

All the procedures are illustrated with the data from a comparative, randomized

cardiovascular clinical trial.

2 Modifying the naive estimator θ̂ in the presence of

treatment allocation imbalance

Using the notations in the Introduction for the general case, that is, let τ j and τ̂ j be

the population mean and its empirical counterpart of the subject’s outcome vari-

able for the jth group, respectively, and let τ jk and τ̂ jk be the corresponding quan-

tities in the kth stratum, k = 1, · · · ,K; j = 1, 2. Let θ = g(τ1, τ2) and θ̂ = g(τ̂1, τ̂2),

where g(·, ·) is a given smooth function. With a random assignment allocation rule

and the random sampling assumption of subjects in each group and stratum, for

large nk, k = 1, · · · ,K, it is straightforward to show that the joint distribution of

(θ̂−θ) and (ŵ1−w1, · · · , ŵK−wK , π̂1−π̄, · · · , π̂K−π̄)′ is approximately normal with

mean 0 and covariance matrix Σ̂ given in the Appendix A, where π̄ =
∑K

k=1 ŵkπ̂k.

Heuristically, it follows that the conditional distribution of

(θ̂ − θ)
∣∣∣{(ŵk − wk, π̂k − π̄), k = 1, · · · ,K}

7
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is approximately normal with a mean of

b̂πw =ġ1(τ†1, τ
†

2)
K∑

k=1

τ̂1k

(
ŵk(1 − π̂k)

1 − π̄
− wk

)
+ ġ2(τ†1, τ

†

2)
K∑

k=1

τ̂2k

(
ŵkπ̂k

π̄
− wk

)
and a variance of

σ̂2
πw =

K∑
k=1

{
ġ2(τ†1, τ

†

2)2ŵ2
kσ̂

2
2k + ġ1(τ†1, τ

†

2)2ŵ2
kσ̂

2
1k

}
,

where

τ†j =

K∑
k=1

wkτ̂ jk, j = 1, 2,

ġ j(τ1, τ2) is the partial derivative of g(τ1, τ2) with respect to τ j and σ̂2
jk is a con-

sistent estimator for the variance of τ̂ jk, j = 1, 2. Note that the above large sample

normal approximation is not straightforward. The theoretical justification of this

approximation to the conditional distribution is given in Appendix A. The above

conditional distribution shows that θ̂ is in general inconsistent for θ when there are

treatment allocation imbalances within individual strata or ŵ′ks are different from

w′ks. An obvious consistent estimator for θ by directly adjusting θ̂ is

θ̂πw = θ̂ − b̂πw.

Note that θ̂πw is a sum of θ̂ and a linear combination of (ŵk −wk) and (π̂k − π̄), k =

1, · · · ,K and is asymptotically equivalent to the augmentation estimators pro-

posed and discussed in Zhang and others (2008); Moore and van der Laan (2009)

and Tian and others (2012). Note also that the augmentation procedures in the

literature do not have ŵk − wk, k = 1, · · · ,K, as one of the augmented terms. On

the other hand, from the semi-parametric efficiency argument, it is a trivial exten-

sion to do so, when wk, k = 1, · · · ,K are known. As a result, unconditionally, θ̂πw

minimizes the asymptotical variance of the sum of θ̂ and any linear combination
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of {(ŵk −wk), (π̂k − π̄), k = 1, · · · ,K}. However, all the augmented estimators were

developed to improve efficiency over the naive estimator θ̂ under an unconditional

setting for which the naive estimator θ̂ is consistent.

When wk for the study population is unknown, one may consider an adjusted

estimator θ̂π based on the conditional distribution of θ̂ − θ given {π̂k − π̄, k =

1, · · · ,K} only. Specifically, θ̂π = θ̂ − b̂π, where

b̂π =ġ1(τ†1π, τ
†

2π)
K∑

k=1

ŵkτ̂1k

(
1 − π̂k

1 − π̄
− 1

)
+ ġ2(τ†1π, τ

†

2π)
K∑

k=1

ŵkτ̂2k

(
π̂k

π̄
− 1

)
.

The variance of θ̂π can be estimated consistently by

σ̂2
π = σ̂2

πw + n−1
K∑

k=1

ŵk

{
ġ2(τ†1π, τ

†

2π)(τ̂2k − τ̂2) + ġ1(τ†1π, τ
†

2π)(τ̂1k − τ̂1)
}2
,

where

τ†jπ =

K∑
k=1

ŵkτ̂ jk.

It is interesting to note σ̂2
π is greater than σ̂2

πw due to the the sampling variation

from {ŵk, k = 1, · · · ,K}. This adjusted estimator would not be unbiased under the

conditional setting with the additional conditioning event, {(ŵk − wk), k = 1, · · · ,K} .

It is important to note that there is no general rule on the choice of ancillary statis-

tics. This topic has been discussed extensively in the literature. In practice, the

choice of the ancillary statistics would be made on a case by case basis. For our

present case, the choice ancillary statistics, {π̂k} and {ŵk} was similar to those of

the inference for analyzing multiple 2× 2 tables (Fraser, 2004). The choice of the

ancillary statistic {π̂k} only was also suggested by Senn (1989) and Pocock and

others (2002).

As an example, consider the data from a cardiovascular trial “Valsartan in

acute myocardial infarction (VALIANT) study” (Pfeffer and others, 2003) to il-
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lustrate the above estimation procedures. There were three arms in this study, the

patients in the first group were treated by ARB valsartan, the second group was

with ACE inhibitor captopril and the third one was a combination of these two

drugs. For illustration, we consider the time to the first hospitalization or death as

the endpoint and compare the monotherapy (combing two treatment groups) with

the combo therapy. The study enrolled a total of 14,703 patients were equally as-

signed to three arms. The median follow-up time was 24.7 months after random-

ization. For the entire study, there is no difference with respect to the endpoint

considered here. In Fig. 1, we show the Kaplan-Meier curves for this endpoint

for two comparators. On the other hand, with the data from 302 patients in Aus-

tralia, the monotherapy somehow appears to be statistically significantly better

than its combo counterpart (see Fig. 2). Note that Australia was the only country

among 24 countries participated in the VALIANT study, whose patients tend to

have better outcomes for the monotherapy than those for the combo therapy.

We will discuss the case with an event time as the endpoint in Section 4. Here,

let us consider the outcome from the above study to be a binary, either the patient

had event by or at month 18. Note that there were no censored observations in the

study before month 18. There are two important patient’s covariates, which are

related to this binary endpoint: BMI and history of diabetes. For simplicity, we

dichotomize BMI with a cutoff value of 25 and create four strata (i.e, 1: low BMI

and no diabetic history; 2: low BMI and with diabetic history; 3: high BMI and

no diabetic history; 4: high BMI and with diabetic history). Table 1 shows the

number of 302 Australian patients assigned to each treatment group with respect

to the four strata, whose sizes (ŵ1, ŵ2, ŵ3, ŵ4) = (0.24, 0.06, 0.54, 0.16). Note that

if the randomization scheme worked well, the treatment allocation ratio (mono
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vs. combo) would be around 2:1. From Table 1, there is a non-trivial treatment

allocation imbalance with respect to these two factors.

The naive estimate θ̂ for the OR of two event rates (combo vs. mono) at month

18 is 1.99 with a 0.95 confidence interval of (1.12, 3.51) in favor of monother-

apy. The corresponding CMH estimate is 1.83 with a 0.95 confidence interval of

(1.03, 3.25). Using the empirical strata weights {ŵi}, the bias adjusted estimate

θ̂π is 1.73 with a 0.95 confidence interval of (0.96, 3.12). The confidence interval

includes one, suggesting that the group difference is not statistically significant

based on the bias adjusted estimator. If we assume that the true mixing propor-

tions for the Australia substudy are identical to the observed proportions in the

entire VALIANT study, i.e., (w1,w2,w3,w4) = (0.24, 0.04, 0.53, 0.19), then θ̂πw

for OR becomes 1.75 with a slightly different 0.95 confidence interval of (0.97,

3.13), also indicating an insignificant treatment effect.

3 A simple consistent stratified estimator for θ with

two group-specific weighted averages of the stra-

tum mean outcomes

Under a stratification setting with K strata, the mean of the outcome τ j can be

rewritten as
∑K

k=1 wkτ jk, and can be estimated consistently with τ†j =
∑K

k=1 wkτ̂ jk, j =

1, 2. It follows that

θ̂new = g(τ†1, τ
†

2)

is a consistent estimator unconditionally or conditionally on {π̂k, k = 1, · · · ,K}

and/or {ŵk, k = 1, · · · ,K}. It is interesting to note that this new estimator is asymp-
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totically equivalent to the bias-adjusted estimator θ̂πw. This equivalence is due to

the fact that

τ†1 − τ̂1 = −

K∑
k=1

τ̂1k

(
ŵk(1 − π̂k)

1 − π̄
− wk

)
,

τ†2 − τ̂2 = −

K∑
k=1

τ̂2k

(
ŵkπ̂k

π̄
− wk

)
,

and

g(τ̂1, τ̂2) − g(τ†1, τ
†

2) ≈ ġ1(τ†1, τ
†

2)(τ̂1 − τ
†

1) + ġ2(τ†1, τ
†

2)(τ̂2 − τ
†

2) = b̂πw.

Note also that when {wk, k = 1, · · · ,K} is not known, θ̂new can be replaced by

θ̂newπ = g(τ†1π, τ
†

2π),

with τ†jπ =
∑K

k=1 ŵkτ̂ jk, j = 1, 2. For this case, the resulting θ̂newπ is asymptotically

equivalent to θ̂π discussed in Section 2.

Considering the estimator θ̂newπ with ŵk as the weights, first τ†jπ estimates the

mean response of the subjects in arm j by a weighted average with the observed

proportion of the stratum size as the weight. One then constructs a group con-

trast measure with these two resulting treatment group-specific estimators. Note

that this estimation procedure for the between-group difference is constructed in a

rather different way from the conventional stratified counterparts. For the conven-

tional stratification methods, we first estimate the stratum specific group contrasts

and then empirically combine them across strata, whose weights may not have

clinical or physical interpretation. Moreover, the conventional stratified methods

for the case with a non-linear g(τ1, τ2) may not increase the estimation efficiency

and introduce nontrivial bias as discussed in the previous section. Since θ̂new or

θ̂newπ is asymptotically equivalent to its augmentation estimation procedure, this

estimator is always more efficient than θ̂ asymptotically.

12

http://biostats.bepress.com/harvardbiostat/paper208



As an estimator for the marginal mean response, τ†j not only serves as the

building block for adjusting the bias of the naive estimator but also provides im-

portant reference level in interpreting the group contrast measure θ. For example,

although both (τ†1, τ
†

2) = (0.050, 0.095) and (0.500, 0.667) yield the same OR of

2.0, they may have quite different implications in practice. The conventional strat-

ified estimator and the estimators θ̂πw and its corresponding equivalent augmented

counterparts do not have the benchmark value from the control arm for clinical

decision makings.

In the VALIANT example, the estimated event rate is τ†1π = 0.67 with a 0.95

confidence interval of (0.61, 0.74) for monotherapy and τ†2π = 0.77 with a 0.95

confidence interval interval of (0.72, 0.83) for combo therapy based on the ob-

served stratum sizes. Note that if we are interested in a difference group contrast

measure, for instance, the event rate difference as θ, these values are readily avail-

able from this simple new procedure to make inferences.

4 APPLICATION TO THE CASE WITH THE EVENT

TIME OUTCOME VARIABLE

The most commonly used stratification estimation procedure is based on the strat-

ified Cox model (Mehrotra and others, 2012). Here, the parameter of interest is

the overall HR θ by assuming that the two hazard functions are proportional of

each other over the entire study time. As discussed extensively in the statistical

and medical literature, the HR estimate is difficult to interpret especially when

the PH assumption is violated (Uno and others, 2014, 2015). The stratified Cox

procedure follows the same approach as other conventional stratified methods for
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analyzing non-censored outcomes. That is, for each stratum, we assume that the

PH assumption is plausible. We then obtain the HR estimate for each stratum,

and combine those estimates. The resulting estimator is asymptotically equiv-

alent to linearly combining the log-transformed stratum-specific HR estimators

over K strata. The weight of the combination is proportional to the inverse of the

variance estimate for the log-transformed stratum-specific HR estimate. However,

even when PH assumption holds within each stratum, the PH assumption for entire

study population is almost always violated (see Appendix B). Consequently, the

combined HR estimator from the stratified Cox procedure cannot be interpreted

as the HR for the entire population. Now, the question is whether we can apply

the marginal treatment effect method discussed in Section 3 to deal with the HR.

Unfortunately, since the hazard function is not a probability measure, the over-

all hazard function cannot be expressed as a weighted average of stratum-specific

hazard functions. The simple estimation approach discussed in Section 3 cannot

be applied to the case using HR as the group contrast.

There are several alternative summary measures to quantify survivorship for

each treatment group. For example, one may consider the median survival time.

However, it is in general not a weighted average of stratum-specific median failure

times either. Two other alternatives are the event rate and restricted survival time

at a specific time point (Uno and others, 2014, 2015).

For the t−year event rate τ j, j = 1, 2, we can use the same approach discussed

in Section 3. That is, we estimate τ j by

τ†j =

K∑
k=1

wkτ̂ jk or τ†jπ =

K∑
k=1

ŵkτ̂ jk,

where τ̂ jk = Ŝ jk(t) and Ŝ jk(·) is the Kaplan-Meier estimator for the survival func-
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tion of the group j in the kth stratum. Then θ̂new = g(τ†1, τ
†

2) and θ̂newπ = g(τ†1π, τ
†

2π)

are unbiased for estimating θ even when there are markedly observed treatment

allocation imbalance.

As an example, we also consider the substudy analysis for Australia in VALIANT

study. The estimated event rate (death or hospitalization) at t = 1000 days is 0.88

in the combo therapy group and 0.77 in the monotherapy group. The naive es-

timate of the OR of two event rates is 2.33 with a 95% confidence interval of

[1.39, 3.93], suggesting that the event rate by t = 1000 days for patients receiv-

ing monotherapy is significantly lower than that for combo therapy. Recall that

there are four strata defined by BMI and diabetic history with the stratum size,

(ŵ1, ŵ2, ŵ3, ŵ4) = (0.24, 0.06, 0.54, 0.16). With the above simple procedure, the

adjusted event rate is 0.87 in the combo therapy group and 0.77 in the monother-

apy group. The resulting estimator θ̂new of the OR is 1.92 (95% confidence inter-

val: 0.88 to 4.22). This new OR estimator is smaller than the unadjusted counter-

part with a p-value of 0.103.

The second alternative is the t−year mean survival time (t-MST) up to time

point t. That is, E{min(T, t)} for survival time T, which is the area under the sur-

vival function up to the time point t (Uno and others, 2014, 2015). The corre-

sponding parameter summarizing the treatment effect is g(τ1, τ2), a contrast be-

tween t-MSTs from two groups, where τ j is the t-MST in group j. For instance,

g(τ1, τ2) is the ratio of two t-MSTs. For the above VALIANT study, the area un-

der the Kaplan-Meier curves for the monotherapy and combo therapy arms are

τ̂1 = 395 days and τ̂2 = 260 days up to t = 1000 days, respectively. That means in

the future, if we treat the patient with the new treatment up to 1000 days, we ex-

pect on average, the patient receiving monotherapy will have 395 event-free days,
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and 260 event-free days for patients receiving combo therapy. If we let θ be the

ratio of two t-MSTs at 1000 days, θ̂ = 1.58 with a 95% confidence interval of

(1.15, 2.18) and a p-value less than 0.01.

Now, for a stratified analysis with respect to the t-MST measure, we first esti-

mate this parameter with a weighted sum of stratum-specific t-MSTs, that is,

τ†j =

K∑
k=1

wkτ̂ jk or τ†jπ =

K∑
k=1

ŵkτ̂ jk,

where τ̂ jk =
∫ t

0
Ŝ jk(u)du. For the above numerical example, τ†1π = 394 days and

τ†2π = 280 days based on observed {ŵk, k = 1, 2, 3, 4}. The ratio of these two,

θ̂new = 1.41 with a 95% confidence interval of (1.03, 1.92). Although statistically

the monotherapy is significantly better than the combo, the confidence interval of

the ratio of two t-MSTs is shifted toward the null value of one.

5 REMARKS

The marginal treatment effect approach discussed in Section 3 is rather flexible,

which can handle the case when the target patient population is different from the

study population. For example, in a cardiovascular clinical study, the majority of

study patients is male. The target future population may be evenly divided with

respect to gender. With the conventional stratified analysis, it is difficult to figure

out the overall treatment difference for the target population.

The choice of the stratification factors is important. If we overly stratify the

study, that is, some factors are not related or mildly related to the outcome, the pre-

cision of the stratified inference procedure can be worse than the naive two-sample

estimate. Recently Tian and others (2012) and Bloniarz and others (2015) gener-
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alized the augmentation method originally proposed by Zhang and others (2008)

to efficiently select relevant baseline covariates among a set of pre-specified can-

didates under an unconditional setting for adjusting the consistent two-sample

estimator. It is not clear how to apply this idea to handle the case when there is

a potential imbalance with respect to a large set of stratification factors to avoid

over-stratification. Further research on appropriate selection of stratification fac-

tors is warranted.

APPENDIX

Appendix A: Asymptotical Properties of the Naive Estimator

Conditional on Observed Allocation Imbalances.

Firstly, we assume that the observed data consist of n i.i.d observations (Yi,Ri, Xi), i =

1, · · · , n, where Yi is the response, Ri = 1 or 2 is the treatment indicator for group

1 and 2, respectively, and Xi takes values 1, 2, · · · ,K, representing the stratum of

the ith subject. Without loss of generality, let θ̂ = g(τ̂1, τ̂2), where τ̂ j is the ob-

served mean response in arm j and τ̂ jk is the observed mean response in arm j of

stratum k, j = 1, 2; k = 1, · · · ,K. Our goal is to derive the limiting distribution of

n1/2(θ̂ − θ)

conditional on

ŵk − wk, π̂k − π̄, k = 1, · · · ,K,
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where n =
∑K

k=1 nk. To this end, we first have the expansion

θ̂ − θ

ŵ1 − w1
...

ŵK − wK

π̂1 − π̄
...

π̂K − π̄



= n−1
n∑

i=1



ġ2(τ1,τ2)I(Ri=2)(Yi−τ2)
π

+
ġ1(τ1,τ2)I(Ri=1)(Yi−τ1)

1−π

I(Xi = 1) − w1
...

I(Xi = K) − wK

{I(Xi=1)−w1}{I(Ri=2)−π}
w1
...

{I(Xi=K)−wK }{I(Ri=2)−π}
wK



+


ξθ

0

ξπ

 ,

where π = pr(Ri = 2) and |ξθ| + |ξπ| = o(n−1/2) almost surely. Let

Un = n−1/2
n∑

i=1

Ui and Vn = n−1/2
n∑

i=1

Vi,

where

Ui =
ġ2(τ1, τ2)I(Ri = 2)(Yi − τ2)

π
+

ġ1(τ1, τ2)I(Ri = 1)(Yi − τ1)
1 − π

and

Vi =



I(Xi = 1) − w1
...

I(Xi = K) − wK

{I(Xi=1)−w1}{I(Ri=2)−π}
w1
...

{I(Xi=K)−wK }{I(Ri=2)−π}
wK


By central limit theorem, (Un,V ′n)′ converges weakly to (U0,V ′0)′, a multivariate

normal with mean 0 and a variance-covariance matrix

Σ =


σ2
θ D′θw D′θπ

Dθw Σww 0

Dθπ 0 Σππ

 ,
18
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where

σ2
θ =

ġ2(τ1, τ2)σ2
Y2

π
+

ġ1(τ1, τ2)σ2
Y1

1 − π

σ2
Y j = var(Yi|Ri = j), Dθw = (dw1, · · · , dwK)′, Dθπ = (dπ1, · · · , dπK)′,

dwk = ġ2(τ1, τ2)wk(τ2k − τ2) + ġ1(τ1, τ2)wk(τ1k − τ1),

dπk = ġ2(τ1, τ2)(1 − π)(τ2k − τ2) − ġ1(τ1, τ2)π(τ1k − τ1),

Σww =


w1(1 − w1) · · · −w1wK

· · · · · · · · ·

−wKw1 · · · wK(1 − wK)


and

Σππ = π(1 − π)


(1 − w1)/w1 · · · −1

· · · · · · · · ·

−1 · · · (1 − wK)/wK

 .
It follows from Steck (1957), as n→ ∞,Un|Vn = v converges weakly to a limiting

distribution in the sense that for any sequence {vn} such that vn ∈ An, the range of

Vn, and limn→∞ vn = v,

sup
u
|Fvn

n (u) − Fv(u)| = o(1),

where Fvn
n (u) is the cumulative distribution function of Un conditional on Vn = vn

and Fv(u) is the cumulative distribution function of U0 conditional on V0 = v.
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Furthermore, since |ξθ|+ |ξπ| = o(n−1/2) almost surely, for any δn = (δ′nw, δ
′
nπ)
′ → δ,

P
{
n1/2(θ̂ − θ) ≤ u | n1/2(ŵk − wk) = δnw, n1/2(π̂k − π̄) = δnπ

}
=P

{
Un ≤ u − n1/2ξθ | Vn = (δ′nw, δ

′
nπ − n1/2ξ′π)

′
}

=F ṽn
n (u − n1/2ξθ)

=Fδ(u − n1/2ξθ) + o(1)

=Fδ(u) + o(1),

where ṽn = (δ′nw, δ
′
nπ−n1/2ξ′π)

′ → δ. Therefore, the conditional distribution n1/2(θ̂−

θ) | n1/2(ŵk − wk), n1/2(π̂k − π̄) converges to the normal distribution with a mean

bθ and variance σ2
ad j. Next, we will derive the explicit expression for mean bθ and

variance σ2
ad j. We first note that the variance-covariance matrices Σππ and Σww are

singular, the conditional distribution U0|V0 is the same as that only conditioning

on the components corresponding to (w1, · · · ,wK−1, π1, · · · , πK−1)′. Let D̃θπ D̃θw,

Σ̃ww and Σ̃ππ be the associated covariance vectors and variance matrices.

bθ =n1/2(ŵ1 − w1, · · · , ŵK−1 − wK−1)Σ̃−1
θwD̃θπ + n1/2(π̂1 − π̄, · · · , π̂K−1 − π̄)Σ̃−1

ππ D̃θπ

=n1/2


ŵ1 − w1

...

ŵK−1 − wK−1


′ 

ġ2(τ1, τ2)


τ21 − τ2K

...

τ2(K−1) − τ2K

 + ġ1(τ1, τ2)


τ11 − τ1K

...

τ1(K−1) − τ1K




+ n1/2


π̂1 − π̄
...

π̂K−1 − π̄


′ 

ġ2(τ1, τ2)
π


w1(τ21 − τ2K)

...

wK−1(τ2(K−1) − τ2K)

 −
ġ1(τ1, τ2)

1 − π


w1(τ11 − τ1K)

...

wK−1(τ1(K−1) − τ1K)




=n1/2

ġ2(τ1, τ2)
K∑

k=1

{
ŵk − wk +

ŵk(π̂k − π̄)
π̄

}
τ2k + ġ1(τ1, τ2)

K∑
k=1

{
ŵk − wk −

ŵk(π̂k − π̄)
1 − π̄

}
τ1k

 + op(1)
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which is asymptotically equivalent to n1/2(θ̂πw− θ̂). It is clear that the bias of θ̂ can

then be consistently estimated by b̂πw.

For the conditional variance, we first have

σ2
πw = σ2

θ − D̃′θwΣ̃−1
wwD̃θw − D̃′θπΣ̃

−1
ππ D̃θπ.

Since

D̃′θwΣ̃−1
wwD̃θw =D̃′θw

ġ2(τ1, τ2)


τ21 − τ2K

...

τ2(K−1) − τ2K

 + ġ1(τ1, τ2)


τ11 − τ1K

...

τ1(K−1) − τ1K




=

K∑
k=1

wk {ġ2(τ1, τ2)(τ2k − τ2) + ġ1(τ1, τ2)(τ1k − τ1)}2 ,

D̃′θwΣ̃−1
wwD̃θw =D̃′θw


ġ2(τ1, τ2)

π


w1(τ21 − τ2K)

...

wK−1(τ2(K−1) − τ2K)

 −
ġ1(τ1, τ2)

1 − π


w1(τ11 − τ1K)

...

wK−1(τ1(K−1) − τ1K)




=
ġ2(τ1, τ2)2

π

K∑
k=1

wk(τ2
2k − τ

2
2) +

ġ1(τ1, τ2)2

1 − π

K∑
k=1

wk(τ2
1k − τ

2
1)

−

K∑
k=1

wk {ġ2(τ1, τ2)(τ2k − τ2) + ġ1(τ1, τ2)(τ1k − τ1)}2 ,

and σ2
Y j =

∑K
k=1 wk(σ2

Y jk + τ2
jk) − τ

2
j , we have

σ2
ad j =

ġ2(τ1, τ2)2

π

K∑
k=1

wkσ
2
Y2k +

ġ1(τ1, τ2)2

1 − π

K∑
k=1

wkσ
2
Y1k,

where σ2
Y jk = var(Yi|Ri = j, Xi = k). Furthermore, the conditional variance of θ̂− θ

can be consistently estimated by σ̂2
πw =

∑K
k=1

{
ġ2(τ†1, τ

†

2)2ŵ2
kσ̂

2
2k + ġ1(τ†1, τ

†

2)2ŵ2
kσ̂

2
1k

}
.
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In the aforementioned derivation, we used the fact that

Σ̃ww


τ j1 − τ jK

...

τ j(K−1) − τ jK

 =


w1(τ j1 − τ j)

...

wK−1(τ j(K−1) − τ j)


and

Σ̃ππ


w1(τ j1 − τ jK)

...

wK−1(τ j(K−1) − τ jK)

 = π(1 − π)


τ j1 − τ j

...

τ j(K−1) − τ j

 , j = 1, 2.

Appendix B: Incompatibility of PH assumption in the entire study

and within stratum

Assume that the PH assumption holds within each of the K strata. Let S jk(t)

denote the survival function in the kth stratum of arm j, j = 1, 2. Then we have

S 2k(t) = S 1k(t)r0

for k = 1, · · · ,K and a common HR r0. Furthermore, the marginal survival func-

tion for the entire study population is

S j(t) =

K∑
k=1

wkS jk(t),

for arm j, where w1 + · · ·+wK = 1,wk ∈ (0, 1), k = 1, · · · ,K. If the PH assumption

holds for the marginal survival function, then S 2(t) = S 1(t)r for a constant r, i.e., K∑
k=1

wkS 1k(t)


r

=

K∑
k=1

wkS 1k(t)r0 .

Taking derivative with respect to t for both sides at t = 0, we obtain that

r =
r0

∑K
k=1 wkS 1k(0)r0−1 f1k(0)∑K

k=1 wk f1k(0)
(∑K

k=1 wkS 1k(0)
)r−1 = r0.
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Without loss of generality, we assume that r0 ≥ 1, otherwise we always can switch

two groups of interest to ensure that the HR is greater than or equal to 1. Under

this assumption

S 2(t) =

K∑
k=1

wkS 1k(t)r0 ≥

 K∑
k=1

wkS 1k(t)

r0

= S 1(t)r0 ,

for 0 < S 1k(t) < 1 due to the convexity of the function xr0 . The equality holds only

when S 11(t) = · · · = S 1K(t) or r0 = 1. Thus the PH model with a HR of r0 is not

true for the entire study population unless S 11(t) = · · · = S 1K(t), i.e., the survival

distributions are the same across strata or r0 = 1, i.e., there is no difference in

survivorship in any stratum.
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Table 1: Stratified event rate of death or hospitalization up to 18 months in Aus-

tralia region of VALIANT Study

stratification factors Australia Data π̂k OR

(# of events / # of patients)

BMI History of Diabetes Monotherapy Combo therapy

< 25 No 43/60 8/13 0.82 0.63

< 25 Yes 9/10 6/8 0.56 0.33

≥ 25 No 65/108 44/54 0.67 2.91

≥ 25 Yes 18/24 22/25 0.49 2.44
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Figure 1: The survival curves for entire VALIANT study by arms: monotherapy

and combo therapy arms.
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Figure 2: The survival curves for Australian patients in VALIANT study by arms:

monotherapy and combo therapy arms.
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