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Abstract

Spatial and temporal variability in factors influencing mangrove establishment and survival affects the distribution of mangrove,

particularly near their latitudinal limit, where mangrove expansion into saltmarsh is conspicuous. In this paper the spatial

variability in mangrove distribution and variability in factors influencing mangrove establishment and survival during the

Quaternary period are reviewed, focussing on research at latitudinal limits in Australia and mainland USA. Despite similarities

in the response of mangrove to some drivers, the expression of these drivers is both spatially and temporally variable, demon-

strating the need for analyses of mangrove-saltmarsh dynamics to move beyond generalisations and incorporate regional and

local-scale specificity. We propose i) that precursory recognition that ‘correlation does not mean causation’ is inadequate and

assumptions, caveats, and limitations should be clearly articulated in correlative studies; ii) experimental design in manipulative

experiments must also articulate the spatial and temporal scale to which the analysis is relevant; and iii) analyses that draw from a

range of methods will provide greater confidence. Integrated research programs that transect spatial and temporal scales and

incorporate a range of techniques are essential to improve projections. Mangrove-saltmarsh distribution research should move

beyond simple models that assume equilibrium between realised and fundamental niches.

Keywords Climate change . Sea-level rise . Frost or freeze . Spatial and temporal variability . Hierarchy theory

Introduction

Mangrove forests, trees and shrubs typically occupy the upper

intertidal zone and are regularly inundated by tidal waters.

Mangroves thrive where inundation typically occurs daily,

often at tidal positions near mean sea level to mean high water.

Mangroves reportedly occupy between 83,495–137,760 km2

along coastlines in 118 countries and territories (Giri et al.

2011b; Hamilton et al. 2016). Despite this large spatial distri-

bution, it is evident that mangrove forests do not occupy all

shorelines globally even where they can climatically, and

while they exhibit a close association with sea level, other

factors also control the distribution of mangrove on shore-

lines. Strong spatial patterning in global mangrove

distribution occurs with areal extent greatest in the tropics

(Giri et al. 2011b), notwithstanding significant human impacts

on mangrove forests in this region (Duke et al. 2007; Richards

and Friess 2016).

A corresponding pattern of species diversity also exists

with species counts attenuating away from tropical shorelines

towards sub-tropical and temperate shorelines (Duke et al.

1998a; Saenger 2002). This strong spatial patterning has long

been associated with temperature and at least as early as 1956,

it was proposed that mangrove develop best when i) average

temperature of the coldest month exceeds 20 °C; ii) develop-

ment occurs in a fine-grained alluvium substrate; and iii)

shorelines are free from strong wave action (West 1956). As

a general rule these prerequisites still hold true; however, in-

creasing access to higher resolution temperature data and ob-

servations of mangrove health and distribution have demon-

strated that mangrove distribution is more nuanced than this

rule would present (Quisthoudt et al. 2012; Osland et al. 2013;

Cavanaugh et al. 2014; Osland et al. 2016). Exceptions in the

global pattern of mangrove distribution are evident on the

basis of biotic tolerances to temperature (Stevens et al. 2006;

Stuart et al. 2007; Krauss et al. 2008), and variation in physical
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processes such as oceanic currents, rainfall, geomorphic set-

tings and geographic barriers (Ball and Sobrado 1998;

Saenger 2002; Quisthoudt et al. 2013; Semeniuk 2013;

Saintilan et al. 2014). Consequently, the latitudinal range of

mangrove forests is large, extending between 32°N and 38°S

(Quisthoudt et al. 2012; Saintilan et al. 2014).

Recent observations of changes in mangrove distribution

have motivated debate about controls on mangrove distribu-

tion. In southeastern Australia mangrove expansion was ini-

tially documented to occur in response to factors relevant at

the local-scale and based largely upon comparisons of current

and past distribution from aerial photography dating to the

1940s. Through a compilation of 28 independent studies of

mangrove expansion across the intertidal zone, Saintilan and

Williams (1999) established that the pattern of mangrove ex-

pansion into saltmarsh was regional in scale. Proposed mech-

anisms facilitatingmangrove expansion into saltmarsh include

changes in rainfall, changing agricultural practices, altered

tidal regimes (including eustatic sea-level rise), sedimentation

and nutrient addition, and subsidence. A regional pattern of

mangrove proliferation has also been established along the

Gulf of Mexico following a long period absent of extreme

freeze events (Sherrod and McMillan 1985; Osland et al.

2013; Cavanaugh et al. 2014). Evidence of mangrove expan-

sion at latitudinal limits has been compiled, differentiating

patterns of change in mangrove distribution across the tidal

frame from changes occurring at the latitudinal extremes of

mangrove distribution (Saintilan et al. 2014). By necessity,

this data compilation was large in spatial extent and identified

a pattern of mangrove expansion at poleward limits that ap-

plied to both the northern and southern hemispheres and five

continents (Asia, Australia, North America, Africa and South

America). As per the prior compilation, the authors cautiously

presented hypotheses for poleward expansion explaining the

changes in distribution, including temperature increases, bar-

riers to propagule dispersal, and elevated atmospheric CO2

concentrations, which mirrors global patterns of woody shrub

encroachment of grasslands (Saintilan and Rogers 2015).

Coincident with these observations is evidence that in-

creasing atmospheric CO2 concentrations are elevating air

and sea surface temperatures, altering rainfall patterns and

increasing sea levels. Due in large part to the correlation be-

tween changing mangrove distribution and anthropogenic cli-

mate change, studies are focussing on establishing whether

climate change is implicated in observed changes in mangrove

distribution. As mangroves are closely associated with the

position of the sea at local scales, it is not surprising that there

has been considerable focus on the relationship between sea-

level rise and mangrove distribution changes. More recently,

mangrove distribution at the local scale has been associated

with temperature and aridity (Osland et al. 2016; Ximenes et

al. 2016). Ecophysiological studies have considered the role

of elevated CO2, and the interactions between elevated CO2,

nutrient additions, water-use efficiency, sea-level rise, salinity

changes and mangrove distribution (Farnsworth et al. 1996;

Ball et al. 1997; Ball and Munns 1992; McKee and Rooth

2008; Langley et al. 2009). Influenced by a need to plan for

climate change and promote ecosystem adaptation, research is

now being directed towards projecting mangrove distribution.

This is typically achieved using modelling techniques,

establishing ecosystem niches and applying a range of

IPCC scenarios of temperature increases and sea-level

rise (Traill et al. 2011; Oliver et al. 2012; Record et

al. 2013; Cavanaugh et al. 2015).

Underlying all models is a degree of uncertainty regarding

the influence of parameters. For models projecting mangrove

distribution, uncertainty increases when processes controlling

distribution are poorly understood, or inadequately

parameterised (Cowell and Thom 1994). Understanding con-

trols on mangrove distribution becomes even more important

when projecting models beyond the spatial and temporal scale

that they are based, as uncertainty is compounded by projec-

tion (De Vriend 1991; Terwindt and Battjes 1991). Using case

studies of mangrove and saltmarsh dynamics near the latitu-

dinal range limit of mangrove from southeastern Australia and

the Gulf of Mexico, we specifically discuss the effect of spa-

tial and temporal scaling on mangrove distributions in the

context of hierarchy theory. This is achieved by recognising

spatial variability, and synthesising literature focussed on

mangrove distribution changes over three timescales (i.e. the

geological and Holocene, contemporary and observational,

and projection timescales). We demonstrate the need for cause

and effect models, ecological niche models and subsequent

projections to move beyond generalisations of mangrove dis-

tribution changes and integrate information across a range of

spatial and temporal scales. By adequately addressing how

local and regional scale factors mediate mangrove distribution

changes, we endeavour to add clarity to the ongoing discus-

sion regarding controls on mangrove distribution and projec-

tions of mangrove distribution into the twenty-first century.

Spatial and Temporal Heirarchy of Controls
on Mangrove Distribution

Spatial and temporal scaling of processes and effects have

been recognised relatively recently by ecologists (Wiens

1989), but is the foundation of other disciplines such as

geography and earth science. For coastal sedimentary

environments, such as those occupied by mangrove, Wright

and Thom (1977) recognised the need to integrate ‘process’

geomorphology with ‘historical’ geomorphology, and pro-

posed that this was best achieved with a conceptual model

that reflected the observed variation in coastal geomorphology

in time and space, a concept that has also been projected for

future scenarios (Woodroffe and Murray-Wallace 2012).

Wetlands



For intertidal wetlands, there is growing awareness that

scaling should go beyond considering ecological and morpho-

logical processes and integrate other physical processes

(Friess et al. 2012). For mangrove, a systematic review of

the spatial hierarchy of controls on mangrove distribution

was undertaken by Duke et al. (1998a) who distinguished

processes relevant at global, regional, estuarine and intertidal

scales. In this review, estuarine scales related to the longitudi-

nal distribution of mangrove primarily as salinity gradients

diminish along estuaries. Intertidal scales related to position

within the tidal frame, which is controlled by the interacting

effect of tidal inundation, groundwater additions and rainfall

run-off on abiotic factors such as salinity and anoxia, and

biotic factors such as propagule dispersal, plant productivity

and competition. Spatial and temporal scaling effects were

also documented by Twilley et al. (1999) with regard to man-

grove structure and function. This study recognised different

mangrove distribution patterns at four hierarchical scales.

These scales correspond to factors influencing the: i) global

distribution of mangrove (i.e. temperature); ii) geomorpholog-

ical settings (as per Thom (1984) and Woodroffe (1992); i.e.

river delta, tidal estuary, lagoon and carbonate reef); iii) eco-

logical forest types (as per Lugo and Snedaker (1974); i.e.

riverine, fringe, basin, dwarf); and iv) habitat units within

forests at the smallest spatial scale. Processes influencing

mangrove were also conceptualised along a temporal scale

ranging from an hour to a thousand years. For the Brazilian

coastline, Schaeffer-Novelli et al. (2000) proposed four spatial

units: i) site functional unit of <0.1 ha (representing individ-

uals or small cohorts of trees); ii) patch level functional unit of

0.1–100 ha (broadly divided into fringing and basin types); iii)

mangrove settings of 10–100 km (distinguished on the basis

of geomorphology and landform type); and iv) coastal do-

mains representing coastal segments of 500–1000 km length

defined on the basis of oceanographic characteristics (e.g.

wave- or tide-dominated coastline).

Despite general recognition that a range of factors operat-

ing at different spatial and temporal scales influence mangrove

distribution, there are few studies that have attempted to

integrate multiple factors to model either observed changes

in mangrove distribution, or project future changes in

distribution. Wright and Thom (1977) propose that develop-

ment of disciplines focussed initially at macro scales and later

at process scales may have limited appropriate integration of

knowledge between scales. Wiens (1989) hypothesises that

ecologists are intuitively interested in processes operating on

anthropocentric scales, and bound by experimental design tra-

ditions where perceptual range may be limited. While these

reasons may hold true, knowledge gaps and limitations in the

availability of data at appropriate scales may also be limiting

factors (Friess et al. 2012).

Hierarchy theory provides a useful framework for explor-

ing the spatial and temporal dynamics in processes influencing

mangrove distribution and has been used to conceptualise

mangrove restoration trajectories (Twilley et al. 1999).

Accordingly, an ecosystem is hierarchical when it operates

on more than one spatial and temporal scale, or when different

process rates are found in the system (O'Neill 1986;

Giampietro 1994). Each level of the hierarchy can be regarded

as a whole composed of smaller parts and also part of a higher

level. For example, an individual mangrove comprises roots,

leaves, trunks, flowers, and so on, but also combines with

other individuals to comprise a forest. The influence of a pro-

cess on any level of the hierarchy must also consider the in-

fluence of that process on both higher and lower levels.

Extrapolation of this concept means that a process influencing

a lower mangrove component, for example flowering, will

also influence the higher order component, for example forest

regeneration. While the interaction of processes at different

levels and across multiple scales adds complexity to ecosys-

tem dynamics, it also acts as a system of filters (Giampietro

1994). For example, poor forest regeneration at the patch scale

acts as an indicator of flowering and reproduction problems at

the individual level and enables exclusion of other processes

operating at larger scales, such as a freeze events.

Application of this theory to models of mangrove distribu-

tion requires consideration of two hierarchical scales, space

and time, and the interaction of processes operating at higher

and lower scales to which the model applies. Consideration of

the influence of rainfall on mangrove distribution at annual

timescales, for example, requires consideration of the influ-

ence of decadal and inter-decadal oscillations, seasonal cycles

and inter-annual variability, on rainfall patterns. At this scale

global climate change is not as relevant as detection of a global

trend and would be confounded by significant variability and

error that would be attributed to factors operating at lower

temporal scales (e.g. decadal variability).

Figure 1 conceptualises the spatial and temporal scale at

which i) climatic/meteorological; ii) hydrological; iii)

geomorphological/geochemical; and iv) ecophysiological

processes operate, and therefore the spatial and temporal scale

that these processes influence mangrove distribution. For sim-

plicity these processes have been separated, and are far from

an exhaustive list of processes influencing mangrove expan-

sion. Importantly, interactions between processes are pivotal

to ecosystem dynamics, causing both negative and positive

feedbacks that can lead to self-organisation and stability, or

can trigger a cascade of responses leading to ecosystem col-

lapse (Cowell and Thom 1994). Again, using the rainfall ex-

ample, the effect of annual changes in rainfall can trigger

hydrological changes to groundwater availability and sea-

level variability at inter-annual timescales, which can influ-

ence soil anoxia and salinity, shrink-swell of sediments, rates

of organic matter decomposition, nutrient uptake, plant pro-

ductivity and ultimately influence the health of mangrove in-

dividuals. This example has been demonstrated to influence

Wetlands



mangrove substrate elevation throughout southeastern

Australia where periodic El Niño-Southern Oscillation

(ENSO) cycles lead to reduced rainfall, depleted groundwater

reserves, weakening sea-level rise and shrinkage of wetland

surfaces (Rogers et al. 2005; Rogers et al. 2006; Rogers and

Saintilan 2009). In this case disentangling the effect of re-

duced rainfall on ecosystem dynamics cannot be separated

from coincident reductions in sea level over the same period

(Rogers et al. 2014).

Temporal Patterns in Mangrove Distribution

Coastlines are highly dynamic and coastal scientists are in-

creasingly aware of the changing environment in which man-

grove resides. We know from fossilised mangrove pollen in

the palaeontological record that mangroves have adjusted

their geographic position in response to plate tectonics and

global climatic change. For example, pollen from the man-

grove palm (Nypa fruticans), which has evolved on intertidal

shorelines for at least 75 million years (Schrank 1987; Gee

2001) and is one of the earliest angiosperms assigned a mod-

ern genus, has been documented from the Palaeocene (~66–

56 Ma) and Eocene (~56–34 Ma) to have a wide distribution

(Saenger 1998). Fossil spores have been found in Tasmania,

Australia (Pole and Macphail 1996), Southeast England

(Chandler 1978), Texas (Westgate and Gee 1990) and

Southern France (Plaziat et al. 2001); where the climate cur-

rently contrasts significantly with the climate of extant Nypa

populations of today. This period coincides with the lead into

the Palaeocene-Eocene Thermal Maximum (~56 Ma) and

continental shift (Gee 2001), and biogeographic records from

Fig. 1 Spatial and temporal scales over which various climatic and meteorological, hydrological, geomorphological/geochemical and ecophysiological

processes operate

Wetlands



fossil pollen may indicate an influence of global warming and

plate tectonics on mangrove distribution. ‘Climate cooling’ in

the late Eocene, which coincides with the poleward distribu-

tion of mangrove pollen during the Eocene, and closure of the

Tethys Sea have been hypothesised as the trigger for differen-

tiation between mangrove in the Indo-West Pacific and

Atlantic East Pacific (Plaziat and Cavagnetto 1996; Saenger

1998; Ellison et al. 1999). However, even at the largest of

timescales, large-scale processes of climate change and plate

tectonics do not adequately explain the presence or absence of

mangrove from the fossil record. Loss of available habitat may

have resulted in periods of mangrove extinction for some lo-

cations in the West and South Pacific (Woodroffe and

Grindrod 1991; Ellison 2008). The extent of some mangrove

species throughout theMiocene (~23–5.3 Ma) in the Pacific is

stated to be greater than current distributions. Localised ex-

tinctions are reported to have occurred for Rhizophora on

Enewetok Atoll in the Marshall Islands (Leopold 1969) and

Sonneratia on Viti Levu in Fiji (Ladd 1965). Sea-level rise

and its effect on accommodation space for mangrove is the

hypothesised mechanism for these losses. Unfortunately, as-

sertions related to palaeoclimates and continental drift are lim-

ited by incomplete knowledge of the prior position of conti-

nents and global temperatures, and it is probable that this

hypothesis will remain for some time.

Mangrove Distribution Changes over the Holocene

The distribution of mangrove forests of today is not only an

artefact of their evolution with respect to plate tectonics, prop-

agule dispersal and a changing climate, but also associated

with their response to sea-level changes and available

accomodation space. This is most evident from documented

changes in mangrove distribution during the Quaternary (~

past 2.5 Ma) (Woodroffe and Grindrod 1991), where evidence

of mangrove distribution changes come from fossilised man-

grove material in cores extracted from sediments deposited

since the last marine transgression and during the Holocene

(~past 11.7 ka) (Ellison 2008). Fossil material, including pol-

len and spores, and mangrove roots and peats, at depths below

present mangrove distributions provide an indication of the

influence of global eustatic sea-level rise on mangrove distri-

bution and its interaction with regional isostasy. This evidence

has been used for two related purposes. The first purpose is as

an indicator of sea-level position over time. As mangrove

peats and roots develop at depths below the soil surface, the

imprecise nature of mangrove organic material as a sea-level

indicator is typically recognised, and interpretation is under-

taken in the context of evidence from other sea-level indica-

tors such as notches, foraminifera, pollen, diatoms and coral

dating (see, for example, McKee et al. 2007).

The second purpose draws from geological principles of

uniformitarianism, whereby the present is a key to the past

and by extrapolation, the past is a guide to the future

(Woodroffe and Murray-Wallace 2012), with fossil evidence

providing an indication of mangrove ecosystem response to

sea-level rise. This application presumes that sea level and its

interaction with sedimentary processes is the primary control

on mangrove distribution, with the distribution of mangrove

peats typically interpreted within the context of current geo-

morphology and enhanced with stratigraphic analyses from

multiple cores positioned along a tidal/elevation gradient.

This approach does not account for the variable response of

species to sea-level rise or other physical processes (e.g. tem-

perature). Figure 2 is the Holocene sea-level curve for south-

eastern Australia (Sloss et al. 2007) and Florida (Milliken et al.

2008), and demonstrates that there is generally reasonable

correspondence between the position of mangrove peats, and

other sea-level indicators in both regions. As a consequence of

the correlation between multiple sea-level indicators over

time, it is therefore reasonable to presume that the position

of mangrove organic material within Quaternary sediments

does provide a qualitative indication of ecosystem response

to sea-level rise and relative sea level position, albeit limited

by the imprecise nature of additions of organic material to

substrates, and changes to organic material volume caused

by peat oxidation, decomposition and CO2 efflux

(Middleton and McKee 2001; Lovelock et al. 2011).

Australia

The generalised model of mangrove response to sea-level rise

during the Holocene for tide-dominated estuaries in Australia

(Woodroffe 1995), initially presented by Woodroffe et al.

(1985), and substantiated by evidence of similar sequences

of estuary infill for the Adelaide, Daly, Mary, Ord, King,

and Hawkesbury Rivers (Thom et al. 1975; Chappell 1993),

includes three phases (Woodroffe et al. 1993), though the ex-

act timing of the phases varies between sites on the basis of

rates of sediment supply. For the tide-dominated estuaries of

northern Australia, these phases largely include the i) trans-

gressive phase of sea-level rise (8000–6800 y BP) when man-

grove encroached landward into terrestrial ecosystems; this

was followed by the ii) big swamp phase (6800–5300 y BP)

when sea level stabilised and mangrove was abundant, estab-

lishing throughout the current area of estuarine plains; and iii)

sinuous/cuspate phase (since 5300 y BP) when man-

grove retreated to meandering channels, point bars and

shoals following significant vertical sedimentation dur-

ing the prior phase.

The response of mangrove on wave-dominated southern

coastlines of Australia differs from the northern tide-

dominated systems. Broad-scale mangrove colonisation

would have been triggered by the development of low-

energy environments and substrate development. Precursory

to these conditions was the formation of coastal barriers that

Wetlands



bounded estuary entrances of shallow embayments as sea

levels stabilised approximately 7000 y BP (Roy et al. 2001).

Evidence of mangrove colonisation is primarily based on

mangrove root material as pollen of Avicennia marina does

not preserve well in sediments, unlike the pollen of more

tropical species (e.g. Rhizophora stylosa). For example, pollen

analysis at Minnamurra River (34.63°S, 150.86°E) indicated a

transition from a tidal flat to saltmarsh ecosystem between

4300 and 2500 y BP (Jones 1990). Subaeial barrier develop-

ment in deep embayments became the trigger for mangrove

colonisation of low-energy substrates associated with flood-

tide and fluvial deltas as sea level stabilised within drowned

river valleys. The position of fossil mangrove root material

from the region corresponds to Holocene sea-level rise in the

region (Saintilan and Hashimoto 1999; Hashimoto et al. 2006;

Sloss et al. 2007), with a mangrove stump located near Bulli

(34.33°S, 150.91°E) with an elevation of 2.2 m above present

mean sea level (PMSL) providing some evidence of a sea

level high stand 2 m above PMSL (Jones et al. 1979).

Mainland USA

Parkinson (1989) presented a somewhat similar mangrove

response model for carbonate settings in southwest Florida,

which also has broad agreement throughout the Carribean

(Evans et al. 1985; Hine et al. 1988; Stapor et al. 1988;

Parkinson et al. 1994; McKee 2011). This region is ideal for

extracting evidence of the Holocene response of mangrove to

sea-level rise as peat building is primarily influenced by biotic

processes, rather than abiotic processes such as sediment sup-

ply. In this model i) rates of sea-level rise were initially too

rapid for broadscale development of coastal wetlands (15000-

~7000 y BP); followed by a ii) deepening phase (>3500 y BP)

with rapid sea-level rise, shoreline retreat and development of

transgressive facies sequences; and a iii) shallowing phase

when the rate of sea-level rise was slower and shoreline

stabilisation occurred. This was evident by relatively thick

peat sequences on mainland shorelines, and when landscapes

had a low gradient, mangrove transgressed inland (e.g.,

Krauss et al. 2011).

Along the northern coastline of the Gulf of Mexico where

allochthonous sediment input is the primary source of material

for substrate development there remains little evidence of man-

grove colonisation over the Holocene (Sherrod and McMillan

1985), despite suitable accomodation space (Twilley et al.

2016). In this region, eradication of mangrove during the cooler

conditions of the Pleistocene and early Holocene was proposed,

with retreat of mangrove towards warmer shorelines closer to the

equator (Sherrod and McMillan 1985). Evidence of mid to late-

Holocene mangrove peats from Texas and Louisiana remain

elusive from the abundant sediments of the region, despite pe-

riods of warm or warmer sea surface temperatures than current

temperatures during the late-Holocene (Richey et al. 2007). The

late-Holocene was marked by climatic variability, and colonisa-

tion from the genetically disparate populations of the east coast-

line (i.e. Florida) and the west coastline (i.e. Texas) of the Gulf of

Mexico (McMillan 1986) may have been periodically halted;

this climatic variability was proposed to facilitate natural selec-

tion for chill tolerant strains ofAvicennia germinans (Sherrod and

McMillan 1985). Substrate deterioration along the Mississippi

River Deltaic Plain following avulsion, river abandonment and

decreases in sediment input facilitated submergence and

Fig. 2 Holocene sea-level curves from (a) southeastern Australia (as per Sloss et al. 2007) and (b) northern Gulf of Mexico (as per Milliken et al. 2008).

Note the correspondence between mangrove peats and other sea level indicators in both regions

Wetlands



reworking of delta sediments during the Holocene (Twilley et

al. 2016), potentially eroding any evidence of mangrove

peats and organic material from delta lobes.

Synthesis of Holocene Distribution Changes

Despite similarities in the response of mangrove to sea-level

rise, two primary differences emerge between Holocene man-

grove development in Australia and mainland USA. First, the

initiation of the transgressive phase in Australia occurred ear-

lier (8000–6800 y BP) than Florida (>3500 y BP), which was

followed by a longer period of shoreline stability in Australia

when sea levels may have been up to 2 m higher than PMSL.

Temporal variation in the timing of mangrove distribution

changes can be partly explained by the variation in

Holocene sea-level curves between the two regions in re-

sponse to external glacio-isostatic processes of lithosphere

deformation associated with ice sheet growth and melt that

causes varying degrees of subsidence or uplift of the basement

upon which wetland sediments accumulate and which influ-

ence global patterns of relative sea-level rise over the

Holocene (Clark et al. 1978; Murray-Wallace and Woodroffe

2014).More specifically, Australia had a longer history of sea-

level stability and evidence of a high stand during the

Holocene, whilst in Florida the rate of sea-level rise declined

over the mid to late-Holocene, but never exhibited an extend-

ed period of stability (Cronin 2012) (See Fig. 2).

Second, the influence of other climatic factors on man-

grove distribution has varying importance between the two

regions. In Australia, divergence of Avicennia marina eastern

(var. eucalyptifolia), western (var. marina) and southern (var.

australasica) varieties appears to have occurred during the

Pleistocene (~2.5 Ma - 11.7 ka) when lower sea levels isolated

populations (Duke 1995; Duke et al. 1998b; Maguire et al.

2000). Southern populations have more ancient origins (Duke

et al. 1998b), with evolution for cold tolerance potentially

commencing in the mid-Cretaceous (~100 Ma) (Duke 1995).

There is little evidence that Holocene climatic variability in-

fluenced mangrove distribution in Australia. Current distribu-

tions are likely relicts from warmer climates and unlikely to

reflect populations recovering from extreme events during the

Holocene; Avicennia marina propagule buoyancy is relatively

short (Clarke and Myerscough 1991), and markedly less than

the buoyancy period for Rhizophora stylosa and Aegiceras

corniculatum (Clarke et al. 2001), significantly limiting dis-

persal of propagules through constricted entrances of barrier

estuaries along this coastline (Clarke 1993). Conversely, cli-

matic variability in the northern Gulf of Mexico throughout

the Late Holocene was significant, with sea surface tempera-

tures reported to vary by approximately 3 °C over the past

1400 years (Richey et al. 2007). This variability may have

prevented widespread mangrove establishment and the devel-

opment of chill tolerance, despite available accommodation

space. Propagule dispersal is evidently not a limitation for

recovery with observations of propagules of Rhizophora

mangle and Avicennia germinans in beach drift along the

northern Gulf Coast (Sherrod and McMillan 1985). Given

the propensity for mangrove dispersal throughout the

Gulf of Mexico, early written accounts of mangroves

in Mississippi and Louisiana in the 1700s and 1800s

(Moldenke 1960; Chapman 1975) may correspond to a

warming period following the Little Ice Age (~1300–

1850) minima.

Contemporary Mangrove Distribution Changes

Mangrove dynamics during the Holocene provide the founda-

tion upon which contemporary observations of ecotone dy-

namics occur. The most pervasive control on mangrove distri-

bution since industrialisation has been the effect of humans

directly through land cover conversion and indirectly through

the alteration of coastal processes. A recent review document-

ed the decline of mangrove and saltmarsh in Australia, primar-

ily through the conversion of wetlands for flood mitigation

purposes and achieved though drainage, ditching and dyking

(Rogers et al. 2016). Along the Northern Gulf of Mexico

within the influence of the Mississippi River delta, where

wetland maintenance is dependent upon supply of sediment

to offset deep subsidence, sediment autocompaction and sea-

level rise, river management decisions, such as floodplain

containment and reductions in sediment supply from up-

stream damming, have had the greatest influence on rates of

wetland loss (Twilley et al. 2016). Excluding the direct influ-

ence of humans, observations in both Australia and mainland

USA reveal a pattern of mangrove expansion, typically into

adjoining saltmarsh (Saintilan et al. 2014).

Australia

Low-energy intertidal zones of coastal mainland Australia are

occupied by both mangrove and saltmarsh, and mangrove

species diversity typically decreases with increasing latitude,

whilst the inverse pattern is evident for saltmarsh (Galloway

1982; Wells 1983; Rogers et al. 2016) (Fig. 3a). Mangrove is

absent from the most southern state. Mangrove generally oc-

cupies lower elevations of the upper intertidal zone, while

saltmarsh is restricted to higher elevations of the upper inter-

tidal; rarely, and in particularly brackish conditions,

Phragmites australis may seasonally grow as a narrow band

in front of mangrove (Fig. 4a). At approximately the Tropic of

Capricorn (23°30’S) on both the eastern and western

Australian coastlines, rainfall correlates with the relative pro-

portion of mangrove and saltmarsh within the intertidal zone.

Where rainfall is high, mangrove occupies a greater propor-

tion of the intertidal and saltmarsh species may be restricted to

a narrow zone that merges with adjoining hinterland habitats
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or freshwater wetlands (Bucher and Saenger 1994). In the

intertidal zone of arid northwestern Australia, mangrove hab-

itats give way to expansive salt flats dominated by

cyanobacterial mats (Lovelock et al. 2010).

The southern coastlines of Australia are particularly suited

for determining controls on mangrove distribution both within

and between estuaries; here mangrove, particularly Avicennia

marina, has occupied the intertidal zone for thousands of

years (as discussed above) and theoretically has had sufficient

time following 7000 y of relative sea-level stability (See Fig.

2), to occupy their fundamental niche following major disrup-

tions during the Quaternary period (as proposed byWoodroffe

and Grindrod 1991). Geomorphic constraints on propagule

dispersal and availability of suitable habitat are significant

controls on the distribution of mangrove, particularly between

estuaries where estuary entrance closure and associated small

tidal prism reduce the available habitat for mangrove estab-

lishment and growth (Roy et al. 2001). Known regionally as

intermittently closed or open lakes and lagoons, or ICOLLs,

intermittent entrance closure of estuaries has been associated

with restricted mangrove distribution in Australia, Brazil and

South Africa (Haines et al. 2006; Adams et al. 2016; Saintilan

et al. 2016). In addition to reduced habitat availability in the

absence of notable tides, dispersal of propagules through in-

termittent estuary entrances may be limited, periodic flushing

of salts which is essential for mangrove survival is diminished,

and/or soils become anoxic when water levels are elevated

following catchment rainfall. Lower air temperatures in south-

ern Australia minimise the influence of evapotranspiration on

soil physiochemical conditions; soil salinity and waterlogging

Fig. 3 Distribution of saltmarsh

and mangrove, including number

of mangrove species around the

(a) Australian coastline and (b)

northern Gulf of Mexico.

Mangrove and saltmarsh are

restricted to low energy

environments and do not occur

contiguously along the coastline.

Based in information from (a)

Duke (2006) and Rogers et al.

(2016); and (b) Giri et al. (2011b),

IUCN Red List (2017) and

Mcowen et al. (2017)
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controlled by position in the tidal frame appears to have a

greater influence on propagule establishment and survival

(Clarke and Myerscough 1993).

The southeastern coastline supports approximately 10

mangrove species (Duke 2006). Of those with the most south-

erly distribution, Rhizophora stylosa and Bruguiera

gymnorrhiza (Wilson 2009) are reported to be increasing lat-

itudinal range (Wilson and Saintilan 2012). Frosts or freezes

are absent from the coastline near their southern limit and

expansion correlates with a pattern of rising temperatures over

the twentieth century (Nicholls and Collins 2006). On the

basis of leaf phenology and longevity, Rhizophora stylosa

has potentially not realised its thermally-defined niche with

little difference in leaf phenology between southerly individ-

uals and tropical counterparts (Wilson and Saintilan 2012). If

true, and on the basis of suitable mangrove habitat within

estuaries immediately south of the current extent, biotic

factors may be an important determinant on range expansion

between estuaries. Clarke et al. (2001) found a negative cor-

relation between patterns of adult distribution of 14 mangrove

species at macro-scales and propagule dispersal properties,

proposing that factors influencing establishment may be a

better predictor of adult distribution. Salinity did not limit

shoot initiation or growth of Rhizophora stylosa (Clarke et

al. 2001), but light may limit its establishment and growth,

particularly at lower elevations where Rhizophora stylosa co-

dominates with Avicennia marina (Smith III 1987), a species

known for rapidly filling a regeneration niche (Clarke and

Allaway 1993).

Aegiceras corniculatum does not occur south of Lake

Merrimbula (36.88°S, 149.90°E); its current range and inter-

tidal distribution have remained relatively stable over the ob-

servational record, unlike Avicennia marina (Clarke 1995).

Investment into reproduction is greater in Avicennia than

Aegiceras, evident by larger propagules; fruit predation is

higher in Aegiceras than Avicennia; and the establishment

phase is longer for Aegiceras, thereby increasing opportunities

for herbivory in early life stages (Clarke et al. 2001). Sinking

of propagules at low salinities partly explains the zonation of

Aegiceras, which is known as the River Mangrove as it fa-

vours lower salinities occurring in the upper estuary and

across the intertidal zone when run-off or groundwater contri-

butions are high (Clarke 1995). Zonation is also facilitated by

growth and water use efficiencies at lower salinities (Clarke

and Hannon 1970; Ball and Farquhar 1984; Ball 1988). The

absence of Aegiceras corniculatum from more southerly

estuaries is not surprising given the dominance of

ICOLLs in southern NSW (Haines 2006) with intermit-

tently open entrances, and differences in dispersal and

establishment properties of Aegiceras and Avicennia

(Smith III 1987; Clarke and Allaway 1993).

Avicennia marina var. australasica occupies the intertidal

zone of temperate southeastern Australia and New Zealand;

other varieties (var.marina and var. eucalyptifolia) are distrib-

uted along tropical coastlines (Duke 1991). This variety is

particularly noted for intertidal expansion over the past centu-

ry (Saintilan and Williams 1999) and cold tolerance (Stuart et

al. 2007). The close proximity of the Great Dividing Range to

the coast of southeastern Australia and the ensuing coastal

escarpment has afforded some protection from cold fronts that

move across the continent from the Southern Ocean.

Consequently, frosts as they are regionally known (viz.

freezes), are not severe and are relatively short in duration.

The absence of Avicennia marina from Tasmania implies cold

limitation; however, success of experimental plantings in

Tasmania adds some credibility to the noted cold tolerance

of this variety (noted in Woodroffe and Grindrod 1991).

Consequently, there is significant evidence of a dispersal bar-

rier, namely currents through Bass Strait, limiting establish-

ment of mangrove on northern shorelines of Tasmania. Both

mangrove and saltmarsh are virtually absent from the rocky

Fig. 4 Zonation of mangrove and saltmarsh at (a) Westernport Bay,

southeastern Australia and (b) Port Fourchon, Louisiana. Lower

elevations shown on left of each image, with the Avicennia marina

typically positioned at lower elevations than saltmarsh in (a)

southeastern Australia, and Spartina alterniflora typically positioned at

lower elevations than Avicennia germinans in (b) Louisiana
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coastline of the Great Australian Bight, with saltmarsh restrict-

ed to salt spray affected bluffs on cliffs and rocky shorelines

(Saintilan and Rogers 2013). The tide-dominated estuaries

near Adelaide, South Australia, do afford some protection

from wave-energy from the Southern Ocean, and dense

Avicennia marina occupy the intertidal zone between mid-

tidal levels and spring high tide level, merging with saltmarsh

dominated by succulents and saltbush (Gostin et al. 1984).

These mangroves are expanding in the hypersaline conditions

of these inverse estuaries (Burton 1982; Nunes and Lennon

1986). Similarly, mangrove and saltmarsh occupy low-energy

shorelines of embayments along the southern coastline of

Victoria. Corner Inlet, Victoria supports mangrove at the

highest latitude of both the northern and southern hemi-

spheres. While being shorter in stature than their tropical

counterparts, their height is taller than the 0.5–0.8 m reported

by Bridgewater and Cresswell (1999), with heights now rang-

ing to 3 m (unpublished data.).

Multiple drivers were initially proposed for the observed

intertidal expansion of mangrove in southeastern Australia in

the twentieth century. These included precipitation in the latter

part of the twentieth century, recovery of areas previously

used for agricultural purposes, altered tidal regimes associated

with engineering works within estuaries or sea-level rise, in-

creased sedimentation and associated nutrients following

catchment clearing, and subsidence of intertidal surfaces

(Saintilan and Williams 1999). Nutrient addition has been

precluded from facilitating mangrove establishment based on

field experimentation, with carbohydrates in cotyledons pur-

ported to sustain mangrove in their first year (Saintilan 2003).

Rates of mangrove expansion as related to relative sea-level

rise, which included both sea-level rise at the nearest tide

gauge and subsidence of the saltmarsh surface, have been

established (Rogers et al. 2006). Expansion has also been

correlated with increasing rainfall (Eslami-Andargoli et al.

2009). Regional rainfall and relative sea-level variation both

correlate with broader climatic perturbations associated with

ENSO, which confounds analyses aimed at distinguishing the

influence of rainfall and sea-level rise on mangrove expansion

(Rogers et al. 2014). This has been further validated by a

nation-wide analysis of sea level trends and variability that

demonstrated a strong influence of ENSO on sea level

(White et al. 2014). Groundwater may also be a significant

control on mangrove distribution with evidence that man-

grove use groundwater as an alternative water source

(Lovelock et al. 2017), mangrove distribution is influenced

by fresh groundwater seepage (Semeniuk 1983), and man-

grove and saltmarsh surface elevations decrease when ground-

water is depleted (Rogers and Saintilan 2009).

Only one species of mangrove occupies the temperate in-

tertidal zone of Western Australia. Avicennia marina var.

marina (Duke 1991) is restricted to the intertidal zone of the

Abrolhos Islands and Leschenault Inlet, and are regarded to be

outliers from distributions during the Holocene (Woodroffe

and Grindrod 1991). Dispersal of mangrove from these outlier

populations may be limited by geomorphic constraints on the

availability of suitable habitat along the wave dominated

coastline of Western Australia. There are few estuaries be-

tween Shark Bay (25.98°S, 113.78°E) and Hutt Lagoon

(28.16°S, 114.25°E); and these estuaries have relatively steep

slopes, and little suitable habitat for mangrove establishment.

Mangroves occur in all estuaries between Hutt Lagoon and

Tobys Inlet (33.64°S, 115.16°E) (Geosciences Australia

2011); but like southeastern Australia, estuaries of southwest-

ern Australia undergo intermittent closure, and may restrict

mangrove establishment in estuaries south of Bunbury

(33.33°S, 115.64°E).

In Northern Australia, saltwater intrusion and mangrove

expansion have been associated with drier than average mon-

soonal conditions, low-intensity cyclonic events and above-

average ocean water levels (Knighton et al. 1991; Mulrennan

and Woodroffe 1998; Winn et al. 2006), and demonstrate the

overarching influence of climatic perturbations on local cli-

mate variables. Remote sensing of mangrove shorelines in the

Gulf of Carpentaria indicated that Avicennia marina was

expanding in a seaward direction where sedimentary condi-

tions were favourable, and was accompanied by seaward ex-

pansion of Rhizophora stylosa into Avicennia marina forests

(Asbridge et al. 2016). The cause of the resulting increase in

mangrove width along the coast was correlated with increas-

ing rainfall, flooding and sea-level rise in the region, with the

combined effect being the development of mudflats and in-

creasing inundation. Recent widespread dieback in Northern

Australia may indicate that mangrove have an upper temper-

ature threshold (Duke et al. 2017). The effect of high temper-

atures on photosynthetic carbon assimilation has been

established for Australian mangroves (Clough et al. 1982;

Andrews et al. 1984; Ball 1988); however, this dieback oc-

curred at a time of high temperatures, lower sea levels and a

rainfall deficit (Lucas et al., in press). Consequently, thermal

stress has been suggested as one of a suite of possible causes

(Duke et al. 2017). Interestingly, the recent dieback appears to

have set-back the pattern of mangrove expansion that was

evident in the decade prior (Lucas et al. 2018). The

effect of thermal stress on mangrove is likely limited

to tropical and arid coastlines, and is projected to have

little effect on mangrove survival on temperate man-

grove of southeastern Australia.

Elevated atmospheric CO2 concentrations may enhance

plant growth and water use efficiency, with C3 plants includ-

ing mangrove and many saltmarsh species, increasing growth

rates in response to CO2 enrichment. In contrast, plants using

the C4 photosynthetic pathway, which includes some

saltmarsh species, are typically less responsive to CO2

(McKee et al. 2012). Ecophysiological studies focussed on

Australian mangrove species have considered the effect of
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CO2, salinity and humidity on the perfromance of two man-

grove species (Rhizophora stylosa and R. apiculata), demon-

strating negative feedbacks between growth and carbon diox-

ide concentrations that are facilitated by improved water use

efiiciency (Ball et al. 1997). These feedbacks were improved

under enhanced humidity conditions, but not under conditions

when salinity limited growth, indicating that elevated CO2

may not alter the salt tolerance of species, but could influence

competition of species along salinity and aridity gradients. For

species occurring near the latitudional limit in southeastern

Australia (Avicennia marina and Aegiceras corniculatum),

stomatal conductance and photosynthetic capacity decreased

under conditions of ambient atmospheric carbon dioxide con-

centration, increasing salinity and decreasing humidity (Ball

et al. 1997). As mangrove are C3 plants and may respond

favourably to elevated CO2, it can be inferred that declines

in photosynthetic capacity occurring due to salinity changes

with sea-level rise or humidity changes with altered air tem-

peratures may be ameliorated by enhanced growth under con-

ditions of elevated CO2. The linkages between elevated atmo-

spheric CO2, enhanced mangrove growth and mangrove

expanion and saltwater intrusion in Australia have been in-

ferred, but are yet to be clearly distinguished (Williamson et

al. 2011; Saintilan and Rogers 2015).

Mainland USA

The intertidal zone of the northern Gulf of Mexico (i.e. main-

land USA) primarily supports saltmarsh, on the east coast

largely dominated by Spartina alterniflora as a lower marsh

dominant, with other marsh species increasing in dominance

along the western Gulf of Mexico (Texas) including Batis

mar i t ima , Sporobolus v i rg in icus and Sesuv ium

portulacastrum (Jones et al. 2016). Only three true mangrove

species occur along the shores of the US mainland: Avicennia

germinans, Rhizophora mangle and Laguncularia racemosa,

and their historic distribution has fluctuated along the shore-

lines of the southern US states (Fig. 3b). In the Eocene (ap-

proximately 45 Ma), mangrove pollen records indicate man-

grove distribution as far north as the state of Tennessee, but

certainly mangroves commonly occurred in the states of

Alabama, Mississippi, Louisiana and Texas corresponding to

warmer climates and higher sea levels (Sherrod andMcMillan

1985). The pollen record became more obscure after the

Eocene, but re-emerges in the mid-Holocene (~3500 y BP).

As Caribbean mangroves at this time were limited only to

equatorial regions this suggests eradication of mangroves

from progressively colder temperatures before and into the

Pleistocene (Sherrod and McMillan 1985). A post-

Pleistocene recolonisation period initiated as the climate

warmed. Accordingly, Avicennia was back in Texas by 1853

(Sherrod and McMillan 1985), whilst herbarium specimens of

avicennia americana (syn. A. germinans) were collected in

1812 from Louisiana (McKee and Vervaeke 2018). Since this

time, the recent historical northern limit for mangrove in east-

ern North America is believed to be near 30°N (Savage 1972),

approximating a region near St Augustine, Florida (29.90°N,

81.31°W). The northern distribution of each mangrove spe-

cies has been documented for the eastern coastline of Florida

(Williams et al. 2014), with A. germinans having the most

northerly distribution in 2013. The most northerly individual

for each species was located between 26 and 67 km farther

north than a prior assessment in 2007. Extreme freezes

during the 1980s have been documented as a significant

contributor to declines in mangroves throughout the

northern Gulf of Mexico (McMillan 1986; Watson

1986; Montague and Wiegert 1990; Montague and

Odum 1997), which are now recovering.

Controlled experiments indicate that freeze-induced embo-

lism and its influence on hydraulic conductivity may alter

distribution of mangrove at larger spatial scales, with interspe-

cific differences mediated by xylem vessel architecture, and

intraspecific differences mediated by genetic variability, trait

evolution and/or phenotypic plasticity (Markley et al. 1982;

Stuart et al. 2007; Madrid et al. 2014; Cook-Patton et al.

2015). Analyses of intraspecific variation along latitudinal

gradients indicate that individuals near the range limit exhibit

greater resilience to chilling than more equatorial populations

(Cook-Patton et al. 2015). Vessel architecture also varies with

soil salinity, and the combined influence of both temperature

and salinity on vessel architecture, conductance capacity and

carbon fixation potential may contribute to lower canopy

heights where temperature and/or salinity approach tolerance

thresholds (Madrid et al. 2014). Temperature thresholds on

performance reportedly range between −2 and − 8 °C for all

three species (Osland et al. 2013; Cavanaugh et al. 2014;

Osland et al. 2017), but there are important local-scale inter-

actions embedded in this response related to saltmarsh species

being replaced, and interactions between salinity and seedling

age (Coldren and Proffitt 2017). A. germinans has been con-

sistently found to be the most cold tolerant; however, compar-

ative experiments withA. marina indicate significantly greater

cold tolerance in the latter species, which does not occur in the

USA (Stuart et al. 2007). There is reported variation in the

tolerance of Rhizophora and Laguncularia that may relate to

life stage of the plants (Markley et al. 1982; Cavanaugh et al.

2015; Cook-Patton et al. 2015). To this end, chilling tolerance

has been found to vary with life stage. Greater cold tolerance

of A. germinans at the dispersal stage, as opposed to stranded

and seedling stages, may facilitate landward expansion of

mangrove (Pickens and Hester 2011). Freeze damage is re-

portedly lowest for tall A. germinans and seedlings compared

to short trees, whilst recovery following a freeze was highest

for tall A. germinans (Osland et al. 2015).

Expansion of mangrove throughout mainland USA has

generally been associated with the absence of extreme freezes
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in Florida (Stevens et al. 2006; Krauss et al. 2011; Cavanaugh

et al. 2014; Rodriguez et al. 2016), Louisiana (Patterson and

Mendelssohn 1991; Perry and Mendelssohn 2009; Osland et

al. 2017) and Texas (Comeaux et al. 2012; Bianchi et al. 2013;

Armitage et al. 2015). However, factors contributing to expan-

sion have been difficult to differentiate due to the overarching

influence of recovery following freeze events. Analyses of

contemporary mangrove distribution dynamics in southern

Florida, where studies have identified no discernible change

in the pattern of freeze events throughout the region (Duever

et al. 1994), provide the opportunity to control for extreme

freeze events and explore the influence of other factors on

mangrove distribution dynamics. Landward expansion of

mangrove at various sites in southern Florida has been related

to drainage of freshwater wetlands, diversion of run-off,

changes in localised rainfall, sea-level rise, and factors facili-

tating propagule dispersal such as construction of new water-

ways and mosquito ditching (Teas et al. 1976; Ball 1980;

Krauss et al. 2011; Smith III et al. 2013); declines in landward

ecosystems have also been associatedwith sea-level rise (Ross

et al. 1994; Doyle et al. 2010). Analysis of fringing mangrove

extent at Tampa Bay (27.76°N, 82.54°W) in the 1870s from

historical navigation maps indicate almost complete replace-

ment of saltmarsh by mangrove. This expansion of mangrove

attests to environmental changes operating at least over a cen-

tury, with sea-level rise and freshwater withdrawal implicated

(Raabe et al. 2012). The distribution of peats and marls under-

lying expanding mangrove forests at Biscayne Bay (25.57°N,

80.23°W) imply that recent landward expansion does not rep-

resent recovery to a prior extent, at least in recent history

(Ball 1980). Unfortunately evidence of prior mangrove

distribution in the greater Everglades region of south

Florida may have been disturbed with peats largely

oxidised or burned (McCally 1999).

Analyses of saltmarsh loss have also been associated with

mangrove expansion following decades of relatively mild

winters in Texas; however, conversion of saltmarsh to tidal

flats or open water attests to the influence of sea-level rise

on both mangrove establishment and saltmarsh conversion

(Armitage et al. 2015). A more comprehensive approach in-

corporating multiple controls of mangrove extent near the

northern limit of Florida proposed that 95% of variation in

mangrove extent over time was explained by temperature,

precipitation, sea level and time (Cavanaugh et al. 2015).

While sea level only marginally improved model efficacy,

the interacting effect of intertidal geomorphology and sea-

level rise was not adequately incorporated within the model,

which could be simply achieved by incorporating elevation

within the model, or more accurately achieved with a hydro-

dynamic model. Just as most sea-level rise models have his-

torically excluded climatic variables, most climatic models

exclude sea-level rise and natural dispersal barriers, limiting

inference of both model types.

As mangrove extent is periodically set-back by freezes,

many studies have correlated increasingmangrove extent with

potential drivers, particularly temperature. By extrapolation

they have also correlated rates of poleward expansion and

threshold temperature tolerances based on current

distribution. For example, Williams et al. (2014) report hypo-

thetical rates of poleward expansion, which presumes that

absence of extreme freeze events are the primary determinant

of poleward mangrove expansion. Cavanaugh et al. (2014)

identify temperature related ecological thresholds, specifically

reduction in frequency of days colder than −4 °C, which cor-

responds to historical estimates (Davis 1940). Similarly,

Osland et al. (2013) propose a minimum temperature thresh-

old of −8.9 °C for mangrove presence/absence, and − 7 °C for

mangrove dominance. These temperature threshold estimates

presume that mangrove currently occupy their fundamental

niche; an assumption that has been questioned by Giri and

Long (2014) who propose that mangrove expansion is not

poleward in direction, but constitutes recovery following

freezing temperatures in 1983 and 1989. Mangrove expansion

along the eastern coastline is reportedly occurring within the

historical northernmost limit, in this case documented using

~35 years of satellite imagery and occurring at a higher lati-

tude in Louisiana in 1980 (Giri and Long 2016). Mapping of

mangrove dynamics in this region attests to the interacting

affect of multiple drivers upon mangrove distribution, with

freezes causing dieback, milder temperatures associated with

recovery, and subsidence and erosion variably associated with

mangrove expansion and contraction dynamics between 1983

and 2010 in Louisiana (Giri et al. 2011a). To this list of pos-

sible causes could be added the early hypothesis of Penfound

and Hathaway (1938), who documented dense mangrove

stands near the coast of up to 7.6 m height, that have higher

elevation and soil salinities than adjoining saltmarsh, and

would readily invade lower communities except for annual

marsh fires (but see Smith III et al. 2013). However, absence

of fires in the subsequent years would preclude this hypothe-

sis. Further evidence from the historical record and additional

data sources, such as high-resolution elevation data (e.g.

LiDAR), is required to confirm controls on mangrove estab-

lishment where distribution fluctuates over confounding

micro-topographies and micro-climates.

At small spatial scales, mangrove establishment is strongly

influenced by factors that influence the salinity of surface and

soil water, and the degree of soil saturation. For example, in

greenhouse growth studies seedlings of A. germinans exhibit-

ed favourable growth response under low to moderate levels

of stress or disturbance associated with salinity regimes (opti-

mal at 24–48 ppt), sediment burial (optimal at 0–10 cm), and

inundation depth (optimal at 15–30 cm) (Alleman and Hester

2011). In a field-based study measurements of basal incre-

ments indicated that growth correlated with hydroperiod-

mediated phosphorus subsidies for all species (Krauss et al.
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2006). The competitive growth response of stunted A.

germinans is reflected in its higher water use efficiency and

lower water demand at high salinities compared to Spartina

alterniflora on at least one Louisiana site (Krauss et al. 2014).

There is now increasing recognition of the role of biotic fac-

tors in mediating mangrove expansion, including propagule

dispersal (Ball 1980), trapping of propagules by saltmarsh

vegetation (Lewis and Dunstan 1975; Stevens et al. 2006;

Peterson and Bell 2012), interspecific competition (Ball

1980; Patterson et al. 1993; McKee and Rooth 2008; Guo et

al. 2013), and precocious reproduction (Dangremond and

Feller 2016). More complex multifactorial effects between

abiotic and biotic factors are also being recognised including

CO2, nitrogen enrichment, facilitation, and differential

warming influences in the mediation of competition between

Spartina and A. germinans (Farnsworth et al. 1996; McKee

and Rooth 2008).

Mangrove establishment in expanding zones has been

conceptualised by Ball (1980) who proposed that seedlings

will colonise any area that is available, providing propagules

can be transported to the location and basic requirements are

met (e.g. soil moisture prevents propagule desiccation). As

reserves in cotyledons temporarily sustain establishment and

development, species composition of seedlings in expanding

areas does not reflect physiological tolerance to edaphic con-

ditions or the role of competition; these factors become critical

as individuals mature and competition for in situ resources

becomes important.

Synthesis of Contemporary Distribution Changes

Studies in both regions that correlate mangrove expansion

with other variables attest to a large scale pattern of mangrove

expansion. While this expansion is currently synchronous in

both regions, differences emerge that reflect species evolution

over longer-timescales and the interacting effect of region-

specific processes. Time-series mapping from aerial or satel-

lite imagery indicates that expansion is occurring in three di-

rections: i) poleward or latitudinal expansion; ii) along estuar-

ies (sometimes referred to as longitudinal expansion along

eastern and western coastlines); and iii) across the intertidal

zone.

Poleward Expansion Only limited evidence exists on the ex-

pansion of mangrove in the estuaries of southeastern

Australia; Rhizophora stylosa and Bruguiera gymnhorriza

may be expanding, Aegiceras corniculatum distribution is re-

portedly stable, while latitudinal expansion of Avicennia

marina is limited by the geographic barrier of Bass Strait.

Poleward expansion of mangrove has received considerably

more attention in the mainland USA, particularly in the states

of Florida, Texas and Louisiana. In this region, freezes are

associated with climatic oscillations occurring in the North

Atlantic (North Atlantic Oscillation) and the Pacific (ENSO)

(Downton and Miller 1993), operating over decadal time-

scales and causing periodic physical damage. Variation in

these atmospheric circulation patterns and the ensuing ecolog-

ical effects on mangrove distribution are poorly described

using remote sensing techniques that have a relatively short

temporal range (typically less than 25 years of data collection),

as they do not adequately capture mangrove response to the

full variation in the intensity and frequency of freeze events. In

addition, studies that establish correlations based on patchy

mangrove distributions may be more accurately explained

by processes operating at smaller spatial scales, such as

micro-climatic variability, propagule dispersal and nutrient

availability. Expansion of mangrove is currently occurring

within the range of mangrove distribution of the early 1980s

and likely represent recovery following dieback of mangrove,

rather than northerly expansion beyond their historic range

limits. When analysing temporal changes in species distribu-

tion it is important to distinguish between the range of envi-

ronmental conditions in which a species establishes and sur-

vives, commonly identified as the fundamental niche, and the

range of conditions in which a species currently occurs, de-

fined as the realised niche. Based on the stochastic nature of

freezes in North America, the current northern range of man-

grove is likely to represent a realised niche, as distribution

within the fundamental niche is periodically delimited by sto-

chastic freeze events. Expansion of mangrove in mainland

USA is now synchronous and occurring at all northern limits

in Florida, Louisiana and Texas. This synchronicity in expan-

sion relates to the large spatial extent of freeze damage to

mangroves, and not to a single process operating consistently

across mainland USA to facilitate mangrove establishment.

Rather, recent mangrove expansion is likely related to pro-

cesses operating over smaller spatial scales, such as hydrope-

riod, nutrient availability, competition, and propagule dispers-

al, enabling the realised niche to expand until mangrove oc-

cupy their fundamental niche. Relationships between the area

of mangrove and time since freeze events are evident

(Cavanaugh et al. 2014; Osland et al. 2017), but rarely recog-

nise that processes contributing to mangrove establishment

are also time dependent. Until mangrove has fully recovered

and occupied their fundamental niche, identifying processes

other than freezes controlling mangrove distribution over lon-

ger timescales (e.g. climate change effects on temperature and

sea-level rise) will be masked by variability occurring over

shorter timescales, and more specifically be influenced by

episodic dieback and recovery following the freeze.

Along Estuaries Expansion of mangrove along estuaries,

based on written, cartographic and pictorial materials from

the Sydney region, indicates that mangrove was likely absent

from the upper Parramatta River from the time of European

occupation in 1788, expanding until the 1940s when aerial
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photography indicates mangrove extent began to be delimited

by increasing urbanisation and industrialisation (McLoughlin

2000). Similar expansion of mangrove along the Hawkesbury

River has been observed in response to increasing siltation up

until the 1940s–60s when extensive mangrove areas were

converted to other land uses (Recher et al. 1993). From this

time mangrove proliferation has largely occurred across the

intertidal zone (Saintilan andWilliams 1999). The New South

Wales (NSW)Government has mapped the upstream tidal and

mangrove limit in estuaries along NSW in an effort to estab-

lish a benchmark against which subsequent changes can be

monitored (DNR 2006). This pattern of mangrove expansion

along the wave-dominated estuaries of southeastern Australia

may be hydrologically similar to mangrove expansion associ-

ated with saltwater intrusion in the tide-dominated rivers of

Northern Australia (Knighton et al. 1991; Mulrennan and

Woodroffe 1998; Winn et al. 2006). Estuarine expansion of

mangrove in the mainland USA is masked by mangrove re-

covery dynamics following prior freeze events, and the north-

south orientation of estuaries behind shore parallel barrier de-

posits and their connection to form the intra-coastal waterway

along the Atlantic coastline of Florida.

Across the IntertidalWhere the influence of frost or freezes is

reduced, studies of mangrove expansion across the intertidal

zone in both regions have been linked to a range of factors.

Topographic control on expansion is evident in southeastern

Australia (Rogers 2004) and southern Florida, attesting to an

influence of hydroperiod on mangrove distribution. Post-

freeze mangrove recovery exhibits a similar topographic pat-

tern in some locations, reflecting a local scale niche defined by

accommodation space or hydroperiod (see for example

Armitage et al. 2015; Osland et al. 2017). Irrespective of the

driver of change, the underlying affect on an individual man-

grove is typically hypothesised to be either a decrease in soil

salinity and/or anaerobic conditions associated with enhanced

hydroperiod. Laboratory and field experiments support both

hypotheses (Krauss et al. 2006; Alleman and Hester 2011). In

Florida, factors operating at larger spatial scales that influence

hydroperiod are typically implicated, such as sea-level rise;

however, other site-specific factors operating at smaller spatial

scales may also influence rates of mangrove expansion, in-

cluding drainage of wetlands, forest fires and morphology of

the intertidal zone. The large spatial scale at which expansion

is occurring in southeastern Australia has also focussed atten-

tion upon climatic-related drivers such as rainfall and sea-level

rise, with local factors proposed to mediate these drivers.

Disentangling the coincident nature of drivers of mangrove

distribution is difficult in both regions. Consequently studies

that correlate mangrove distribution changes with possible

drivers will fail to clearly identify a driver of current mangrove

distribution changes. Field, laboratory or greenhouse based

analyses at smaller spatial scales will provide essential

information about the response of mangrove to various

drivers. Analyses of this type are currently focussed on tem-

perature thresholds in mainland USA (McMillan and Sherrod

1986; Pickens and Hester 2011), and tolerance to salinity and

dispersal properties in southeastern Australia (Clarke and

Myerscough 1991; Clarke 1993; Clarke and Allaway 1993).

Projections

Projections of mangrove distribution at a range of spatial

scales have been prompted bymanagement needs and a desire

to improve ecosystem outcomes under a changing climate.

Focussing primarily upon applying climate change projec-

tions at the landscape scale, these projections often apply sce-

narios of sea-level rise and temperature increase to project

mangrove distribution or persistence. At the local or individ-

ual-scale, mangrove models focus on resource, regulator, and

hydroperiod gradients under a range of disturbances (e.g. hur-

ricanes, lightning strikes) to predict stand development and

identify sensitive drivers (e.g. nutrient concentrations) for fur-

ther experimental tests (see for example Berger et al. 2008;

Twilley and Rivera-Monroy 2009).

Australia

As there is little evidence of thermal control on mangrove

extent in southeastern Australia, projections in this region

have focused on changes occurring across the intertidal zone

associatedwith sea-level rise. The exact response ofmangrove

and saltmarsh to sea-level rise is dependent upon local topog-

raphy, sediment sources, rates of sediment supply, and the rate

of sea-level rise (Woodroffe 1990). As rates of sediment sup-

ply and subsequent vertical accretion are proportional to ac-

commodation space or hydroperiod, empirical data indicate

that sedimentation is always higher in mangrove compared

to adjacent saltmarsh in southeastern Australia (Rogers et al.

2006), translating to greater gain in surface elevation and im-

proved capacity to adjust to sea-level rise. Analyses of carbon

addition as mangrove encroaches upon saltmarsh demon-

strates the greater capacity of mangrove to add organic mate-

rial to the substrates (Kelleway et al. 2016). The enhanced

capacity of mangrove to accumulate organic and mineral sed-

iments as the sea rises has been conceptualised to have nega-

tive consequences for saltmarsh (Vanderzee 1988; Saintilan

and Rogers 2013; Kelleway et al. 2016). This may be further

assisted by enhanced assimilation of atmospheric CO2 that

improves growth and access to below-ground water resources

(Saintilan and Rogers 2015).

Landscape-scale projections of mangrove-saltmarsh distri-

bution based on empirical data that incorporate feedbacks be-

tween hydroperiod, mineral and organic matter additions, and

sea-level rise have been developed using readily available

models such as the ‘sea level affecting marshes model’
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(Akumu et al. 2011; Traill et al. 2011; Runting et al. 2016;

Mogensen and Rogers 2018) or empirically driven numerical

models (Oliver et al. 2012; Rogers et al. 2012, 2013;

Mogensen and Rogers 2018). Both modelling approaches ex-

trapolate elevation and distance dependent relationships be-

tween surface elevation gain and sea-level rise. In all cases,

these models emphasise the capacity of mangrove and

saltmarsh to adjust to low-to-moderate rates of sea-level rise,

particularly when landward barriers (e.g. infrastructure, steep

topography, levees) to expansion across adjacent low-lying

land are absent; this capacity appears to be exhausted under

high rates of sea-level rise that approach or exceed 9 mm/y.

With the exception of Rogers et al. (2013) which incorporated

levee management in scenarios, model scenarios have fo-

cussed on sea-level rise alone. A three model comparison of

Oliver et al. (2012), SLAMM and an adjusted version of

Temmerman et al. (2003) demonstrated the influence that

model selection and parameterisation has on projections

(Mogensen and Rogers 2018). Few studies of the effect of

sea-level rise have been undertaken at larger spatial scales;

as modelling approaches that more accurately capture feed-

backs between inundation and elevation adjustment are diffi-

cult to develop and apply at larger spatial scales, in all

instances a relatively simple bath-fill approach was used

to project an upper threshold of inundation (DCC 2009;

Boon et al. 2011).

Mainland USA

Along much of the northern Gulf of Mexico where mangrove

and saltmarsh occur sympatrically, mangrove is positioned at

higher elevations along creek banks where hydroperiod is re-

duced, and Spartina alterniflora is positioned at lower eleva-

tions with elevated hydroperiods either where bank gradients

provide suitable accommodation space or in the interior of the

marsh (Patterson et al. 1997, Fig. 4b). Higher sulphide con-

centrations associated with lower elevations in Spartina were

hypothesised to limit Avicennia propagule establishment

(Patterson and Mendelssohn 1991), and subsequent seedling

and propagule plantation experiments confirmed reduced

seedling growth rates (Patterson et al. 1993) and greater prop-

agule herbivory and decay at lower elevations (Patterson et al.

1997). Loss-on-ignition measurements from soil collected un-

der adjacent marsh andmangrove sites in Texas indicate great-

er organic matter contributions and carbon components within

the soil volume at the generally lower elevations occupied by

Spartina than higher elevations occupied by mangrove

(Comeaux et al. 2012). Despite slight elevation differences

between mangrove and Spartina, vertical accretion and sur-

face elevation change measures to date are trend-free overall

(Perry and Mendelssohn 2009; McKee and Vervaeke 2018).

As mangrove are still recovering or developing after prior

freezes, soil carbon may not yet be saturated in freeze affected

areas (Henry and Twilley 2013; Yando et al. 2016). However,

this relationship is not consistent with mangrove carbon stor-

age reportedly higher along a gradient of mangrove encroach-

ment in Florida (Doughty et al. 2016). The pattern of carbon

saturation beneath mangrove and saltmarsh is evidently site

dependent and may be offset by rates of mineral sediment

supply. This complexity and the overarching influence of

freezes on mangrove distribution in mainland USA have re-

sulted in projections focussing on the effects of increasing

temperature on mangrove distribution.

Temperature thresholds that cause severe dieback of man-

grove, derived using correlative techniques (Osland et al.

2013; Cavanaugh et al. 2014), have provided a means for

extrapolation of mangrove distribution using various temper-

ature scenarios. Osland et al. (2013) used a climate envelope

approach to project mangrove forest presence and relative

abundance within 352 coastal grid cells that covered a coast-

line of 172,024 km2 based on future climate scenarios at

2070–2100, projecting broad-scale mangrove expansion and

saltmarsh decline. Guo et al. (2013), recognising that other

factors will improve climate envelope approaches specifically

examined biotic interactions between A. germinans and

saltmarsh vegetation along the Texas coast, accounting for

latitudinal gradient, elevational gradient and life history stages

of mangrove. They demonstrated that the response of man-

grove is variable depending upon each of these factors. In

doing so, they demonstrate that biotic interactions are an im-

portant component of mangrove-saltmarsh dynamics.

Ignoring the overarching influence of hydroperiod and its

interaction with topography, Stevens et al. (2006) extrapolated

rates of mangrove expansion after a freeze event to propose

complete coverage of mangrove seedlings at Cedar Key with-

in 25–30 years since their analysis. Similarly, a study calling

for analysis to look beyond sea-level rise excluded inundation

parameters and individual species tolerance to both tempera-

ture and aridity to project areas of high vulnerability to chang-

es in mangrove-saltmarsh dynamics for the mainland

USA and globally on the basis of aridity gradients,

winter air temperature gradients, and a combination of

both factors (Osland et al. 2016).

In southern Florida, where temperature control on man-

grove survival does not dominate distribution dynamics, sea-

level rise projections typically indicate landward expansion of

mangrove. SLAMM has been used in this region to project

changes in wetland vegetation classes indicating significant

gains in tidal wetlands (mangrove and saltmarsh) at the ex-

pense of inland and coastal forest (Geselbracht et al. 2011;

Sherwood and Greening 2014; Geselbracht et al. 2015).

Comparisons of simple bath-fill approaches with SLAMM

using elevation data of differing resolution demonstrate the

usefulness of high resolution elevation models and improved

vegetation distribution models (Zhu et al. 2015). At the re-

gional scale, the sea level over proportional elevation
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(SLOPE) model, which assumes the area of mangrove and

saltmarsh is determined by the landform slope and vertical

tidal forcing, was applied to the northern Gulf of Mexico

(Doyle et al. 2010). They demonstrate significant spatial var-

iation in the proportion of tidal freshwater forest lost and salt-

water mangrove-saltmarsh gain based on current rates of rel-

ative sea-level rise of 18–20 cm and 10 cm acceleration in

eustatic sea-level rise over the next century. With the purpose

of identifying barriers to landward migration, bath-full

techniques were applied to LIDAR derived digital ele-

vation models along the northern Gulf of Mexico

(Enwright et al. 2016).

Synthesis of Projections

Due to the need to plan for sea-level rise and provide adapta-

tion pathways for coastal wetlands, it is not surprising that

projecting the response of mangrove and saltmarsh to sea-

level rise has been the focus of research in both regions. All

models are particularly sensitive to elevation and resolution/

accuracy of input digital elevation models. Application of

SLAMM has been the predominant approach applied at the

local scale, while bath-fill approaches were applied at the re-

gional scale. Few studies have considered the influence of data

input, model selection and parameterisation on model out-

comes (Rogers et al. 2012; Mogensen and Rogers 2018; Zhu

et al. 2015); this is an area requiring further research in both

regions so that site-specific variables can be adequately incor-

porated. Given the influence of freeze events on mangrove

survival in the northern Gulf of Mexico, it is also not surpris-

ing that this has received considerable attention in this

region; unfortunately, these studies have yet to integrate

the overarching influence of sea level and the expression

of sea level on coastal topography to accurately project

increases in mangrove extent. Integration of multiple

controls on mangrove distribution within models has be-

gun to receive some attention (Guo et al. 2013), and

future model improvements are anticipated.

Moving beyond Generalisations
about Distribution Dynamics

The distribution of organisms is determined by a range of

factors including: the geographical starting point for dispersal;

the inherited ecological niche; dispersal limitations imposed

by abiotic conditions; opportunities for niche evolution; and

the time over which dispersal and evolution can occur (Wiens

and Donoghue 2004), with anthropogenic activities augment-

ing these processes. Distribution patterns derive from the in-

teraction of these factors, and their influence on establishment

and long-term survival of individuals at different spatial and

temporal scales. Unfortunately, mangrove scientists are often

lax in defining both the spatial and temporal scale of analysis;

and this has been associated with contradictory interpretations

due to correlations between variables that are not hierarchical-

ly comparable (Schaeffer-Novelli et al. 2000). In addition, few

studies have analysed the broad range of factors controlling

mangrove distribution (Friess et al. 2012). In an attempt to

present a systematic treatise we have broadly identified a

range of ecophysiological, geomorphological/geochemical,

hydrological and meteorological/climatic processes influenc-

ing mangrove. While Fig. 1 presents these components as

discrete units, it masks the complexity in these processes that

intersect, combine, correlate, amplify and create feedbacks

between and among each other. This complexity may be in-

herently limiting the capacity to move beyond generalisations

regarding mangrove expansion.

Correlative techniques, commonly termed ‘ecological

niche modelling’ or ‘species distribution modelling’ are be-

coming increasingly popular for ecologists and biogeogra-

phers (Peterson and Soberón 2012a, b), and dominate analy-

ses of mangrove distribution. These techniques intend to es-

tablish relationships between mangrove distribution at various

spatial and temporal scales with environmental variables, but

are frequently used in ways whereby model outcomes do not

correspond to what is known about species distribution in the

real-world (Peterson and Soberón 2012a, b). Foundational to

correlative studies is the assumption that the inherited ecolog-

ical niche or fundamental niche is the primary control on dis-

tribution, that enough time has passed for the niche to be fully

realised, and that this niche can be adequately defined using a

few variables; that is, the niche they occupy is in dynamic

equilibrium with correlative variables (Pearson and Dawson

2003). The paradox of these studies is that while they intend to

describe mangrove distribution dynamics, they intrinsically

ignore the spatial and temporal dynamics in mangrove eco-

systems that allow mangrove to occupy a realised niche, as

opposed to the fundamental niche. In addition, they fail to

recognise the full range of factors that operate at similar spatial

and temporal scales, and presume that factors operating at

larger or smaller spatial scales are insignificant. In this regard,

global scale analyses of mangrove expansion often ignore the

local scale factors that can be so influential in rates of man-

grove expansion and the proportional area of a wetland

that mangrove occupies. While it is a well-known adage

that ‘correlation does not imply causation’, emphasis of

this concept is necessary, and further analysis is essen-

tial to confirm causation.

Climate change has necessitated the need for projections of

mangrove and saltmarsh distribution under various climate

change scenarios. However, the effect of assumptions from

correlative studies are compounded when projecting man-

grove distribution, particularly when the model is poorly

parameterised and validated (Cowell and Thom 1994).

Projecting species distribution changes under various climate
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change scenarios entails acceptance that species distribution is

non-equilibrium in nature and should therefore be undertaken

cautiously. Correlations based on analyses of mangrove dis-

tribution over short temporal scales or small spatial scales, are

particularly prone to being poorly parameterised, as the prob-

ability of missing important processes influencing mangrove

distribution over longer timescales and larger spatial scales

will be high. The validity of these models has also been

questioned as they primarily focus on climatic variables, ig-

noring the many other variables influencing species distribu-

tion (Pearson and Dawson 2003).

Manipulative experiments under field or laboratory condi-

tions provide a means for validating observed spatial and tem-

poral patterns established using correlative approaches, and

afford additional evidence of causation. The outcomes of ma-

nipulative experiments can be fundamental to process based

model development that can be used to project response to

climate change variables (Dormann et al. 2012). However,

they also incur their own challenges. First, they involve arti-

ficial manipulation of natural processes, which are inherently

difficult to replicate. This is particularly pertinent under labo-

ratory conditions where manipulation is largely limited to ex-

periments on mangrove seedlings and juveniles, and unfeasi-

ble with adult mangrove. Second, experimental design in ma-

nipulative studies becomes increasingly difficult when manip-

ulating processes operating over large spatial and temporal

scales (Quinn and Keough 2002). Nevertheless, manipulative

experiments provide important insights into the ecophysiolog-

ical response of mangrove to environmental variables and

should remain an important component of mangrove distribu-

tion research.

Our analysis of existing knowledge of the mangrove-

saltmarsh distribution dynamics at a northern and southern

hemisphere range limit of mangrove in Australia and main-

land USA highlights the variation in processes influencing

mangrove distribution within and between these regions. It

also demonstrates the variation in processes that has occurred

over geological, recent and contemporary timescales; estab-

lishing that there is little consistency in patterns of mangrove

distribution between the regions. Planning for climate change

requires some confidence in the ecological niche of mangrove

and therefore necessitates acknowledgement of these differ-

ences. We therefore propose important considerations for bio-

geographical analyses that will assist with improving knowl-

edge of mangrove distribution and enhance model confidence.

First, assumptions, caveats and limitations with correlative

studies should be acknowledged and go beyond precursory

acknowledgement that correlation does not mean causation.

This requires recognition that both environmental controls on

mangrove distribution, and mangrove distribution in itself, are

spatially and temporally variable; sampling data are therefore

incomplete, represent a ‘snapshot’ in space and time, and may

be biased (Jarnevich et al. 2015). Establishment of

relationships that are more robust requires that predictor var-

iables capture the bounds of the variability and the periodicity

of variability. Not incorporating this variability will result in

established relationships between the realised niche of man-

grove distribution and environmental variables, and will have

little value for projections of future distribution. In addi-

tion, the observed variability means that it is unreason-

able to expect one correlational model to reproduce

mangrove distribution for all species, at all spatial

scales, and across all temporal scales.

Second, the same recognition is also required for manipu-

lative studies, whether they occur in the field or under labora-

tory conditions in greenhouses. In this regard, experimental

design is particularly important, and experimental design

should account for spatial and temporal variability in environ-

mental variables. This requires ecologists to extend the per-

ceptual range of feasible experimental designs, as proposed by

Wiens (1989). This can become particularly difficult under

field conditions due to spatial heterogeneity, but nevertheless

requires careful experimental design (Dutilleul 1993).

Importantly, results of physiologically-based experiments

should be interpreted in the context of the full range of possi-

ble drivers of mangrove distribution, including those factors

that are poorly or impossible to replicate in manipulative ex-

periments (Pearson and Dawson 2003).

Third, analyses that draw from a range of methods will

provide greater confidence in model outcomes. Integration

of correlation techniques with manipulative experimentation

is increasingly advocated in biogeographic literature (Pearson

and Dawson 2003; Guisan and Thuiller 2005; Guisan et al.

2006). Correlative studies can be used to formulate hypothe-

ses regarding controls on mangrove distribution that can be

subsequently applied as test variables in manipulative field

and laboratory experiments, thereby establishing the physio-

logical response of mangrove to the environmental variables

observed to influence mangrove distribution. Alternatively,

findings from manipulative experiments can be verified by

observing similar patterns in nature, or not if the physiological

response was misinterpreted.

Frameworks have been advocated that integrate layers of

information influencing species distribution, including biocli-

matic variables, dispersal, disturbance and resource factors

that limit species to a realised niche (see for example

Pearson and Dawson 2003; Hijmans and Graham 2006;

Franklin 2010). Distribution or niche modelling, sometimes

termed ecological niche modelling (ENM), species distribu-

tion modelling (SDM) or community distribution modelling

(CDM), provide the means of modelling species distributions

from distribution records. The availability of MaxEnt (Elith et

al. 2011) or BIOMOD (Thuiller et al. 2009) tool sets, partic-

ularly within GIS and statistical applications, have improved

the popularity of these approaches (Peterson and Soberón

2012a). Currently, there are few applications of these
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approaches to modelling mangrove distribution (see for exam-

ple Kramer-Schadt et al. 2013; Quisthoudt et al. 2013; Record

et al. 2013), perhaps reflecting the need for model improve-

ments. Distribution/niche modelling approaches are largely

correlative in nature and aim to find associations between

distribution data and abiotic predictors that are typically cli-

matic, hydrological or geomorphological derivatives

(Peterson and Soberón 2012a). There is considerable debate

regarding the suitable application of distribution/niche model-

ling approaches, and many improvements have been pro-

posed; users should refer to these suggestions prior to appli-

cation (see for example Araújo and Guisan 2006; Jiménez-

Valverde et al. 2008; Peterson and Soberón 2012a, b).

Whilst distribution/niche modelling may provide a first ap-

proximation of abiotic controls on mangrove distribution

when applied appropriately (Record et al. 2013), model out-

puts will be significantly improved by applying distribution/

niche modelling techniques as a first pass assessment. Second-

and third-pass assessments that integrate the effect of biotic,

mobility and temporal factors on mangrove distribution will

significantly improve predictive capacity.

Given the need to plan for climate change, it is imperative

that mangrove-saltmarsh distribution research moves beyond

simple modelling approaches that assume equilibrium be-

tween realised and fundamental niches, and ignore spatial

and temporal variability. Integration of modelling approaches

from various disciplines interested in mangrove distribution is

essential if robust conservation strategies are to be implement-

ed that improve adaptation to climate change and maintenance

of ecosystem services provided by coastal wetlands.
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