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Abstract

Cast shadows induced by moving objects often cause se-
rious problems to many vision applications. We present in
this paper an online statistical learning approach to model
the background appearance variations under cast shadows.
Based on the bi-illuminant (i.e. direct light sources and am-
bient illumination) dichromatic reflection model, we derive
physics-based color features under the assumptions of con-
stant ambient illumination and light sources with common
spectral power distributions. We first use one Gaussian
Mixture Model (GMM) to learn the color features, which
are constant regardless of the background surfaces or il-
luminant colors in a scene. Then, we build up one pixel-
based GMM for each pixel to learn the local shadow fea-
tures. To overcome the slow convergence rate in the con-
ventional GMM learning, we update the pixel-based GMMs
through confidence-rated learning. The proposed method
can rapidly learn model parameters in an unsupervised
way and adapt to illumination conditions or environment
changes. Furthermore, we demonstrate that our method is
robust to scenes with few foreground activities and videos
captured at low or unsteady frame rates.

1. Introduction
Extracting moving objects from video sequences is at the

core of various vision applications, including visual surveil-
lance, contend-based video coding, and human-computer
interaction, etc. One of the most challenging problems of
extracting moving objects is detecting and removing mov-
ing cast shadows. When performing background subtrac-
tion, cast shadows are often misclassified as parts of fore-
ground objects, distorting the estimation of shape and color
properties of target objects. The distortion caused by cast
shadows may hinder subsequent vision algorithms, such as
tracking and recognition.

Cast shadows are caused by the occlusion of light
sources. When foreground objects cast shadows on back-
ground surfaces, the light sources are partially or entirely
blocked, and thus the total energy incident at the back-

ground regions is reduced. Hence, shadow points are ex-
pected to have lower luminance but similar chromaticity
values.

There have been many works dedicated to detecting
cast shadows. Most of them are based on the assumption
that shadow pixels should have lower luminance and the
same chrominance as the corresponding background (i.e.
the RGB values of shadow pixels will fall on the line be-
tween the illuminated value and the origin in the RGB color
space). This linear attenuation property has been employed
in different colors spaces like RGB [2], HSV [1], YUV [12],
and c1c2c3 [11]. Besides, other shadow-induced features
like edge or gradient information extracted from the spatial
domain have also been used to detect cast shadows [14, 16].
The major limitation of these algorithms is that they often
require explicit tuning of a large set of parameters for each
new scene. Thus, they are inappropriate for on-line applica-
tions.

To adapt to environment changes, statistical learning-
based approaches have been developed to learn and remove
cast shadows [9, 5, 4]. However, the linear proportionality
assumption may not always hold in a real-world environ-
ment. For instance, in an outdoor scene, the light sources
may consist of direct sunlight, diffused light scattered by the
sky, and other colored light from nearby surfaces (i.e. color
bleeding). These light sources may have different spectral
power distributions (SPDs). Therefore, the RGB values of
a shadow pixel may not attenuate linearly.

Little attention has been paid to the non-proportionality
attenuation problem before. Nadami and Bhanu [8] ad-
dressed the non-linearity by using a dichromatic reflection
model to account for both the sun and the sky illumina-
tions in an outdoor environment. Recently, a more general
shadow model was presented in [6], which introduced an
ambient illumination term that determines the direction in
the RGB color space along which the shaded background
values can be found. Since the ambient term may have a
different SPD from the incident light sources, the values of
shadow pixels may not decrease proportionally. Nonpara-
metric density estimation was used to model surface varia-
tion under cast shadows in an unsupervised way. By provid-
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ing a better description of cast shadows, the shadow model
in [6] provided improved performance over the previous ap-
proaches which used linear models.

However, these learning-based approaches [9, 5, 4, 6]
may suffer from insufficient training samples since the sta-
tistical models are learned from background surface varia-
tion under cast shadows. Unlike obtaining samples in ev-
ery frame in background modeling, shadows may not ap-
pear at the same pixel in each frame. A single pixel should
be shadowed many times till its estimated parameters con-
verge, while the illumination conditions should be stable.
Therefore, this kind of pixel-based shadow models require
a longer period of training time when foreground activities
are rare. This problem becomes more serious when video
sequences are captured at a low or unsteady frame rate that
depends on the transmission conditions.

In this paper, we characterize cast shadows with “global”
parameters for a scene. Based on the bi-illuminant dichro-
matic reflection model (BIDR) [7], we first derive nor-
malized spectral ratio as our color features under the as-
sumptions of constant ambient illumination and direct light
sources with a common SPD. The normalized spectral ra-
tio remains constant regardless of different background sur-
faces and illumination conditions. We then model the color
features extracted from all moving pixels using a single
Gaussian Mixture Model (GMM). To further improve the
differentiating ability for cast shadows having similar col-
ors to background, we use a pixel-based GMM to describe
the gradient intensity distortion for each pixel. We update
the pixel-based GMMs using the confidence predicted from
the global GMM through confidence-rated learning to ac-
celerate convergence rates. Contributions are presented in
two key aspects. Firstly, with the global shadow model
learned from physics-based features, our approach does not
require numerous foreground activities or high frame rates
to learn the shadow model parameters. This makes the pro-
posed method more practical than existing works using only
pixel-based models. Secondly, the proposed confidence-
rated learning can be used for fast learning of local features
in pixel-based models. We provide a principled scheme for
the local and global features to collaborate with each other.

The remainder of this paper is organized as follows.
We briefly describe in Section 2 the dichromatic reflection
model [13] and its extension BIDR. In Section 3, we present
the proposed learning approach. The posterior probability
of cast shadows and foreground are developed in Section 4.
Both visual and quantitative results are shown in Section 5
to verify the performance of our method and the robustness
to few foreground activities. Section 6 concludes this paper.

2. Physics-Based Shadow Model
2.1. Bi-illuminant Dichromatic Reflection Model

There are three terms in the Shafer’s model [13]: body
reflection, surface reflection, and a constant ambient term.
Each of the two reflection types can be decomposed into
chromatic and achromatic parts: 1) composition: a relative
SPD cb or cs which depends only on wavelength, 2) mag-
nitude: a geometric scale factor mb or ms which depends
only on geometry. Given a scene geometry, the radiance in
the direction (θe, φe) can be expressed as

I(θe, φe, λ) = mb(θe, φe)cb(λ)+ms(θe, φe)cs(λ)+cd(λ),
(1)

where cd is the constant ambient term.
While this model included a term to account for ambi-

ent illumination, the model did not separate it into body and
surface reflection. Recently, Maxwell et al. [7] proposed
the BIDR model, which contains four terms: two types of
reflection for both the direct light sources and ambient illu-
mination. Then, the BIDR model is of the form:

I(θe, φe, λ) = mb(θe, φe, θi, φi)cb(λ)ld(θL, φL, λ) (2)
+ms(θe, φe, θi, φi)cs(λ)ld(θL, φL, λ)

+cb(λ)
∫

θi,φi

mb(θe, φe, θi, φi)la(θL, φL, λ)dθidφi

+cs(λ)
∫

θi,φi

ms(θe, φe, θi, φi)la(θL, φL, λ)dθidφi,

where (θL, φL) is the direction of the direct light source
relative to the local surface normal, and (θe, φe) and (θi, φi)
are the angles of emittance and incidence, respectively. In
this reflection model, the range of mb, ms, cb, and cs all
lie in [0, 1] (we refer reader to [7] for further details of the
deviation of BIDR model.)

With a specific geometry and representing the two am-
bient integrals as Mab(λ) and Mas(λ), we can simplify the
BIDR model to

I(λ) = cb(λ)[mbld(λ) + Mab(λ)] (3)
+cs(λ)[msld(λ) + Mas(λ)].

Considering only matte surfaces, we can ignore the lat-
ter part of (3). To describe the appearance of cast shadows
on a background surface, we multiply the direct illumina-
tion with an attenuation factor α ∈ [0, 1], which indicates
the unoccluded proportion of the direct light. We assume
that all direct light sources have a common SPD with dif-
ferent power factor and the ambient illumination is constant
over lit and shaded regions (see Fig. 1). This gives us the
simplified form of the BIDR model

I(λ) = αmbcb(λ)ld(λ) + cb(λ)Mab(λ). (4)
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Figure 1. The contribution of all direct light sources and ambient
illuminance. The shadow values SD are expected to be observed
along the line between background value BG and the constant
ambient term BGA. Note that the shadow values do not necessary
to be proportional to the direction of background values.

The camera sensor response gi at the pixel level
can be obtained through the spectral projection gi =∫

Fi(λ)I(λ)dλ, where Fi(λ), i ∈ {R, G,B} is the sensor
spectral sensitivities and λ denotes the wavelength. By ap-
plying the linearity of spectral projection, we have

gi = αFimbc
i
bl

i
d + Fic

i
bM

i
ab, i ∈ {R,G, B} (5)

The formulation of gi defines a line segment in the RGB
color space varied between two ends: shadowed pixel (α =
0) to fully lit pixel (α = 1).

2.2. Extracting Useful Features

2.2.1 Spectral Ratio

To extract color features that are constant and independent
to different background surfaces, we need to identify mea-
surements that are invariant to illumination attenuation fac-
tor α, geometry shading factor mb, and the chromatic aspect
of body reflection ci

b. We calculate the ratio of illuminants
to be the spectral ratio ~S = [SR, SG, SB ]T using

Si =
SDi

BGi − SDi
=

αFimbc
i
bl

i
d + Fic

i
bM

i
ab

(1− α)Fimbci
bl

i
d

(6)

=
α

1− α
+

M i
ab

(1− α)mblid
, i ∈ {R, G, B}.

If the shaded regions received only the ambient illumination
(i.e. all direct light sources are blocked: α = 0), the first
term in (6) disappears and Si = Mi

ab

mblid
. We can then derive

features invariant to mb by normalizing Si with its length
|S| since the mb term can be extracted from the normaliza-
tion constant. However, this assumption does not hold in
real-world environments. Take an indoor scene as an exam-
ple, where there are usually multiple light sources. When a
foreground object occludes one or some of the light sources,
there is still energy from the remaining light sources inci-
dent to this surface. Consequently, assuming the attenua-
tion factor to be zero will induce bias in estimating the ratio
between two illuminants.

(a) (e)

(b) (f)

(c) (g)

(d) (h)
Figure 2. The color feature value distribution in various environ-
ments and illumination conditions. (a)-(d) Frame with cast shad-
ows. (e)-(h) The corresponding feature value distribution in the
S1S2S3 space. Note that the feature values extracted from differ-
ent background surface generally follow a line.

To address this problem, we introduce ~γ =
[γR, γG, γB ]T by subtracting each element of S by

α
1−α :

γi = Si − α

1− α
=

M i
ab

(1− α)mblid
. (7)

Similarly, we can obtain the normalized spectral ratio γ̂ with
higher accuracy by factoring out (1−α)mb through normal-
ization:

γ̂i =
M i

ab

(1− α)mblid

( 1
|γ|

)
(8)

|γ| = 1
(1− α)mb

√
(
MR

ab

lRd
)2 + (

MG
ab

lGd
)2 + (

MB
ab

lBd
)2 (9)

We validate the proposed physics-based color feature by
observing its distributions from cast shadows in various en-
vironments and illumination conditions. Fig. 2 (a) and its
reference background images are by courtesy of Maxwell
et al. [7]. Fig. 2 (b)-(d) show frames from the benchmark
sequences provided in the Prati et al.’s survey paper [10].
We manually label shadow pixels in the given images, and
then extract the spectral ratio Si, i ∈ {R, G,B} for each
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pixel in shadow regions using the given image and the ref-
erence background models. The resultant feature distribu-
tions are presented in Fig. 2 (e)-(h). The feature values ex-
tracted from different background surfaces roughly follow
a straight line in the SRSGSB space. Therefore, we can
use the direction of the line as our color feature, which is
roughly the same for all shadow pixels. The direction of the
line in the SRSGSB space can be characterized with two
angles, the zenith and azimuth in the spherical coordinate,
which correspond to the normalized spectral ratio. From the
feature distributions in Fig. 2 (e)-(h), we also observe that
larger feature values tend to be unstable and deviate from
the major direction of most feature values. This is because
there is not sufficient difference between the shaded and lit
pixel value to robustly measure the orientation. In addi-
tion, the value of α

(1−α) in the scene can be easily estimated
by intersecting the fitted line with the line passing through
(1,1,1) and the origin.

2.2.2 Gradient Intensity Distortion

Now we have derived color features that are invariant to dif-
ferent background surfaces. This low dimensional (2D) fea-
tures, however, might fail to distinguish foreground with
colors similar to background from cast shadows. Thus,
other shadow-induced properties like edge or gradient in-
formation may be used to further describe the background
appearance variation under cast shadows. In this paper, we
just use a simple gradient intensity distortion as our local
features to demonstrate the improvement by incorporating
additional local features.

For a given pixel p, we define the gradient intensity dis-
tortion ωp as

ωp = |∇(BG)p| − |∇(F )p|, (10)

where BG and F are luminance channels of the background
image and current frame, and ∇(·) is the gradient operator.

3. Learning Cast Shadows
In this section, we show how to build models for cast

shadows in an unsupervised way. Here, we use GMM to
learn the background surface variation over time. It is also
possible to use other statistical learning method such as ker-
nel density estimation.

3.1. Weak Shadow Detector

To model the cast shadows, impossible shadow sam-
ples that belong to background or foreground (e.g. color
values that are the same as or brighter than background
values) should be excluded. Therefore, we apply a weak
shadow detector that evaluates every moving pixel to filter
out some impossible samples. Since cast shadows reduce

Figure 3. The weak shadow detector. The observation will be con-
sidered as potential shadow point if it falls into the gray area. The
weak shadow detector contains three parameters: maximum al-
lowed color shift, and minimal and maximal illumination attenua-
tion.

the luminance values, the potential shadow values should
fall into the conic volume around the corresponding back-
ground color. The weak shadow detector is illustrated in Fig
3, where values of cast shadows are expected to fall into the
gray conic region. Pixel values that fall into the gray conic
region are considered as potential shadow samples. These
samples are then used to learn the global shadow model for
the scene and the local shadow model for each pixel.

3.2. Global Shadow Model

Using the background surface invariant color features, a
global shadow model is learned for the whole scene. Here,
we model the background color information by the well-
known GMM [15] in the RGB color space. For every frame,
we obtain potential shadow points by applying the weak
shadow detector on moving pixels, which are identified via
background subtraction. We then use one GMM to learn
the normalized spectral ratio r̂ = [γ̂R, γ̂G]T in the scene.
Note that the reason why we only use two of the three di-
mensional features is that the third component is redundant
since γ̂R

2 + γ̂G
2 + γ̂B

2 = 1. The normalized spectral ratio
in the whole scene is modeled by K Gaussian distributions
with mean vector µk and full covariance matrix Σk. Then,
the probability of the normalized spectral ratio r̂ is given
by:

p(r̂|µ, Σ) =
K∑

k=1

πkGk(r̂, µk, Σk), (11)

where µ,Σ denote all parameters of the K Gaussians, πk is
the mixing weight, and Gk is the kth Gaussian probability
distribution. We use the Expectation-Maximization (EM)
algorithm to estimate the parameters in the GMM. The es-
timated parameters in the current frame are propagated to
next frame, so that the EM algorithm can converge quickly.
Since the light sources are usually stable in the scene, we
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find that it is sufficient for the estimated parameters to con-
verge with a single EM iteration at each frame.

3.3. Local Shadow Model

Besides using color features in the global shadow model,
we build GMM for each pixel to learn the gradient intensity
distortion under cast shadows similar to background mod-
eling [15]. For a given pixel p, its gradient feature value ωp

is sampled and learned whenever it is a potential shadow
pixel. However, as we mentioned before, pixel-based mod-
els often suffer from insufficient training data because the
samples are not available at the pixel every frame.

To address this problem, we adopt the confidence-rated
learning to improve the convergence rate of the local model
parameters. The basic idea is that each sample is weighted
with different importance computed from the global shadow
model. For example, if we update the model using a poten-
tial shadow point whose color features matched with the
global shadow model, then we think this sample is rela-
tively more important than others. In this way, the learning
process of the local shadow model is guided by the global
shadow model.

3.4. Confidence-Rated Gaussian Mixture Learning

We present an effective Gaussian mixture learning algo-
rithm to overcome some drawbacks in conventional GMM
learning approach. Let ρπ and ρG be the learning rates for
the mixing weight and the Gaussian parameters (means and
covariances) in the local shadow model, respectively. The
updating scheme follows the the formulation of the combi-
nation of incremental EM learning and recursive filter [3]:

ρπ = C(γ̂) ∗ (
1− ρdefault∑K

j=1 cj

) + ρdefault (12)

ρG = C(γ̂) ∗ (
1− ρdefault

ck
) + ρdefault, (13)

where ck is the number of matches of the kth Gaussian state,
and ρdefault is a small constant, which is 0.005 in our ex-
periments. The two types of learning rates are controlled
by a confidence value C(γ̂), which indicates how confident
the sample belongs to the shadow. Observations with higher
confidence will then converge faster than those with lower
confidence.

3.5. Attenuation Factor Estimation

From the RGB values we observed in the current frame
and the reference background image, we can only compute
the value of S, which may introduce bias in estimating nor-
malized spectral ratios. Therefore, the estimation of atten-
uation factor α is required for accurate shadow modeling.
We can see that in (7) the value of γi, i ∈ {R, G,B} is

obtained by subtracting α
1−α from Si. From the feature dis-

tribution of S, our aim is to find the location of point t such
that t passes through both the lines passing through the ori-
gin with direction vector (1,1,1) and the line that fits the
observations S. This estimation can be achieved using the
robust fitting method that is less sensitive than ordinary least
squares to large changes (outliers). In addition, we perform
the recursive linear regression to update the estimated α

1−α
value adaptively. For simplicity, the attenuation factor α is
assumed the same for every pixel.

4. Cast Shadow and Foreground Posterior
Probabilities

In this section, we present how to derive the posterior
probabilities of cast shadows and foreground given the ob-
served sample xp in the RGB color space by using the pro-
posed global and local shadow models.

4.1. Cast Shadow Posterior

The shadow posterior is first computed by decomposing
P (SD|xp)) over the (BG, FS) domain, where FS indicates
moving pixels (real foreground and cast shadows). Since
P (SD|xp, BG) = 0, the decomposition gives

P (SD|xp) = P (SD|xp, FS)P (FS|xp), (14)

where P (FS|xp) = 1 − P (BG|xp) can be di-
rectly computed from the background model. Sec-
ond, we remove pixels that are definitely foreground
(i.e. pixels that are rejected by the weak shadow de-
tector) and consider only potential shadow points (PS):
P (SD|xp, FS) = P (SD|xp, FS, PS). Then, we decom-
pose P (SD|xp, FS, PS) into two parts: Na, and Nna,
which stand for color features that are associated with the
normalized spectral ratio or not, respectively. If the color
features do not associate with the working states of the
GMM, then the probability of belonging to shadow equals
to zero. Therefore, we have

P (SD|x(p), FS, PS) = P (SD|xp, FS, PS,Na)∗ (15)
P (Na|xp, FS, PS)

Here, the gradient intensity distortion ωp and the color fea-
ture γ̂p are the sufficient statistics for xp in the first and sec-
ond part of (15). The posterior probability of cast shadow
can thus be computed.

4.2. Foreground Posterior

Computing foreground posterior probability is much eas-
ier. Given a pixel p, we first compute the background pos-
terior P (BG|xp) from the background model. Then, we
can obtain shadow posterior probability P (SD|xp) using
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the learned shadow models. Based on the probability the-
ory, the foreground posterior can be obtained as:

P (FG|xp) = 1− P (BG|xp)− P (SD|xp). (16)

4.3. Summary

Algorithms 1 and 2 summarize in pseudocode the learn-
ing and detection processes of the proposed algorithm. Our
method can be attached to other moving object detection
programs as an independent module. Shadow detection pro-
cess is only applied to moving pixels detected by the back-
ground model and the learning process occurs only when
these moving pixels are considered as shadow candidates.
Consequently, the proposed algorithm is practical, it does
not introduce heavy computational burden and can work ef-
fectively to detect shadows.

Algorithm 1: Learning Process

At time t,
for each pixel p in the frame do

if P (BG|xt(p)) < 0.5 then
if pixel p satisfies shadow property then

-Compute normalized spectral ratio γ̂p

-Compute gradient intensity distortion ωp

-Update local shadow model at pixel p
using confidence value C(γ̂) through
confidence-rated learning

end
end

end
Run one EM iteration to estimate the parameters of
global shadow model using the collected color
features.

Algorithm 2: Detection Process

At time t,
for each pixel p ∈ P do

-Obtain background posterior P (BG|xp) from
background modeling
-Compute shadow posterior P (SD|xp)(eq. 14)
-Compute foreground posterior P (FG|xp)(eq. 16)
if P (FG|xp) > P (SD|xp)&P (FG|xp) >
P (BG|xp) then

Label pixel p as foreground
else

Label pixel p as background
end

end

5. Experimental Results

We present the visual results from challenging video se-
quences captured in various environments, including both
indoor and outdoor scenes. We also compare the quantita-
tive accuracy of the proposed method in several videos with
other approaches when the results are available. Previous
approaches using statistical model have higher success rate
in detecting cast shadow when numerous foreground activi-
ties are present. However, we show that our method can deal
with the situation that cast shadows first appear in complex
scenes and unknown illumination conditions as well as rare
foreground activity.

5.1. Qualitative Results

In Figure 4, we show sample cast shadow detection re-
sults from four video sequences. The first three sequence:
Laboratory, Intelligent Room, and Highway I are part of the
benchmark sequences for validating shadow detection al-
gorithm. The last one Hallway is taken from [6]. Figure
4 (a) shows one frame selected from the video, where cast
shadows are present in the scene. The background poste-
rior probability is presented in Figure 4(b), where the dark
region indicates the less probability of belonging to back-
ground. From Figure 4(c)(d), we show the confidence map
of global shadow model and the posterior probability of cast
shadows, respectively. In Fig. 4(e) we show the probability
values of belonging to foreground objects. We can see that
in these video sequences, the proposed algorithm is capa-
ble of detecting cast shadows without misclassifying fore-
ground as shadows. Note that in the second video, Intelli-
gent Room, the man just walks in the room by once. Thus,
there is no chance for the pixel-based shadow model to learn
its parameters. The use global shadow model enables us to
detect shadows first appear in the scene.

To verify the effectiveness of the proposed method, the
results presented here are raw data and without any post-
processing. We can obtain binary results simply with
thresholding the foreground posterior values P (FG|xp).
The posterior probabilities can also be incorporated with
context model that use spatial and temporal coherence to
improve the segmentation accuracy.

5.2. Quantitative Results

The quantitative evaluation follows the method proposed
by Prati et al. [10]. There are two defined metrics for eval-
uating the performance of cast shadow detection algorithm:
shadow detection rate η and shadow discrimination rate ξ.
The formulations of the two metrics are as follows:

η =
TPS

TPS + FNS
; ξ =

TPF

TPF + FNF
, (17)
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(a) (b) (c) (d) (e)
Figure 4. Sample visual results of detecting cast shadows in various environment. (a) Frame from video sequence. (b) Background posterior
probability P (BG|xp). (c) Confidence map predicted by the global shadow model. (d) The shadow posterior probability P (SD|xp). (e)
The foreground posterior probability P (FG|xp).

(a) (b) (c)

(d) (e) (f)
Figure 5. The effect of confidence-rated Gaussian mixture learn-
ing. The mean maps of local shadow model are taken at the 100th

frame (the first row) and 1000th frame (the second row) (a)(d)The
background image. (b)(e) The mean map of the most important
Gaussian in the mixture with confidence-rated learning. (c)(f)The
mean map without using confidence-rated learning.

where the subscript S stands for shadow and F for fore-
ground, and TP and FN denote true positive and false neg-
ative, respectively. The TPF is the number of ground-truth
points of the foreground objects minus the number of points
detected as shadows, but belonging to foreground objects.

We show the quantitative results in Table 1. Note that
results of other’s approaches are taken directly from [6][4].

Figure 6. Quantitative results of the Intelligent Room sequence.
Shadow detection and shadow discriminative rate are calculated
under different frame rates settings.

5.3. Fast Learning of local Shadow Model

We demonstrate the effect of using confidence-rated
learning in Figure 5. In this experiment, we learn the local
shadow model in two traffic scenes: Highway I and High-
way II. Figure 5(a)(d) show the background model of these
two outdoor scene. With confidence-rated learning, we ob-
tain the mean value of the most important Gaussian (i.e.
with highest mixing weight and smallest variance) in Fig-
ures 5(b)(e). We can see that the local models of gradient
intensity distortion under cast shadows are well constructed.
On the other hand, if we learn the local shadow model
following conventional Gaussian mixture learning method,
then we obtain the results in Figure 5(c)(f), in which the
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Table 1. Quantitative results on surveillance sequences
Sequence Highway I Highway II Hallway
Method η% ξ% η% ξ% η% ξ%

Proposed 70.83 82.37 76.50 74.51 82.05 90.47
Kernel [6] 70.50 84.40 68.40 71.20 72.40 86.70

LGf [4] 72.10 79.70 - - - -
GMSM [5] 63.30 71.30 58.51 44.40 60.50 87.00

models are still not built due to the long training time and
disturbance by foreground objects.

5.4. Handling Scene with Few Foreground Activities

Here we use the benchmark sequence, Intelligent Room,
to demonstrate the robustness of our approach to videos
captured at low frame rates and scenes with few foreground
activities. Downsampled sequences with lower frame rates
are obtained by taking a sample from the original image se-
quence for every M ∈ {2, 3, 4} samples. Thus, we have
sequences with 10, 5, 3.33, and 2.5 frame rates, respec-
tively. Figure 6 shows the quantitative results on these se-
quences. We can see that the performance on sequences
lower frame rates degraded slightly, demonstrating that our
approach can still learn and removing cast shadows even in
such low frame rates.

6. Conclusion
In this paper, we have presented a novel algorithm capa-

ble of detecting cast shadows in various scenes. Qualitative
and quantitative evaluation of the physics-based shadow
model validated that our approach is more effective in de-
scribing background surface variation under cast shadows.
The physics-based color features can be used to learn a
global shadow model for a scene. Therefore, our method
does not suffer from the problem of insufficient training
data as in pixel-based shadow models. Moreover, with the
aid of the global shadow model, we can update the local
shadow models through confidence-rated learning, which is
significantly faster than conventional online updating. To
further improve the detection accuracy, more discriminative
features or the spatial and temporal smoothness constraints
can also be incorporated into the detection process in the
future.
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