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Moving-Horizon Estimation for Linear Dynamic
Networks with Binary Encoding Schemes

Qinyuan Liu and Zidong Wang

Abstract—This paper is concerned with moving-horizon state
estimation problems for a class of discrete-time linear dynamic
networks. The signals are transmitted via noisy network channels
and distortions can be caused by channel noises. As such, the bi-
nary encoding schemes, which take advantages of the robustness
of the binary data, are exploited during the signal transmission.
More specifically, under such schemes, the original signals are
encoded into a bit string, transmitted via memoryless binary
symmetric channels with certain crossover probabilities, and
eventually restored by a decoder at the receiver. Novel centralized
and decentralized moving-horizon estimators in the presence of
the binary encoding schemes are constructed by solving the
respective global and local least-square optimization problems.
Sufficient conditions are obtained through intensive stochastic
analysis to guarantee the stochastically ultimate boundedness of
the estimation errors. A simulation example is presented to verify
the effectiveness of the proposed moving-horizon estimators.

Index Terms—Moving-horizon estimation; Kalman filtering;
remote state estimation; dynamic networks; communication con-
straints; binary encoding schemes.

I. I NTRODUCTION

L INEAR dynamic networks are composed of a large
number of nodes interconnected according to network

topologies. Many complicated practical systems can be gen-
erally described by dynamic networks in terms of nodes,
edges and interactions [4], [25]. Thanks to their extensive
applications in diverse real-world systems (e.g. electrical pow-
er systems, manufacturing processes, compartmental systems,
and biological processes), the analysis and synthesis problems
of dynamic networks have become a very active research area
in both industry and academia.

In recent years, considerable research efforts have been
denoted to stabilization, synchronization and consensus prob-
lems of dynamic networks, see e.g. [5], [11], [23], [26]. Note
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that the conventional closed-loop controller design approach
usually adopts the full state-feedback techniques, thereby
requiring knowledge of the full state. However, owing to the
technological restrictions of the sensing devices, the full state
might be unavailable in many real-world systems. A proper
solution is, therefore, to make use of state estimators to extract
the system state from the network measurements (usually
partial observations). For this reason, the state estimation
problem for dynamic networks has recently gained much
research attention and a great many results have been available
in the literature, see, e.g., [7], [9], [12], [27], [30], [32].

Since the pioneering work in [8], the Kalman filter has
been serving as one of the most successful technologies
in areas of signal processing and control engineering [14]–
[17], [22], [24]. A conventional Kalman filter provides the
optimal estimate in the minimum mean-square error sense
for linear Gauss-Markov systems. Nevertheless, unavoidable
modeling errors (or parameter uncertainties) may hinder the
conventional Kalman filter from being successfully applied.
As such, the robust filtering problems have been investigated
in the literature, see for example [33], [34], where the model
perturbations are characterized by theτ -divergence family and
the robust Kalman filter is derived by solving a minimax
problem. As the Gaussian noise assumption is necessary for a
good performance of the Kalman filter, the corresponding ap-
plication scope is thus limited because the noise distributions
are often non-Gaussian or even unknown in many practical
systems. One way to mitigate the aforementioned limitations
is to utilize the so-calledmoving-horizon estimationstrategy,
whose main idea is to reconstruct the system states according
to a sequence of past measurements in a moving but fixed-size
window [1], [2], [6], [19], [20].

With the rapid development of communication technologies,
the remote state estimation has emerged to play an impor-
tant role in networked control systems [18], [21]. While the
use of network equipments enjoys the benefits of flexible
architecture, reduced installation and maintenance costs, some
rather serious challenges do arise on the state estimation
problems. For example, due to the inherent limitations of
digital communication channels, the measurements transmitted
from the sensor to the estimator can be affected by certain
network-induced phenomena which, in turn, might result in
dramatic performance degradation [29], [31]. As such, in the
past decade, there has been a surge of research interest on the
remote estimation problems under communication constraints
with undesirable network-induced imperfection such as quan-
tization effects [13] and multiple packet dropouts [28].

On the other hand, as pointed out in [10], the binary en-
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coding is one of the most widely employed schemes in digital
communications for the reason that the binary data is both
robust in transmission and simple for implementation. Under
the binary encoding scheme, signals shall be first encoded into
a group of binary bits and then forwarded via binary symmetric
channels (BSCs). Nonetheless, the binary bits might suffer
from random bit errors induced by the channel noises and,
therefore, some initial efforts have been devoted to the exami-
nation on the binary encoding scheme from the perspective of
information theory, see e.g. [3]. Unfortunately, when it comes
to the state estimation problems, some important yet practical
issues remain uninvestigated and need adequate attention. For
instance, it is currently unclear 1) how to design a remote
estimator that adopts encoded signals with bit errors; and 2)
how to quantify the influence from the encoding scheme on the
estimation performance. It is, therefore, the main objective of
this paper to carry out an initial study on the moving-horizon
estimation problems under binary encoding schemes.

Motivated by the above discussion, in this paper, we aim
to develop moving-horizon estimation algorithms for discrete-
time dynamic networks under binary encoding schemes. The
main contributions of this paper can be highlighted as follows.
1) The signal distortions in communication processes under the
binary encoding scheme are mathematically quantified; 2) a
novel framework for centralized/decentralized moving-horizon
estimation is established with specific efforts to compensate
the signal distortions; and 3) sufficient conditions are obtained
for the stochastically ultimate boundedness of the estimation
error.

Notations: The superscript′ stands for the transpose.
diag{A1, · · · , An} represents a block-diagonal matrix withAi

as theith diagonal block matrix.vec{x1, · · · , xn} stacks the
vectorsx1, · · · , xn into a column vector.‖ · ‖ denotes the
Euclidean norm of a vector or the spectral norm of a matrix,
and‖ · ‖min represents the smallest singular value of a matrix.

II. SYSTEM DESCRIPTION

A. Linear Dynamic networks

The interconnections in dynamic networks can be described
by a directed graph, denoted byG , (V , E , B), with the set of
nodesV ={S1,S2, · · · ,Sn}, the set of edgesE = V ×V , and
the weighted adjacency matrixB = [bij ]n×n. The elementsbij
in the weighted adjacency matrix is nonnegative and satisfy
the propertybij > 0 ⇐⇒ (Si,Sj) ∈ E , which means the
dynamics ofith node can be affected byjth node if and only if
bij > 0. We assume that the self-loop does not exist throughout
this paper, that is,bii = 0, for i = 1, 2, · · · , n. The neighbors
of ith node is denoted byNi , {j|(Si,Sj) ∈ E}.

Consider a discrete-time linear dynamic network consisting
of n linearly coupled heterogeneous nodes as follows:





xi,k+1 = Aixi,k +
∑

j∈Ni

bijΓxj,k + wi,k

yi,k = Cixi,k + vi,k, for i = 1, 2, · · · , n
(1)

wherexi,k ∈ R
nx and yi,k ∈ R

ny are the state vector and
the measurement output of nodei. wi,k ∈ W ⊂ R

nx and
vi,k ∈ V ⊂ R

ny are the system noise and the measurement
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k D�

o
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Fig. 1. The binary encoding schemes

noise of nodei. W andV are bounded polyhedral sets with
0 ∈ W and0 ∈ V , respectively. The inner coupling strength
Γ ∈ R

nx×nx is a positive definite diagonal matrix.Ai andCi

are known matrices of appropriate dimensions.

B. Binary encoding schemes

As shown in Fig. 1, the binary encoding schemes are taken
into consideration during signal transmission. In this case,
the original signals are encoded into a finite-length binary bit
string, and then transmitted to a remote estimator for further
processing via a memoryless BSC.

Suppose that the range of the scalar signalbk ∈ R at instant
k is [−~, ~], where~ ∈ R is an application dependent positive
scalar. A binary encoder is utilized to convert the signalbk
into a binary bit string of lengthL. Therefore, we have2L

points denoted byU , {τ1, τ2, · · · , τ2L}. These points are
uniformly spaced, which divide the whole range into2L − 1
segments with a uniform interval lengthδ = τi+1 − τi, for
i = 1, 2, · · · , 2L− 1. Moreover, it can be seen thatδ = 2~

2L−1 .
Firstly, a stochastic truncation function is utilized to pre-treat
the signalbk by Qk : bk → mk(bk, L) wheremk(bk, L) is the
truncated output. Whenτi ≤ bk ≤ τi+1, the outputmk(bk, L)
is generated according to the following probabilistic manner:

{
P{mk(bk, L) = τi} = 1− rk

P{mk(bk, L) = τi+1} = rk
(2)

whererk , (bk − τi)/δ and 0 ≤ rk ≤ 1. Furthermore, the
outputmk(bk, L) can be represented on a basis of binary bits:
mk(bk, L) = −~ +

∑L

i=1 hi,k2
i−1δ. Now, we have encoded

bk into the following binary bit string:

Dk , {h1,k, h2,k, · · · , hL,k}, hi,k ∈ {0, 1}.

The next step is to transmit the binary bit stringsDk by
a memoryless BSC, where every bit might flip with a small
probability (called crossover probability hereafter) because of
channel noises. Accordingly, the received bit string is defined
by

Do
k , {ho

1,k, h
o
2,k, · · · , ho

L,k}, ho
i,k ∈ {0, 1}

whereho
i,k = θi,k(1 − hi,k) + (1− θi,k)hi,k with

θi,k =

{
1, the ith bit is flipped

0, the ith bit is not flipped
(3)

Letting the crossover probability bep, we haveP
{
θi,k =

1
}
= p. For the convenience of analysis, we assume thatθi,k

are white and mutually independent in this paper. Finally, the
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received bit stringDo
k can be decoded to restore the original

signals according to the following equation:

mo
k(bk, L) = −~+

L∑

i=1

ho
i,k2

i−1δ. (4)

Owing to constrained communication bandwidth in practice,
only a finite bit budget can be utilized to encode the signal over
communication channels, which makes it necessary to pre-
treat the signals by using the truncation function. Generally
speaking, under the presented binary encoding scheme, the
transmission error stems mainly from two factors: the trunca-
tion errors and the flipped bit errors.

III. PRELIMINARY

In this section, some preliminary knowledge of the trunca-
tion function as well as the memoryless BSC is introduced.

The output can be rewritten by

mk(bk, L) = bk + qk (5)

where qk , mk(bk, L) − bk represents the truncation error.
According to (2), we know thatqk is a stochastic noise obeying
the Bernoulli distribution taking values atrkδ or (rk − 1)δ,
i.e., {

P{qk = −rkδ} = 1− rk

P{qk = (1− rk)δ} = rk
(6)

The following lemma presents some statistical properties of
the truncation error.

Lemma 1 ( [10]):The truncation errorqk is with zero mean
and bounded variance, i.e.,E{qk} = 0 andE{q2k} ≤ δ2

4 .

An important property of BSCs is presented as follows.
Lemma 2:Assume that the signalmk(bk, L) is transmitted

via a memoryless BSC with crossover probabilityp. Then, the
received signalmo

k(bk, L) is with the mean and variance given
by

E
{
mo

k(bk, L)
}
= (1− 2p)mk(bk, L)

and

Var
{
mo

k(bk, L)
}
= p(1− p)

4~2(22L − 1)

3(2L − 1)2

where the expectation is taken with respect to the random
variablesθi,k.

Proof: Taking mathematical expectation ofmo
k(bk, L)

over the random variablesθi,k, we have

E
{
mo

k(bk, L)
}
= −~+

L∑

i=1

E
{
ho
i,k

}
2i−1δ

= −~+
L∑

i=1

(
p(1− hi,k) + (1 − p)hi,k

)
2i−1δ

= mk(bk, L) + p
L∑

i=1

(
1− 2hi,k

)
2i−1δ

where the last equality follows frommk(bk, L) = −~ +∑L

i=1 hi,k2
i−1δ. In addition, we have

p

L∑

i=1

(
1− 2hi,k

)
2i−1δ = p

( L∑

i=1

2i−1δ − 2

L∑

i=1

hi,k2
i−1δ

)

= 2p
(
~−

L∑

i=1

hi,k2
i−1δ

)
= −2pmk(bk, L).

Therefore, it is straightforward to verify thatE
{
mo

k(bk, L)
}
=

(1− 2p)mk(bk, L). Moreover, the variance ofmo
k(bk, L) can

be derived as follows:

Var
{
mo

k(bk, L)
}

= E

{(
− ~+

L∑

i=1

ho
i,k2

i−1δ

)2
}

−
(
E
{
mo

k(bk, L)
})2

= E

{( L∑

i=1

(
ho
i,k − E{ho

i,k}
)
2i−1δ + E

{
mo

k(bk, L)
})2

}

−
(
E
{
mo

k(bk, L)
})2

= E

{( L∑

i=1

(
ho
i,k − E{ho

i,k}
)
2i−1δ

)2
}
.

Noting thatθi,k, for i = 1, 2, · · · , n, are mutually indepen-
dent, it can be seen thatho

i,k are also mutually independent
which, together with the fact thathi,k ∈ {0, 1}, further
indicates

E

{( L∑

i=1

(
ho
i,k − E{ho

i,k}
)
2i−1δ

)2
}

=

L∑

i=1

(
E
{
(ho

i,k)
2
}
−
(
E{ho

i,k}
)2)

22i−2δ2

= p(1− p)
4~2(22L − 1)

3(2L − 1)2
.

The proof is complete now.
Up to now, we have introduced the binary encoding scheme

and revealed its transmission properties for scalar signals. Fur-
thermore, it should be emphasized that such a scheme is also
applicable to the vector signals in a component-wise manner,
i.e., mk(bk, L) = vec{mk(b1,k, L), · · · ,mk(bn,k, L)} with
bi,k being theith entry of the vectorbk ∈ R

n. For com-
pactness, the aforementioned notations that define the scalar
signals can be extended to represent the vectors. For example,
when bk ∈ R

n, we havemk(bk, L) ∈ R
n, mo

k(bk, L) ∈ R
n

andqk ∈ R
n.

IV. CENTRALIZED MOVING-HORIZON ESTIMATION

In this section, a centralized moving-horizon estimation
approach is considered. The central unit has access to the
information of all the nodes. To be more specific, we assume
that the local measurementsyi,k are forwarded to the center
unit using the binary encoding scheme, and then the center
gives an estimate of all the plant states at each time instant.

It can be seen from Lemmas 1-2 that, compared with
the original signalsyi,k, the received onesmo

k(yi,k, L) are
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inevitably subject to certain degree of distortions. In order to
compensate the distortions, we adopt the recovered measure-
ments

ỹi,k = γ−1
k mo

k(yi,k, L)

where γk , 1 − 2p, such that the means of the recovered
signals are equal to the original ones, i.e.,E{ỹi,k} = yi,k. As a
consequence, the equivalent noise stemming from the bit error
in BSCs can be denoted bỹmi,k , ỹi,k−mk(yi,k, L). Similar
to (5), we denote the truncation errorqi,k , mk(yi,k, L)−yi,k
and then have

ỹi,k , yi,k + m̃i,k + qi,k. (7)

In what follows, we will consider the moving-horizon
estimation for linear dynamic networks with binary encoding
schemes. The fundamental methodology of moving-horizon
estimation is to solve an optimization problem over a mov-
ing but fixed-size horizon. More specifically, at each stage
k = N,N+1, · · · , our purpose is to generate an estimate of all
the target plantsxi,k−N , · · · , xi,k (i = 1, 2, · · · , n), denoted
by x̂i,k−N |k, · · · , x̂i,k|k, based on the history measurements
ỹi,k−N , · · · , ỹi,k as well as the prediction̄xi,k−N of the state
xi,k−N (i = 1, 2, · · · , n). A natural way of developing the
prediction is to make use of the dynamical equation (1) while
replacing the unknown states by the corresponding real-time
estimates, i.e.,

x̄i,k−N = Aix̂i,k−N−1|k−1 +
∑

j∈Ni

bijΓx̂j,k−N−1|k−1. (8)

To make the formulas more compact, we introduce new
notations to stack a set of vectorsυi,k (i = 1, 2, · · · , n) in
the following analysis, that is,υk , vec

{
υ1,k, υ2,k, · · · , υn,k

}

andυk
k−N , vec

{
υk−N , υk−N+1, · · · , υk

}
. Here,υ is generic

that could bex, y, ỹ, q, m̃, v, w, x̄ or x̂.
Now, we can state the centralized moving-horizon estima-

tion problem as follows.
Problem 1: At each time instantk, for given infor-

mation
(
x̄k−N , ỹkk−N

)
, derive the optimal state estimate

x̂k−N |k, · · · , x̂k|k by minimizing a least-square cost function
defined as follows:

Jk = ǫ

n∑

i=1

‖x̂i,k−N |k − x̄i,k−N‖2

+

k∑

t=k−N

n∑

i=1

‖ỹi,t − ŷi,t|k‖2 (9)

subject to the following constraints:




x̂i,t+1|k = Aix̂i,t|k +
n∑

j=1

bijΓx̂j,t|k

ŷi,t|k = Cix̂i,t|k,

(10)

for t = k −N, · · · , k, whereǫ is a positive scalar.
Remark 1:In Problem 1, the term‖x̂i,k−N |k − x̄i,k−N‖2

is the initial penalty representing our beliefs in the one-step
prediction, and the term‖ỹi,t−ŷi,t|k‖2 penalties the difference
between the estimates and the measurements. As the one-step
prediction is made on a basis of all the previous measured

data, the parameterǫ is actually utilized to weight the influence
of the most recentN step measured data and that of all the
previous ones.

Remark 2:As stated previously, the moving-horizon estima-
tion problems have been widely studied for linear discrete-time
systems. Nevertheless, we should emphasize that the classical
moving-horizon estimation strategies are no longer applicable
to the underlying system in this paper since the signals suffer
from signal truncation errors and stochastic bit errors induced
by communication processes. These errors might dramatically
degrade the estimation accuracy and, therefore, there is an
urgent need to develop a novel moving-horizon estimation
strategy for practical applications.

Before proceeding further, denotēA , A + B ⊗ Γ, A ,

diag{A1, · · · , An}, C , diag{C1, · · · , Cn} and

FN ,




C
CĀ

...
CĀN


 , HN ,




0 0 · · · 0 0
C 0 · · · 0 0
CĀ C · · · 0 0

...
... · · ·

...
...

CĀN−1 CĀN−2 · · · CĀ C



.

Utilizing these notations, we are in a position to present the
following theorem.

Theorem 1: At any time k, for given information(
x̄k−N , ỹkk−N

)
, Problem 1 has a unique optimal solution as

follows

x̂k−N |k = (ǫI + F ′
NFN )−1(ǫx̄k−N + F ′

N ỹkk−N ). (11)

Moreover, the corresponding estimation errorek−N , xk−N−
x̂k−N |k is given by

ek−N = (ǫI + F ′
NFN )−1

×
(
ǫĀek−N−1 + ǫwk−N−1 − F ′

NHNwk−1
k−N

− F ′
Nvkk−N − F ′

Nm̃k
k−N − F ′

N qkk−N

)
. (12)

Proof: The necessary condition on the minimum of the
cost function (9) is

∇x̂k−N|k
J(k) = 2ǫ(x̂k−N |k − x̄k−N )

− 2F ′
N (ỹkk−N − FN x̂k−N |k) = 0.

Moreover, it is easy to show that the Hessian matrix of the
cost function is positive definite, and hence the cost function
can be minimized by choosing the estimate as follows:

x̂k−N |k = (ǫI + F ′
NFN )−1(ǫx̄k−N + F ′

N ỹkk−N ).

Furthermore, subtracting (11) from (1) gives

ek−N =xk−N − (ǫI + F ′
NFN )−1(ǫx̄k−N + F ′

N ỹkk−N ).
(13)

Based on (7), the measurements can be rewritten as

ỹkk−N = m̃k
k−N + ykk−N + qkk−N . (14)

Substituting the one-step prediction (8) and the measure-
ments (14) into (13) yields

ek−N = (ǫI + F ′
NFN )−1
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×
(
ǫĀek−N−1 + ǫwk−N−1 + F ′

NFNxk−N

− F ′
N

(
m̃k

k−N + ykk−N + qkk−N

))
.

Noting that ykk−N = FNxk−N + HNwk−1
k−N + vkk−N , we

have the dynamics of the estimation error as follows:

ek−N = (ǫI + F ′
NFN )−1

×
(
ǫĀek−N−1 + ǫwk−N−1 − F ′

NHNwk−1
k−N

− F ′
Nvkk−N − F ′

N m̃k
k−N − F ′

Nqkk−N

)

which completes the proof.
The procedure of the proposed centralized moving-horizon

estimation is outlined in Algorithm 1.

Algorithm 1 Centralized Moving-Horizon Estimation

Input : x̄k−N , ỹkk−N . Output: x̂k−N |k
for k = N to T do

x̂k−N |k = (ǫI + F ′
NFN )−1(ǫx̄k−N + F ′

N ỹkk−N ),

x̄k−N+1 = Āx̂k−N |k.

endfor

Different from the standard moving-horizon estimation pro-
posed in [2], the stochastic behaviors of the truncation error
and the flipped bit error make the estimation error (12) a
stochastic sequence. As a result, we need to examine the
statistical properties of the error sequence{ek}. For this
purpose, the following definition is introduced.

Definition 1: The error dynamics governed by (12) is said
to be stochastically ultimately boundedif there exist scalars
0 < µ1 < 1 andµ2 > 0 such that

E
{
‖ek−N‖

}
≤ µk−N

1 E
{
‖e0‖

}
+ µ2.

Next, for the sake of clarity, we denotēa , ‖Ā‖, f̄ ,

‖FN‖,f̄min , ‖FN‖min, w̄ , maxwi,k∈W ‖wi,k‖, v̄ ,

maxvi,k∈V ‖vi,k‖, c1 = ǫā
ǫ+f̄2

min

, and ∆ ,
2~
√

p(1−p)(22L−1)√
3(1−2p)(2L−1)

.
Now, we are ready to state the following results.
Theorem 2:The dynamics of the estimation error (12) is

stochastically ultimately bounded if0 < c1 < 1. Moreover,
the upper bound of the expectation of the estimate error can
be given by

lim
k→∞

E
{
‖ek‖

}
≤ c∞

ǫ(1− ā) + f̄2
min

(15)

where c∞ = β1 + β2∆ + β3δ, β1 = ǫ
√
nw̄ +f̄ h̄w̄

√
nN +

f̄ v̄
√
n(N + 1), β2 = f̄

√
nny(N + 1), and β3 =

0.5f̄
√
nny(N + 1).

Proof: Taking norms to the both sides of the error
dynamics (12) and exploiting triangular inequalities, we have

‖ek−N‖ ≤ ‖(ǫI + F ′
NFN )−1‖

×
(
ǫ‖Āek−N−1‖+ ǫ‖wk−N−1‖+ ‖F ′

NHNwk−1
k−N‖

+ ‖F ′
Nvkk−N‖+ ‖F ′

Nm̃k
k−N‖+ ‖F ′

Nqkk−N‖
)
.

Obviously, ‖(ǫI + F ′
NFN )−1‖ = 1

ǫ+f̄2

min

. Thanks to the

fact that ‖F ′
NHNwk−1

k−N‖ ≤ f̄ h̄w̄
√
nN and ‖F ′

Nvkk−N‖ ≤
f̄ v̄
√
n(N + 1), the following result can be derived:

E
{
‖ek−N‖

}
≤ 1

ǫ+ f̄2
min

(
ǫāE

{
‖ek−N−1‖

}

+ ǫ
√
nw̄ + f̄ h̄w̄

√
nN + f̄ v̄

√
n(N + 1)

+ f̄E
{
‖m̃k

k−N‖
}
+ f̄E

{
‖qkk−N‖

})
. (16)

In the light of Lemmas 1-2, we can obtain that
E
{
‖m̃i,k‖2

}
≤ ny∆

2 and E
{
‖qi,k‖2

}
≤ 0.25nyδ

2. More-
over, as the square root function is concave, one has from the
Jensen’s inequality that

E
{
‖m̃k

k−N‖
}
≤
√
E
{
‖m̃k

k−N‖2
}
≤ ∆

√
nny(N + 1). (17)

Similarly, the following inequality

E
{
‖qkk−N‖

}
≤ 0.5 δ

√
nny(N + 1). (18)

holds. Substituting (17) and (18) in (16) results in
E
{
‖ek−N‖

}
≤ c1E

{
‖ek−N−1‖

}
+ c2, wherec2 = c∞/(ǫ +

f̄2
min). It is not difficult to prove thatE

{
‖ek−N‖

}
is bounded

above byξk−N , which is the solution to the following dynam-
ical equationξk−N = c1ξk−N−1+c2 with the initial condition
ξ0 = E

{
‖e0‖

}
. By noting thatξk = ck1ξ0 +

∑k

t=1 c
t−1
1 c2, we

can derive the following inequality

E
{
‖ek−N‖

}
≤ ck−N

1 E
{
‖e0‖

}
+

c2
1− c1

(
1− ck−N

1

)
(19)

Moreover, since0 < c1 < 1, one has c2
1−c1

(
1 − ck−N

1

)
≤

c2
1−c1

. Therefore, it can be seen that the error dynamics (12) is
stochastically uniformly bounded. Moreover, the bound (15)
can be easily obtained by taking the limit of (19). The proof
is complete now.

Furthermore, we have the following corollary.
Corollary 1: Suppose that the system and measurement

noises are zero-mean random variables. If0 < c1 < 1, then
the dynamics of the estimation error (12) is asymptotically
stable in the mean sense, i.e.,

lim
k→∞

‖E{ek}‖ = 0. (20)

Proof: The proof follows directly from the fact that
E{wi,k} = 0 andE{vi,k} = 0.

Remark 3:The above corollary reveals that, for the case
where the system and measurement noises are zero-mean,
the moving-horizon estimate will be asymptotically unbiased,
thanks to the use of stochastic truncation and our dedicated
efforts to compensate the signal distortions.

The proposed centralized moving-horizon estimation prob-
lem explicitly assumes that the measurements of nodes in the
network should be available in the central unit for solving
the optimization problem. Unfortunately, since it requires huge
communication and computational capabilities, the centralized
estimation is in general not practical, especially for a large-
scale dynamics network with lots of nodes. To handle such
an issue, we will consider the decentralized moving-horizon
estimation problem in the next section.
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V. DECENTRALIZED MOVING-HORIZON ESTIMATION

In this section, we will formulate decentralized moving-
horizon estimation problems. Different from the problem setup
in the previous section, there does not exist a central unit in the
network. The information exchange is only permitted within
the neighborhood associated with the topology of the network.

The objective of decentralized moving-horizon estimation
problems is to estimate the local plant statesxi,k−N , · · · , xi,k,
denoted byx̂i,k−N |k, · · · , x̂i,k|k, at each stagek = N,N +
1, · · · , in a distributed manner based on the neighboring
estimatesx̂j,k−N |k−1, · · · , x̂j,k−1|k−1 (j ∈ Ni), the local
history measurementsyi,k−N , · · · , yi,k, and a prior prediction
x̄i,k−N |k−1 of the statexi,k−N . In this paper, the neighboring
estimates are transmitted under binary encoding schemes.
Consequently, the available information ofith node over a
finite horizon[ k −N, k ] is given by

Iki,k−N ,

(
yi,k−N , · · · , yi,k,mo

k(x̂j,t−N |k−1, L),

· · · ,mo
k(x̂j,k−1|k−1, L), j ∈ Ni

)
.

The local predictions̄xi,t|k−1 can be determined according
to the dynamical equation (1) as follows:

x̄i,t|k−1 = Aix̂i,t−1|k−1 +
∑

j∈Ni

bijΓx̃j,t−1|k−1 (21)

for t = k−N, · · · , k−1 andi = 1, 2, · · · , n, wherex̃i,t−1|k−1

= γ−1
k mo

k(x̂i,t−1|k−1, L) is utilized to restorex̂j,t−1|k−1.
Accordingly, we can define the equivalent noisesm̃i,t−1|k−1 ,

x̃i,t−1|k−1 − mk(x̂i,t−1|k−1, L). By denoting the truncation
error qi,t−1|k−1 , −x̂i,t−1|k−1 +mk(x̂i,t−1|k−1, L), we have

x̃i,t−1|k−1 , x̂i,t−1|k−1 + m̃i,t−1|k−1 + qi,t−1|k−1. (22)

To this end, the decentralized moving-horizon estimation
problem can be presented as follows.

Problem 2: At each instant k, for given informa-
tion

(
x̄i,k−N |k−1, I

k
i,k−N

)
, derive the optimal state estimate

x̂i,k−N |k, · · · , x̂i,k|k by minimizing a local least-square cost
function defined as follows:

Ji(k) = ǫ‖x̂i,k−N |k − x̄i,k−N |k−1‖2

+
k∑

t=k−N

‖yi,t − ŷi,t|k‖2 (23)

subject to the following constraints




x̂i,t+1|k = Aix̂i,t|k +
∑

j∈Ni

bijΓx̃j,t|k−1

ŷi,t|k = Cix̂i,t|k

(24)

for t = k −N, · · · , k, whereǫ is a positive scalar.
Remark 4:It should be stressed that the main difference

between Problems 1 and 2 lies in that the individual nodes in
Problem 2 own computational capabilities, and hence are able
to generate local estimates of the target plant by minimizing a
local least-square cost function (23). In addition, according to
the dynamical equation (1), we can see that there are compli-
cated couplings between neighboring nodes. Consequently, to
calculatex̂i,k−N |k, we require the exchange of the information

x̂j,k−N |k−1, · · · , x̂j,k−1|k−1 within the neighborhood, which
shall be transmitted through BSCs.

For a generic vectorυ, let υk
i,k−N , vec{υi,k−N , · · · ,

υi,k}. Denote w̄k−1
k−N , vec{wk−1

1,k−N , · · · , wk−1
n,k−N} and

v̄k−1
k−N , vec{vk−1

1,k−N , · · · , vk−1
n,k−N}. Let Bi represent theith

row of the matrixB. The rest of the notations are defined as
follows

H̄N ,




I 0 · · · 0 0 0
Ā I · · · 0 0 0
...

...
. . .

...
... 0

ĀN−1 ĀN−2 · · · Ā I 0


 , F̄N ,




Ā
Ā2

...
ĀN


 ,

Fi,N ,




Ci

CiAi

...
CiA

N
i


 , Hi,N ,




0 0 · · · 0
Ci 0 · · · 0

CiAi Ci

. . . 0
...

...
. . .

...
CiA

N−1
i CiA

N−2
i · · · Ci



,

M̃k−1
i,k−N ,

∑

j∈Ni

bij vec{Γx̃j,k−N |k−1, · · · ,Γx̃j,k−1|k−1},

Gi , IN ⊗ (Bi ⊗ Γ), G , vec{G1, G2, · · · , Gn},
SN , H̄N (IN ⊗ (B ⊗ Γ)), AN , ǫĀ−F ′

NHNGF̄N ,

HN , diag{H1,N , H2,N , · · · , Hn,N}, I1 , [ 0 IN ⊗ Inx
],

FN , diag{F1,N , F2,N , · · · , Fn,N}, I2 , [ Inx
0 ],

WN , F ′
NHNG(SN + I1)− ǫ(B ⊗ Γ)I2.

The solution to Problem 2 is presented in the following
theorem.

Theorem 3:For given information
(
x̄i,k−N |k−1, I

k
i,k−N

)
,

Problem 2 has a unique solution given by

x̂i,k−N |k =
(
ǫI + F ′

i,NFi,N

)−1

×
(
ǫx̄i,k−N |k−1 + F ′

i,N (yki,k−N −Hi,NM̃k
i,k−N )

)
. (25)

Moreover, denote the estimation error ofith node byei,k−N ,

xi,k−N − x̂i,k−N |k, then the augmented error vectorek−N

satisfies the following dynamical equation

ek−N =
(
ǫI + F ′

NFN

)−1(
ANek−N−1 + ǫwk−N−1

−F ′
N

(
HN w̄k−1

k−N + v̄kk−N

)
−F ′

NHNGH̄Nwk−1
k−N−1

+WN

(
m̃k−1

k−N−1|k−1 + qk−1
k−N−1|k−1

))
. (26)

The procedure of the proposed decentralized moving-
horizon estimation is outlined in Algorithm 2.

Remark 5:Theorem 3 gives a local optimal estimate since
every node has a locally known and different cost function
(23). Moreover, from the results given in (25), we can see
that all the exploited information, such as the local measure-
mentsyi,k, neighboring estimates̃xi,t|k−1, and the prediction
x̄i,k−N |k−1, are available inith node, and hence the proposed
distributed moving-horizon estimator is indeed applicable.

In the sequel, we will investigate the stochastically ultimate
boundedness of the estimation error. First, we denote

f , ‖FN‖, fmin , ‖FN‖min, h , ‖HN‖, h̄ , ‖H̄N‖
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Algorithm 2 Decentralized Moving-Horizon Estimation

Input : x̄i,k−N |k−1, Iki,k−N . Output : x̂i,k−N |k
for k = N to T do

x̂i,k−N |k =
(
ǫI + F ′

i,NFi,N

)−1

×
(
ǫx̄i,k−N |k−1 + F ′

i,N (yki,k−N −Hi,NM̃k
i,k−N )

)
.

x̄i,k−N+1|k = Aix̂i,k−N |k +
∑

j∈Ni

bijΓx̃j,k−N |k

endfor

g , ‖G‖, o , ‖AN‖, ω , ‖WN‖, c1 =
o

ǫ+ f2
min

.

Theorem 4:The dynamics of the estimation error is stochas-
tically ultimately bounded if0 < c1 < 1. Moreover, the upper
bound of the expectation of the estimation error can be given
by

lim
k→∞

E
{
‖ek‖

}
≤ c∞

ǫ+ f2
min − o

. (27)

wherec∞ = β1 + β2∆ + β3δ, β1 = ǫw̄
√
n + hw̄f

√
nN +

(v̄ + hgh̄w̄)f
√
n(N + 1), β2 = ω

√
nnx(N + 1) and β3 =

0.5ω
√
nny(N + 1).

Furthermore, we have the following corollary.
Corollary 2: Suppose that the system and measurement

noises are zero-mean random variables. If0 < c1 < 1, then
the dynamics of the estimation error (26) is asymptotically
stable in the mean sense, i.e.,limk→∞ ‖E{ek}‖ = 0.

Remark 6:Theorems 2-4 establish the sufficient conditions
for the stochastically ultimate boundedness of the estimation
error for both the centralized and the decentralized moving-
horizon estimation strategies. In view of (15) and (27), we can
recognize that the value of such a bound depends explicitly on
the length of the bit string as well as the crossover probability.

VI. A N ILLUSTRATIVE EXAMPLE

In this section, a numerical example is presented to verify
the effectiveness of the proposed centralized/decentralized
moving-horizon estimation with binary encoding schemes.

The discrete-time dynamical network (1) under considera-
tion consists ofn (n = 100) linearly coupled nodes, which
are distributed in a square region of1× 1 unit. Each node is
a second-order linear system with parameters given by

Ai =

[
0.45 0.1
0.1 0.3

]
, Ci =

{ [
1 0

]
, for 1 ≤ i ≤ 10[

0 0
]
, for 11 ≤ i ≤ n

The topology that describes the interconnections of the
coupled nodes is shown in Fig. 2. The elements of weighted
adjacency matrixB is set as

bij =

{
0.51 exp(−α(i, j)) if α(i, j) < 1/6

0 otherwise

whereα(i, j) =
√
(xi,0 − xj,0)′(xi,0 − xj,0). Each compo-

nent of noiseswk andvi,k is randomly and uniformly distribut-
ed in the respective regions[−0.04, 0.04] and[−0.1, 0.1], and

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. The topology of the coupled network.

therefore their Euclidean norms arēw = 0.04 and v̄ = 0.1.
The coupling strength is chosen to beΓ = 0.1I2. Choose
the size of the windowN = 5, the rangeW = 1.27,
the lengthL = 8, the scaling weightǫ = 0.4 and the
interval δ = 0.01. The flipping probabilityp can be identified
by statistical experiments in practical applications, which is
assumed to be0.01 here. The initial estimates of the plants
are given byx̂i,0 = 0, for i = 1, · · · , n. Our objective is to
derive the optimal estimate for centralized and decentralized
moving-horizon estimation, respectively.

The hardware test-bed consists of a 2.10 GHz Intel Core
i7 processor with 8GB RAM running MATLABr 2016B.
We carry out NMC = 100 repeated simulations of the
optimal centralized moving-horizon estimation (CMHE) based
on Algorithm 1. An average estimation error is adopted to
evaluated the performance of the CMHE as

ECHME(k) =
1

NMC

NMC∑

r=1

(
1

n

n∑

i=1

‖x(r)
i,k−N − x̂

(r)
i,k−N |k‖

)
.

The superscript “(r)” implies that the value is obtained in the
rth run. The simulation results are depicted in Fig. 3. More-
over, we compared the proposed algorithm with the centralized
Kalman filter (CKF) [8], whose initial error covariance is set to
be P0 = 1

12I200. The corresponding average estimation error
ECKF (k) is plotted in Fig. 3, from which it can been seen that
under the BSCs the proposed CMHE has a better performance.
As for the decentralized moving-horizon estimation (DMHE)
problem, according to Algorithm 2, the optimal estimates can
be derived and the corresponding average estimation error is
shown in Fig. 3.

VII. C ONCLUSION

In this paper, the moving-horizon state estimation problems
have been investigated for linear dynamic networks subject to
binary encoding schemes. A novel model has been introduced
to quantify the signal errors stemming from the communica-
tion processes, and it has been shown that the signal errors can
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Fig. 3. The average estimation error of CMHE, CKF and DMHE.

be characterized by a cascade of a multiplicative and an addi-
tive white noise associated with the original signal. By solving
two specified least-square optimization problems, we have re-
spectively designed the centralized and decentralized moving-
horizon estimators. Furthermore, sufficient criteria have been
established to ensure stochastically ultimate boundedness of
the proposed estimators with the binary encoding scheme. The
feasibility and effectiveness of the proposed approaches have
been verified via a numerical example.
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