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Abstract—Moving cast shadow removal is an important
yet difficult problem in video analysis and applications. This
paper presents a novel algorithm for detection of moving
cast shadows, that based on a local texture descriptor called
Scale Invariant Local Ternary Pattern (SILTP). An assumption
is made that the texture properties of cast shadows bears
similar patterns to those of the background beneath them.
The likelihood of cast shadows is derived using information
in both color and texture. An online learning scheme is
employed to update the shadow model adaptively. Finally,
the posterior probability of cast shadow region is formulated
by further incorporating prior contextual constrains using a
Markov Random Field (MRF) model. The optimal solution is
found using graph cuts. Experimental results tested on various
scenes demonstrate the robustness of the algorithm.

Keywords-shadow removal, local texture descriptor, Markov
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I. INTRODUCTION

Extracting moving objects is one of the key problems

in video analysis applications, including visual surveil-

lance, content-based video retrieval, etc. The problem is

further plagued by moving cast shadows caused by e.g.

sunlight. Misclassification of moving cast shadows as parts

of foreground objects usually induces problems, such as

silhouette distortions and merging of nearby objects, and

hence mistakes in subsequent stages. An effective moving

shadow detection method is therefore necessary for accurate

extraction of moving objects.

There are a number of cues that provide information

regarding properties and behaviors of cast shadows. A direct

way for modeling cast shadows is based on the assumption

that shadow pixels should have lower luminance and the

same chrominance as the corresponding background. This

attenuation property has been employed in different color

spaces like RGB [1], HSV [2]. Unfortunately, such assump-

tions are difficult to justify in general, especially when pixels

of foreground objects are darker than the reference surface

they cover. Furthermore, it is not reliable to exploit only the

color information of isolated point. Therefore, in addition

to color properties, texture [3] or gradient [4] information

extracted from the spatial domain is used to detect cast

shadows . Some physical models [5] are also used to model

cast shadows. The major limitation of these methods is that

they often require off-line training and need to re-estimate

parameters for each new scene. Consequently, they cannot

handle complex conditions, such as time-varying lighting

conditions, etc. A comprehensive study of moving cast

shadow detection approaches can be found in [6].

Recently, online approaches have been developed to learn

moving cast shadows [7], [8], [9] in color space adaptively.

Compared with the complexity and variability of cast shad-

ows in color spaces, the distribution of texture differentia

is relatively simple, hence we propose to update the cast

shadow model online in the texture space.

In this paper, we propose a novel method for shadow

detection, using a local texture descriptor called Scale In-

variant Local Ternary Patterns (SILTP). Global properties of

cast shadows in both texture and color domains are learned

through the use of Mixture of Gaussian, with an online-EM

update scheme. Contextual constraint from Markov Random

Field (MRF) [10] modeling is further incorporated to obtain

the MAP estimation of the cast shadows. Experimental

results demonstrate the effectiveness and robustness of the

proposed method. The contributions are as follows: Firstly,

SILTP is used as a local texture descriptor for cast shadow

detection, which can deal with the sudden changes of

gray scale intensities caused by environmental illumination

variations. Secondly, an online learning scheme is introduced

to shadow learning process in both texture and color space,

which makes the proposed method more robust to changes

in environments.

II. LEARNING CAST SHADOWS

A flow diagram of the proposed algorithm is illustrated

in Figure 1. For each pixel p, a background model is

learned by the nonparametric KDE method in the RGB

color space [11], from which the foreground probability can

be estimated. Potential moving objects can be extracted by

simply thresholding this density distribution, and within the

segmentation the likelihood probability of cast shadows can

be evaluate over both the color and texture domain as follows

P (MP |S, p) =
∑

i=1,2

P (MP |Di, S, p)P (Di|S, p), (1)

where MP denotes potential moving pixels, S denotes

shadow, D1 and D2 represent the texture and color domains

respectively. The details of the estimation are described in

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.340

1381

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.340

1381

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.340

1377

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.340

1377

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.340

1377



M R F
O pti mi zati on

S hadow M odeling

B ack gr ound
Substr actr i on

V ideo F r ame
B ack gr ound

M odel
P otenti al  M ovi ng
O bjects  M P (x,y)

Shadow M odel
i n

T extur e Space

G r aph
M odel

Segmentati on
R esul t

Shadow M odel
i n

C ol or  Space

Figure 1. Flow diagram of the algorithm

the following subsections.

A. Shadow Model in Texture Space

Under the assumption that the texture within the cast

shadow tends to be similar with that in the corresponding

background surface, in this work we propose to learn a

texture shadow model to discriminate the shadow from

moving objects and update it dynamically.

Tan in [12] proposed a local image texture descriptor

called Local Ternary Pattern (LTP) for face recognition. It

is robust to image noises but not invariant to gray-scale

changes. However, in practice, for surveillance scenario,

there always exist sudden changes of gray scale intensities

due to environmental illumination variations such as shadow.

To address this problem, we extend the original LTP to

the intensity scale invariant LTP (SILTP) for handling cast

shadows.

As shown in Figure 2, for any pixel location (xc, yc),
SILTP can be encoded as

SILTP τ
N,R(xc, yc) =

N−1
⊕

k=0

sτ (Ic, Ik), (2)

where Ic is the gray intensity value of the center pixel,

Ik(k = 0, 1, ...N − 1) are that of its N neighborhood pixels

equally spaced on a circle of radius R1,
⊕

is defined as

concatenation operator of binary strings, and sτ denotes a

piecewise function defined as

sτ (Ic, Ik) =











01, if Ik > (1 + τ)Ic,

10, if Ik < (1− τ)Ic,

00, otherwise.

(3)

Since each comparison can result in one of three values,

we encode SILTP with two bits, leaving the value of “11”

undefined. τ is determined by the noise in the scene. The

intensity scale invariant property can be easily verified

from Equ. (3). In real scenarios, illumination variations

always make the gray intensities of neighboring pixels

to be changed simultaneously, from brighter to darker or

conversely, which approximately causes a scale transform

on neighboring pixels with a constant factor. In this case the

proposed SILTP can well encode the illumination-invariant

textures. Figure 3 shows the Hamming distance of SILTP

1In this work, N=8 and R=1 are used for SILTP.
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Figure 2. The SILTP operator
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Figure 3. Hamming distance of SILTP

between the potential moving objects of a frame and the

corresponding background. As can be seen from Figure

3, the cast shadow regions are more similar with the the

corresponding backgrounds (with lower distances), except

that the boundaries have higher distances. Therefore, we

apply Gaussian mixture model (GMM) with two states to

learn a universal likelihood distribution of such distance

as our shadow model in texture space. Consequently, the

likelihood probability P (MP |D1, S, p) of a pixel p being

moving cast shadow can be evaluated by the learned texture

shadow model.

The Expectation Maximization (EM) algorithm is adopted

to estimate the parameters of GMM from different scenes.

Moreover, online-EM is employed to update this universal

GMM model dynamically for a specific scene in real-time

video. Since the distribution of the distance based shadow

likelihood probability in texture space is usually simple

for various scenes, the Online-EM based adaptation can

converge very quickly.

B. Shadow Model in Color Space

Figure 3 shows that SILTP can represent the similarity

between shadows and the corresponding backgrounds, which

can be employed to discriminate cast shadows from moving

objects. Yet it also shows that with SILTP some flat surfaces

of moving objects are also similar with the flat background

regions. However, in this case the surface colors of the two

are different. Therefore, we also learn a color shadow model

as a complement for the previous texture discrimination.

Porikli and Thomton showed that in RGB color space

shadow can be defined as a conic volume around the

corresponding background [9]. Following their work, we

also learn a shadow model in RGB color space. For a moving
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Figure 4. Distribution of (rl, θ)

pixel p, the relationship of the observation pixel vector zt(p)

and the corresponding background pixel vector bt(p) can be

characterized by two parameters [9]: luminance ratio rl(p)
and angle variation θ(p), which are defined as follows :

rl(p) =
∥bt(p)∥

∥zt(p)∥cos(θ(p))
, (4)

θ(p) = arccos(
< zt(p), bt(p) >

∥zt(p)∥ · ∥bt(p)∥
), (5)

where ∥ · ∥is the norm of a vector, and <,> is the inner

product operator. Figure 4 illustrates the distribution of

(rl, θ) collected from shadows of some scenarios. It can

be seen that the two parameters fall within several clusters.

Therefore, we adopt GMM with five components to learn the

above parameter distribution as a color shadow model. The

EM algorithm also apply to learn a universal GMM model

with (rl, θ) samples over shadows of various scenarios.

Then, for a real-time video of a specific scene, we update

it automatically by online learning based on Online-EM al-

gorithm. Finally, the likelihood probability P (MP |D2, S, p)
of cast shadows in color space is estimated by the updated

GMM model.

III. SEGMENTATION FOR THE CAST SHADOW

In the likelihood probability map of cast shadows, if

we deal with each pixel independently, the segmentation

results may contain many small pieces. Consequently, we

build the likelihood probability into an MRF energy func-

tion [10] which considers neighboring smooth information

that will refine the final segmentation. The energy function

is defined as

E(f) =
∑

p∈P

Dp(fp) +
∑

p,q∈N

Vp,q(fp, fq), (6)

where E(f) is the energy of a particular shadow/foreground

labeling f , p and q are indexes over the pixels, Dp(fp)
is the data cost of assigning the pth pixel to label fp,

and Vp,q(fp, fq) represents the smoothness cost of assigning

pixels p and q in a neighborhood N to respective labels

fp and fq . In this work, the data cost assigning shadow is

set as −logP (MP |S, p), while that assigning foreground is

defined as log(1−αP (MP |S, p)), where α is a weighting

factor. The smoothness cost term is defined as

Vp,q = (fp − fq)
2e−β|Ip−Iq| (7)

where Ip and Iq denote gray-scale intensities of pixels p

and q, | · | denotes absolute difference, and β is a constant.

To minimize the energy function of Equ. (6), we apply the

graph cut algorithm [13] for an approximate MAP estimation

of the labeling field, and hence obtain the final segmentation

result.

IV. EXPERIMENT RESULTS

The results presented here are evaluated from challeng-

ing video sequences known in the literature2. We run

experiments only on three benchmark video sequences to

evaluate the effectiveness of the proposed method, where

the quantitative accuracy of other comparison are available.

Figure 5. illustrates the visual results of our method on these

sequences. As shown in Figure 5, moving cast shadows can

be almost completely detected by our approach, except for

some thin mistakes presented around the boundary of cast

shadows in the outdoor sequences. For the indoor sequence,

the soft cast shadows of moving objects can be removed

better by the texture descriptor SILTP. We can also notice

that, thanks to the new descriptor, the moving highlight

reflected on the road is also removed (see Figure 5(1)b).

For a quantitative evaluation, we calculate the accuracy

of the cast shadow detection by using two metrics proposed

in [6]. The shadow detection rate η measures the percent-

age of correctly labeled shadow pixels among all detected

ones, while the shadow discrimination rate ξ measures the

discriminative power between foregrounds and shadows.

The quantitative comparison with both the proposed and

previous approaches are given in Table I. The results of

other’s approaches are taken directly from [7][5][8]. From

Table I, we can see that the proposed method achieves

comparable performance as the state-of-the-art algorithms

in the literature. By using the illumination invariant texture

descriptor SILTP, our approach performs better in the indoor

scene like Hallway, and the outdoor scenario with large cast

shadow regions, such as HighwayI.

Table I
QUANTITATIVE EVALUATION RESULTS

Sequence Highway I Highway II Hallway

Method η% ξ% η% ξ% η% ξ%
Proposed 72.51 84.90 75.38 74.12 82.31 91.07

Physics[7] 70.83 82.37 76.50 74.51 82.05 90.47

Kernel[5] 70.50 84.40 68.40 71.20 72.40 86.70

GMSM[8] 63.30 71.30 58.51 44.40 60.50 87.00

2http://cvrr.ucsd.edn/aton/shadow.
http://vision.gel.ulaval.ca/ CastShadows
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(1) Highway I (2) Highway II (3) Hallway

Figure 5. Visual results in various environments.
a|b
c|d

(a) Frame from video sequence. (b) Hamming distance of SILTP. (c) Likelihood probability in

color space. (d) Final result using MRF
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VI. CONCLUSIONS AND FUTURE WORK

A novel method for moving cast shadow removal is

presented in this paper. Color and texture information using

SILTP are built into a MRF energy function. Additionally,

with the aid of online-EM process, the shadow model is

updated dynamically. Qualitative and quantitative evaluation

in various experiments validate the effectiveness of our

method. Moreover, our method performs better in the indoor

scenarios. The proposed pixel-based method is suitable for

parallel computing, therefore it can be accelerated by multi-

core and GPU implementations, which will be one of our

future work.
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