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Abstract

A major obstacle in Word Sense Disambigua-

tion (WSD) is that word senses are not uni-

formly distributed, causing existing models to

generally perform poorly on senses that are ei-

ther rare or unseen during training. We pro-

pose a bi-encoder model that independently

embeds (1) the target word with its surround-

ing context and (2) the dictionary definition, or

gloss, of each sense. The encoders are jointly

optimized in the same representation space, so

that sense disambiguation can be performed

by finding the nearest sense embedding for

each target word embedding. Our system out-

performs previous state-of-the-art models on

English all-words WSD; these gains predom-

inantly come from improved performance on

rare senses, leading to a 31.1% error reduction

on less frequent senses over prior work. This

demonstrates that rare senses can be more ef-

fectively disambiguated by modeling their def-

initions.

1 Introduction

One of the major challenges of Word Sense Disam-

biguation (WSD) is overcoming the data sparsity

that stems from the Zipfian distribution of senses in

natural language (Kilgarriff, 2004). For example,

in SemCor (the largest manually annotated dataset

for WSD) 90% of mentions of the word plant cor-

respond to the top two senses of the word, and only

half of the ten senses of plant occur in the dataset at

all (Miller et al., 1993). Due to this data imbalance,

many WSD systems show a strong bias towards pre-

dicting the most frequent sense (MFS) of a word

regardless of the surrounding context (Postma et al.,

2016).

A successful WSD system should be able to over-

come this bias and correctly disambiguate cases

where a word takes a less frequent sense (LFS),

without sacrificing performance on MFS examples.

Previous work has found that incorporating lexical

information such as sense definitions, or glosses,

into WSD systems improves performance (Luo

et al., 2018a,b).1 Glosses have also been found

to improve LFS performance; however, absolute

performance on rare senses is still low, with models

showing a 62.3 F1 performance drop between the

MFS examples and the LFS ones (Kumar et al.,

2019).

In this paper, we show that this gap can be signif-

icantly reduced by jointly fine-tuning multiple pre-

trained encoders on WSD. We present a bi-encoder

model built on top of BERT (Devlin et al., 2019)

that is designed to improve performance on rare

and zero-shot senses. Similar to prior work, our

system represents the target words and senses in

the same embedding space by using a context en-

coder to represent the target word and surrounding

context, and a gloss encoder to represent the sense

definitions. However, our two encoders are jointly

learned from the WSD objective alone and trained

in an end-to-end fashion.

This approach allows our model to outperform

prior work on the English all-words WSD task in-

troduced in Raganato et al. (2017b). Analysis of

our model shows that these gains come almost en-

tirely from better performance on the less frequent

senses, with an 15.6 absolute improvement in F1

performance over the closest performing system;

our model also improves on prior work in the zero-

shot setting, where we evaluate performance on

words and senses not seen during training.

Finally, we train our model in a few-shot setting

in order to investigate how well the bi-encoder sys-

tem learns on a limited set of training examples

per sense. The bi-encoder architecture is able to

generalize better from the limited number of exam-

1For example, in the sentence “She planted the tree,” the
gloss, or meaning, for the sense of plant is “put or set [some-
thing] firmly into the ground.” (Miller, 1995)



1007

ples than a strong pretrained baseline. This results

demonstrates the data efficiency of our system and

indicates why it captures LFS well, as less common

senses naturally only have a few training examples

in the data.

In summary, the overall contributions of this

work are as follows:

• We present a jointly optimized bi-encoder

model (BEM) for WSD that improves per-

formance on all-words English WSD.

• We show that our model’s improvements

come from better performance on LFS and

zero-shot examples, without sacrificing accu-

racy on the most common senses.

• We examine why our model performs well on

LFS with a number of experiments, including

an evaluation of the BEM in a few-shot learn-

ing setting demonstrating that the bi-encoder

generalizes well from limited data.

The source code and trained models for our WSD

bi-encoders can be found at https://github.

com/facebookresearch/wsd-biencoders.

2 Background and Related Work

Word Sense Disambiguation (WSD) is the task of

predicting the particular sense, or meaning, of a

word when it occurs in a specific context (Navigli,

2009). Understanding what a word means in con-

text is critical to many NLP tasks, and WSD has

been shown to help downstream tasks such as ma-

chine translation (MT) (Vickrey et al., 2005; Neale

et al., 2016; Rios Gonzales et al., 2017) and infor-

mation extraction (IE) (Ciaramita and Altun, 2006;

Bovi et al., 2015).

The formulation of WSD that we address is all-

words WSD, where the model disambiguates every

ambiguous word in the data (e.g., Palmer et al.

(2001); Moro and Navigli (2015)). Many WSD

systems approached this task with manually engi-

neered features that were used to learn an indepen-

dent classifier, or word expert, for each ambiguous

lemma (Zhong and Ng, 2010; Shen et al., 2013).

Later work also integrated word embeddings into

this independent classifier approach (Rothe and

Schütze, 2015; Iacobacci et al., 2016).

Neural models for WSD built on this approach

by training encoders for better feature extraction;

they then either still learned independent classifiers

on top of the encoded features (Kågebäck and Sa-

lomonsson, 2016), or labeled each word using a

shared output space (Raganato et al., 2017a). Other

neural approaches used semi-supervised learning

to augment the learned representations with ad-

ditional data (Melamud et al., 2016; Yuan et al.,

2016).

2.1 Lexical Resources for WSD

Definitions of senses, or glosses, have been shown

to be a valuable resource for improving WSD. Lesk

(1986) used the overlap between the definitions of

senses and the context of the target word to predict

the target sense. This approach was later extended

to incorporate WordNet graph structure (Banerjee

and Pedersen, 2003) and to incorporate word em-

beddings (Basile et al., 2014). More recently, Luo

et al. (2018a,b) added sense glosses as additional

inputs into their neural WSD system, significantly

improving overall performance.

Most similar to our work, Kumar et al. (2019)

represented senses as continuous representations

learned from encoded glosses. However, they took

a pipelined approach and supervised the gloss en-

coder with knowledge graph embeddings; they then

froze the sense representations to use them as static

supervision for training the WSD system. This

approach requires an additional form of supervi-

sion (for which they used knowledge graph embed-

dings), making it more difficult to generalize to new

data without that source of supervision. In compar-

ison, our model is trained in an end-to-end manner

and learns to embed gloss text without additional

supervision.

Other work has shown that neural models cap-

ture useful semantic information about words from

their definitions, and has used them to encode lex-

ical representations (Bahdanau et al., 2017; Bosc

and Vincent, 2018). While they focused on rep-

resenting words, rather than specific senses, their

modeling approaches could be extended to sense

representations.

2.2 Pretrained NLP Models for WSD

Pretrained models have been shown to capture a

surprising amount of word sense information from

their pretraining objectives alone (Peters et al.,

2018; Stanovsky and Hopkins, 2018; Coenen et al.,

2019), allowing the frozen pretrained represen-

tations to compete with previous state-of-the-art

WSD systems (Hadiwinoto et al., 2019). Build-

ing on these findings, Vial et al. (2019) incorpo-

rates pretrained BERT representations as inputs

into their WSD system, and Loureiro and Jorge

https://github.com/facebookresearch/wsd-biencoders
https://github.com/facebookresearch/wsd-biencoders
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Figure 1: Architecture of our bi-encoder model for WSD. The context sentence and sense gloss text are input

into the context and gloss encoders, respectively; each encoder is initialized with BERT. We take the ith output

of the context encoder as the representation for the target word wi; the first output of the gloss encoder, which

corresponds to the BERT-specific start token [CLS], is used as a representation for each candidate sense s. wi is

compared to s with a dot product, and the sen se with the highest similarity to wi is assigned as the predicted label.

(2019) uses BERT’s contextualized outputs to cre-

ate sense embeddings for each sense in WordNet.

Another approach to using pretrained models

for WSD is to formulate the task as a sentence-

pair classification problem, in which (context sen-

tence, gloss) pairs are concatenated and cross-

encoded with the pretrained model. This reduces

the WSD task to a binary classification problem

where the model is trained to predict whether the

gloss matches the sense of the target word in the

context sentence (Huang et al., 2019). Given that

transformer compute scales polynomially in the

input length, our approach of independently encod-

ing the contexts and sense glosses is more computa-

tionally efficient, and we also show that it performs

better on the all-words WSD task (Section 5.1).

3 Methodology

In this section, we present an approach for WSD

that is designed to more accurately model less fre-

quent senses by better leveraging the glosses that

define them. The overall model architecture is

shown in Figure 1. Our bi-encoder model (BEM)

consists of two independent encoders: (1) a con-

text encoder, which represents the target word (and

its surrounding context) and (2) a gloss encoder,

that embeds the definition text for each word sense.

These encoders are trained to embed each token

near the representation of its correct word sense.

Each encoder is a deep transformer network initial-

ized with BERT, in order to leverage the word sense

information it captures from pretraining (Coenen

et al., 2019; Hadiwinoto et al., 2019). To describe

our approach, we formally define the task of WSD

(Section 3.1), and then present the BEM system in

detail (Section 3.2).

3.1 Word Sense Disambiguation

Word Sense Disambiguation (WSD) is the task of

assigning a sense to a target word, given its context.

More formally, given a word w and context c, a

WSD system is a function f such that f(w, c) = s

subject to s ∈ Sw, where Sw is all possible candi-

date senses of w.

We focus on the task of all-words WSD, in which

every ambiguous word in a given context is disam-

biguated.2 In this setting, a WSD model is given

as input c = c0, c1, ..., cn and outputs a sequence

of sense predictions s = sic0 , s
j
c1
, ..., smcn , where the

model predicts the ith, jth, and mth senses from

the candidate sense sets for c0, c1, and cn, respec-

tively. For our approach, we assume for each sense

s that we also have a gloss gs = g0, g1, ..., gn that

defines s.

3.2 Bi-encoder for WSD

Our bi-encoder architecture independently encodes

target words (with their contexts) and sense glosses

(Bromley et al., 1994; Humeau et al., 2019). Each

of these models are initialized with BERT-base:

therefore, the inputs to each encoder are padded

with BERT-specific start and end symbols: in-

put z = z0, z1, ..., zn is modified to z =[CLS],

z0, z1, ..., zn, [SEP].

The context encoder, which we define as Tc,

takes as input a context sentence c containing a set

of target words w to be disambiguated, s.t. c =
c0, c1, ..., wi, ..., cn, where wi is the ith target word

2In practice, this means every content word – noun, verb,
adjective, and adverb – in the context is disambiguated by the
WSD system.
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in the context sentence. The encoder then produces

a sequence of representations r, where

rwi
= Tc(c)[i]

or the ith representation output by Tc. For words

that are tokenized into multiple subword pieces by

the BERT tokenizer, we represent the word by the

average representation of its subword pieces. For

example, let the jth through kth tokens correspond

to the subpieces of the ith word, we have

rwi
=

1

k − j

k∑

l=j

(Tc(c)[l])

The gloss encoder, defined as Tg, takes in a

gloss gs = g0, g1, ..., gm that defines the sense s as

input. The gloss encoder represents s as

rs = Tg(gs)[0]

where we take the first representation output by the

gloss encoder (corresponding to the input [CLS]

token) as a global representation for s.

We then score each candidate sense s ∈ Sw for

a target word w by taking the dot product of rw
against every rs for s ∈ Sw:

φ(w, si) = rw · rsi

for i = 0, ..., |Sw|. During evaluation, we predict

the sense ŝ of the target word w to be the sense

si ∈ Sw whose representation rsi has the highest

dot product score with rw.

We use a cross-entropy loss on the scores for

the candidate senses of the target word w to train

our bi-encoder model; the loss function of our sys-

tem given a (word, sense) pair (w, si) is

L(w, si) = −φ(w, si) + log

|Sw|∑

j=0

exp(φ(w, sj))

4 Experimental Setup

4.1 WSD Task and Datasets

We evaluate our BEM system with the WSD frame-

work established in Raganato et al. (2017b). We

train our model on SemCor, a large dataset manu-

ally annotated with senses from WordNet that con-

tains 226,036 annotated examples covering 33,362

separate senses (Miller et al., 1993). We use the

SemEval-2007 (SE07) dataset as our development

set (Pradhan et al., 2007); we hold out Senseval-

2 (SE2; Palmer et al. (2001)), Senseval-3 (SE3;

Snyder and Palmer (2004)), SemEval-2013 (SE13;

Navigli et al. (2013)), and SemEval-2015 (SE15;

Moro and Navigli (2015)) as evaluation sets, fol-

lowing standard practice. All sense glosses used in

our system are retrieved from WordNet 3.0 (Miller,

1995).

4.2 Baselines

We compare the BEM against a number of baseline

systems. We first consider two knowledge-based

baselines: WordNet S1, which labels each exam-

ple with its first (most common) sense as speci-

fied in WordNet, and most frequent sense (MFS),

which assigns each word the most frequent sense it

occurs with in the training data.

We also compare against the pretrained model

used to initialize our BEM system, BERT-base

(Devlin et al., 2019), by learning a linear classifier

for WSD on top of frozen BERT representations

output by the final layer. We learn the weights of

this output layer by performing a softmax over the

possible candidate senses of the target word and

masking out any unrelated senses. We find that fine-

tuning BERT-base on WSD classification does not

improve performance over the frozen model; this

finding holds for each of the pretrained encoders

we consider. Specific training details for the frozen

BERT baseline are given in Section 4.3. Since

this baseline uses a standard, discrete classification

setup, it backs off to the WordNet S1 predictions

for unseen words.

Finally, we compare performance to six recent

state-of-the-art systems. The HCAN (Luo et al.,

2018a) model incorporates sense glosses as addi-

tional inputs into a neural WSD classifier. The

EWISE model pretrains a gloss encoder against

graph embeddings before freezing the learned

sense embeddings and training an LSTM encoder

on the WSD task (Kumar et al., 2019). Hadiwinoto

et al. (2019) investigates different ways of using the

(frozen) pretrained BERT model to perform WSD,

with their GLU model performing best; Vial et al.

(2019) used various sense vocabulary compression

(SVC) approaches to improve WSD learning.3 The

LMMS system performs k-NN on word represen-

tations produced BERT against a learned inventory

of embeddings for WordNet senses (Loureiro and

3For this work, we report the best result from a comparable
setting (i.e., from a single model on the same training data).
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Dev Test Datasets Concatenation of all Datasets

SE07 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL

Baseline Systems

WordNet S1 55.2 66.8 66.2 63.0 67.8 67.6 50.3 74.3 80.9 65.2

MFS (in training data) 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5

BERT-base 68.6 75.9 74.4 70.6 75.2 75.7 63.7 78.0 85.8 73.7

Prior Work

HCAN - 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1

EWISE 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8

GLU 68.1 75.5 73.6 71.1 76.2 - - - - 74.1

LMMS 68.1 76.3 75.6 75.1 77.0 - - - - 75.4

SVC - - - - - - - - - 75.6

GlossBERT 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0

BEM 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0

Table 1: F1-score (%) on the English all-words WSD task. ALL is the concatenation of all datasets, including

the development set SE07. We compare our bi-encoder model (BEM) against the WordNet S1 and most frequent

sense (MFS) baselines, as well as a frozen BERT-base classifier and recent prior work on this task.

Jorge, 2019). GlossBERT fine-tunes BERT on

WSD by jointly encoding the context sentences

and glosses (Huang et al., 2019); this approach re-

lies on a single, cross-encoder model, rather than

our more efficient bi-encoder approach to indepen-

dently encode contexts and glosses.

4.3 Model Architecture and Optimization

Our pretrained baseline is learned using a single

linear layer and softmax on the output of the final

layer of the frozen BERT-base model. Similarly,

each encoder in the bi-encoder model is initial-

ized with BERT-base. We obtain representations

from each encoder by taking the outputs from the

final layer of each encoder, and we optimize the

model with a cross-entropy loss on the dot product

score of these representations.4 Additional hyper-

parameter and optimization details are given in the

supplementary materials.

5 Evaluation

We present a series of experiments to evaluate our

bi-encoder WSD model. We first compare the BEM

against several baselines and prior work on English

all-words WSD (Section 5.1), and then evaluate

performance on the most frequent (MFS), less fre-

quent (LFS), and zero-shot examples (Section 5.2).

4We initialize the models with BERT-base due to better
baseline performance on WSD than RoBERTa-base, see Sec-
tion 6.1 for more details

5.1 Overall Results

Table 1 shows overall F1 results on the English all-

words WSD task (Raganato et al., 2017b). Frozen

BERT-base is a strong baseline, outperforming all

of the prior work that does not incorporate pre-

training into their systems (GASext, HCAN, and

EWISE). The GLU and SVC systems, which use

the representations learned by BERT without fine-

tuning, both slightly outperform our pretrained

baseline. GlossBERT achieves even better WSD

performance by fine-tuning BERT with their cross-

encoder approach.

However, we also find that our BEM achieves the

best F1 score on the aggregated ALL evaluation set,

outperforming all baselines and prior work by at

least 2 F1 points. This improvement holds across

all of the evaluation sets in the WSD evaluation

framework as well as for each part-of-speech on

which we perform WSD. Therefore, we see that

although many of the prior approaches considered

build on pretrained models, we empirically observe

that our bi-encoder model is a particularly strong

method for leveraging BERT.

5.2 Zero-shot and Rare Senses Results

To better understand these overall results, we break

down performance across different sense frequen-

cies. We split examples from the aggregated ALL

evaluation set into mentions with the most frequent

sense (MFS) of the target word and mentions that

are labeled with the other, less frequent senses
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MFS LFS
Zero-shot

Words Senses

WordNet S1 100.0 0.0 84.9 53.9

BERT-base 94.9 37.0 84.9 53.6

EWISE 93.5 31.2 91.0 -

BEM 94.1 52.6 91.2 68.9

BEM-bal 89.5 57.0 91.9 71.8

Table 2: F1-score (%) on the MFS, LFS, and zero-shot

subsets of the ALL evaluation set. Zero-shot examples

are the words and senses (respectively) that do not oc-

cur in the training data. The balanced BEM system,

BEM-bal, is considered in Section 6.2.

Model Ablation Dev F1 ∆

Full BEM 74.5 -

Frozen Context Encoder 70.1 -4.4

Frozen Gloss Encoder 68.1 -6.4

Tied Encoders 74.1 -0.4

Table 3: Ablations on the bi-encoder model (BEM). We

consider the effect of freezing each of the two encoders

and of tying the parameters of the encoders on develop-

ment set performance.

(LFS) of that word. We also consider zero-shot

performance for both unseen words and unseen

senses by evaluating performance on examples that

are not observed during training. We compare our

model against the frozen BERT-base baseline and

EWISE (Kumar et al., 2019), which also reported

performance in these settings (Table 2).

BEM performs best on rare senses. The vast

majority of BEM’s gains comes from better perfor-

mance on the LFS examples, leading to a 15.6 F1

improvement over the BERT baseline on the LFS

subset. Despite this gain on less frequent senses,

BEM remains (approximately) as accurate on the

MFS examples as prior work and the BERT base-

line. While we still see a large difference of 41.5 F1

points between the MFS and LFS examples with

BEM, this is a strong improvement over both the

BERT-base baseline and the EWISE system.

BEM shows competitive performance on un-

seen words. Next we evaluated BEM on zero-

shot words that did not occur in the training data.

In this setting, WordNet S1 is a very strong baseline

that achieves almost 85 F1 points from an untrained

knowledge-based approach. Since the BERT-base

model backs off to the WordNet S1 baseline for

unseen words, it gets the same performance in this

Pretrained Model Dev F1

BERT-base 68.6

BERT-large 67.5

RoBERTa-base 68.1

RoBERTa-large 69.5

Table 4: Performance of various pretrained encoders on

the WSD development set.

setting. The EWISE model from previous work,

as well as our BEM, both outperform this baseline,

with the BEM achieving a slightly higher F1 score

for zero-shot words.

BEM generalizes well to embedding zero-shot

senses. The bi-encoder model allows us to pre-

dict senses that do not occur in the training set by

embedding senses; this is a valuable modeling con-

tribution since many senses do not occur in even the

largest manually labeled WSD datasets. We there-

fore evaluate the BEM and baselines on zero-shot

senses. The WordNet most common sense baseline

remains strong, and the BERT baseline performs

similarly to this WordNet S1 baseline. However,

our bi-encoder model outperforms both baselines

by at least 15 F1 points. This demonstrates that

BEM is able to learn useful sense representations

from the gloss text that are able to generalize well

to unseen senses.

6 Analysis Experiments

In our model evaluation, we found that BEM out-

performs prior work by improving disambiguation

of less frequent senses while maintaining high per-

formance on common ones. This section presents a

series of analysis experiments in order to determine

which aspects of the approach contribute to these

improvements. In Section 6.1, we ablate different

aspects of our model, and we consider the effect

of balancing the training signal across senses with

different frequencies in Section 6.2. Finally, we

perform a qualitative analysis of the learned sense

embedding space in Section 6.3.

6.1 Model Ablations

We ablate aspects of the bi-encoder model in order

to see how they contribute to the overall perfor-

mance; we consider freezing the context encoder,

freezing the gloss encoder, and tying the two en-

coders so that they share the same parameters.

The results are shown in Table 3. A frozen gloss
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(noun.1) (botany) a living organism 
lacking the power of locomotion.

(noun.2) buildings for carrying on 
industrial labor.

(verb.1)  put or set (seeds, 
seedlings, or plants) into the 
ground.

(verb.2) fix or set securely or 
deeply.

(verb.3) set up or lay the 
groundwork for.

Figure 2: Representations for the word plant encoded by the frozen BERT-base encoder (left) and the context

encoder of our BEM system (right); visualized with t-SNE. Sense glosses are from Wordnet (Miller, 1995).

encoder hinders the system more than a frozen con-

text encoder, implying that the gloss encoder needs

to update the pretrained parameters more than the

context encoder. We also see that while having in-

dependent encoders gives us the best performance,

tying the parameters of the two encoder harms per-

formance much less than freezing either of them.

The tied encoder ablation leads to a 0.4 F1 point de-

crease on SemEval2007, and outperforms all prior

models on this evaluation set despite having half

the trainable parameters of the full BEM system.

Next, we consider how the choice of pretrained

model affects WSD performance. Table 4 shows

the performance of BERT-base and BERT-large

(Devlin et al., 2019) on the WSD SemEval2007

evaluation set, which is used as our development

set; we also consider the WSD performance of

RoBERTa-base and RoBERTa-large (Liu et al.,

2019). Similarly to the pretrained BERT-base base-

line from previous section, we do not fine-tune the

pretrained encoders, as we found that for all consid-

ered pretrained encoders that this did not improve

performance over the frozen model.

Surprisingly, we see similar performance on the

development set across all of the encoders we con-

sider, despite the large pretrained models having

twice as many parameters as the base models. Al-

though RoBERTa-large does slightly outperform

the BERT-base encoder, we initialize the BEM with

BERT-base for better training efficiency.

6.2 Balancing the Senses

Despite the improvement on less common senses

over baselines (Section 5.2), we still see a large

performance gap between the MFS and LFS sub-

sets. One possible explanation is data imbalance,

since the MFS subset contains many more training

examples. To control for this effect, we consider

an additional training scheme for the bi-encoder

model, in which we re-balance the training signal

for each candidate sense of a target word. We do

this by weighting the loss of each sense s in the

set of candidate senses of the target word w by its

inverse frequency in the training data. By doing

this, we allow each sense to contribute equally to

the training signal for w.

This balanced BEM model achieves an F1 score

of 77.6, underperforming the standard BEM on

the aggregated ALL evaluation set. Table 2 shows

the performance of the balanced BEM. By break-

ing down the balanced model performance, the

balanced BEM outperforms the standard BEM on

LFS examples, but suffers from worse performance

on the more common MFS examples. We also find

that this balancing during training slightly improves

performance on both zero-shot words and senses.

These findings show that while weighting the

data gives better signal for less common senses, it

comes at the cost of the (sometimes helpful) data

bias towards more frequent sense. This finding

holds with similar results from Postma et al. (2016),

although their experiments focused on altering the

composition of the training data, rather than mod-

ifying the loss. One possible direction for future

work is a more thorough investigation of methods

for obtain a stronger training signal from less fre-

quent senses, while still taking the MFS bias into

account.

6.3 Visualizing Sense Embeddings

Finally, we explore the word representations

learned by our bi-encoder model from fine-tuning

on the WSD task. We perform a qualitative eval-

uation on the representations output by the BEM

context encoder and compare these representations

against those from the final layer of the frozen
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BERT-base encoder.

Figure 2 shows the outputs from each system

on all instances of the word plant in the SemCor

dataset. We see that BERT-base already learns

some general groupings of the senses without any

explicit word sense supervision; however, the sense

clusters become much more concentrated in the bi-

encoder model. We also see that the noun senses

are better separated by the BEM than the verb

senses (which all cluster near each other). This

is most likely due to the limited training data for

these verb senses compared to the much more com-

mon noun sense examples. We present additional

visualizations of other ambiguous words in Ap-

pendix B.

7 Few-shot Learning of WSD

In this section, we investigate how efficient the

BEM is in a few-shot learning setting, by limiting

the number of training examples the model can

observe per sense. We hypothesize that our model

will be more efficient than a standard classifier for

learning WSD, due to the additional information

provided by the sense definitions.

In order to simulate a low-shot data setting, we

create k-shot training sets by filtering the Sem-

Cor data such that the filtered set contains up to

k examples of each sense in the full dataset; we

then train the bi-encoder model using only this

filtered training data. We train models on values

of k = 1, 3, 5, 10 and compare their performance

against the model trained on the full train set. We

also retrain the frozen BERT-base classifier base-

line for each k considered. In order to keep training

comparable across different amounts of training

data, we train each few-shot BEM for the same

number of training steps as the system trained on

the full dataset (approximately 180,000 updates).

The results of this experiment are given in Fig-

ure 3. Unsurprisingly, both the frozen BERT clas-

sifier and the BEM achieve better F1 scores as we

increase k and train them on additional data. How-

ever, we see that the BEM is more efficient on

smaller values of k, with a much smaller drop off

in performance at k=1 than the pretrained baseline.

This efficiency also allows the BEM to achieve

similar performance to the full baseline model with

only 5 (or fewer) examples per sense.

The performance of these few-shot models gives

us insight into the the kinds of data that could be

used to improve WSD models. While it would be

1 3 5 10 All
k

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

F1

BEM
BERT

Figure 3: Performance of WSD models on the ALL

evaluation set, trained in the few-shot setting across dif-

ferent values of k and compared against the systems

trained on the full training set (k = All).

prohibitively difficult to annotate many examples

for every sense considered by a WSD system, it

is possible that augmenting existing WSD data to

provide a few labeled examples of rare senses could

be more effective than simply annotating more data

without considering the sense distribution. These

sorts of considerations are particularly important

when extending the WSD task to new domains or

languages, where a great deal of new data needs to

be annotated; an important goal for these sorts of

data augmentation is to make sure they allow for

the efficient learning of all senses.

8 Conclusion

In this work, we address the issue of WSD systems

underperforming on uncommon senses of words.

We present a bi-encoder model (BEM) that maps

senses and ambiguous words into the same embed-

ding space by jointly optimizing the context and

glosses encoders. The BEM then disambiguates

the sense of each word by assigning it the label of

the nearest sense embedding. This approach leads

to a 31.1% error reduction over prior work on the

less frequent sense examples.

However, we still see a large gap in performance

between MFS and LFS examples, with our model

still performing over 40 points better on the MFS

subset. Most recent WSD systems show a similar

trend: even the representations of frozen BERT-

base that are not fine-tuned on WSD can achieve

over 94 F1 on examples labeled with the most fre-

quent sense.

This leaves better disambiguation of less com-

mon senses as the main avenue for future work on
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WSD. Potential directions include finding ways to

obtain more informative training signal from un-

common senses, such as with different approaches

to loss reweighting, and exploring the effective-

ness of other model architectures on LFS examples.

Another direction for future work would improve

few-shot approaches to WSD, which is both im-

portant for moving WSD into new domains and

for modeling rare senses that naturally have less

support in WSD data.
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A Additional Training Details

Both our frozen BERT baseline and the BEM

are implemented in PyTorch5 and optimized with

Adam (Kingma and Ba, 2015). The pretrained

5https://pytorch.org/

models used to initialize each model are obtained

through Wolf et al. (2019); we initialize every

model with the bert-base-uncased encoder.

BERT-base baseline. The linear layer of the

frozen BERT-base classifier is trained for 100

epochs, and tuned over the following parameter

ranges: learning rates of [5e−6, 1e−5, 5e−5, 1e−
4] and batch sizes of [32, 64, 128].

Bi-encoder Model (BEM). The BEM is trained

for 20 epochs with a warmup phase of 10,000 steps.

We use a context batch size of 4 and a gloss batch

size of 256. The model is tuned on learning rates in

[1e− 6, 5e− 6, 1e− 5, 5e− 5]. We use two GPUs

to train the BEM, optimizing each encoder on a

separate GPU to allow for larger batch sizes.

B Additional Sense Embedding

Explorations

We present additional sense embedding space vi-

sualizations (Figures 4, 5, and 6). These visualiza-

tions are generated identically to the one discussed

in Section 6.3. In each figure, the left visualization

shows the representations output by a frozen BERT-

base model, and the right one shows the output of

our BEM’s context encoder. All figures are visual-

ized with t-SNE. We choose words from SemCor

that occur more than 50 times; for clarity, we limit

the visualization to the six most common senses

of each word. All senses and glosses are gathered

from WordNet (Miller, 1995).
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(noun.1) benefit.

(noun.2) moral excellence or 
admirableness.

(noun.3) that which is pleasing or 
valuable or useful.

(adj.1) having desirable or positive 
qualities especially those suitable 
for a thing specified.

(adj.2) morally admirable.

Figure 4: Visualization of learned representations for the word good. Overall the BEM (right) doesn’t improve on

the frozen BERT representations (left), but we observe that the adj.2 sense is becoming better distinguished from

adj.1 by the BEM, with the examples of adj.2 appearing only in one edge of the cluster for adj.1.

(noun.1) any device serving as a 
source of illumination.

(noun.2) the quality of being 
luminous; emitting or reflecting 
light.

(noun.3) particular perspective or 
aspect of a situation.

(noun.4) (physics) electromagnetic 
radiation that can produce a visual 
sensation.

(verb.1) make lighter or brighter.

(verb.2) begin to smoke.

Figure 5: Visualization of learned representations for the word light. We see more distinct clusters forming in the

representations from the BEM (right) than in the BERT-base outputs (left), though there is still overlap with the

edges of the some groups.

(noun.1) a score in baseball made 
by a runner touching all four bases 
safely.

(verb.1) move fast by using one's 
feet, with one foot off the ground at 
any given time.

(verb.2) flee; take to one's heels; 
cut and run.

(verb.3) direct or control; projects, 
businesses, etc.

(verb.4) stretch out over a distance, 
space, time, or scope; run or 
extend between two points or 
beyond a certain point.

(verb.5) have a particular form.

Figure 6: Visualization of learned representations for the word run. We see that both the frozen BERT model (left)

and BEM system (right) has difficulty distinguishing the verb.1 and verb.2 senses of run, which are closely related

senses with a very fine-grained distinction (see glosses given in legend).


