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Moving Horizon Estimation of Networked

Nonlinear Systems with Random Access Protocol
Lei Zou, Zidong Wang, Qing-Long Han and Donghua Zhou

Abstract—This work is concerned with the moving horizon
(MH) estimation issue for a type of networked nonlinear sys-
tems (NNSs) with the so-called random access (RA) protocol
scheduling effects. To handle the signal transmissions between
sensor nodes and the MH estimator, a constrained communication
channel is employed whose channel constraints implies that, at
each time instant, only one sensor node is permitted to access
the communication channel and then send its measurement data.
The RA protocol, whose scheduling behavior is characterized by
a discrete-time Markov chain (DTMC), is utilized to orchestrate
the access sequence of sensor nodes. By extending the robust
MH estimation method, a novel nonlinear MH estimation scheme
and the corresponding approximate MH estimation scheme are
developed to cope with the state estimation task. Subsequently,
some sufficient conditions are established to guarantee that the
estimation error is exponentially ultimately bounded in mean
square. Based on that, the main results are further specialized
to linear systems with the RA protocol scheduling. Finally, two
numerical examples and the corresponding figures are provided
to verify the effectiveness/correctness of the developed MH
estimation scheme and approximate MH estimation scheme.

Index Terms—Moving horizon estimation, Random access
protocol, Networked systems, Nonlinear systems, Recursive es-
timator.

I. INTRODUCTION

As a hot yet important topic in signal processing and control

communities, the state estimation (SE) problem has attracted

considerable research interest in the past several decades. The

main idea of SE is to generate satisfactory state estimates

of a given system via the available measured outputs which

are probably corrupted by noises. By now, a rich body of

SE strategies have appeared in the literature (e.g. H∞ SE
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[16], [26], [28], [33], Kalman filtering [11], [23] and moving

horizon (MH) estimation [10], [30]). The primary idea of the

MH estimation is to compute the “best” state estimates by

solving a given least squares problem (LSP), which is defined

on a sliding window with fixed length (i.e. the horizon length).

Since the pioneering works presented in [18], the MH estima-

tion problems have gained a persistent research interest for

various systems. Some representative results are discussed as

follows. In [20], the MH estimation issue has been considered

for constrained linear systems and sufficient conditions have

been achieved to ensure the stability of the estimation error

(EE). A robust MH estimator has been developed in [1] to cope

with the SE issue for a type of uncertain discrete-time (DT)

linear systems, where the state estimates have been derived

through solving the minimization problem (MP) of a quadratic

cost function (QCF) in worst-case scenario. In [8], several

partition-based MH (PBMH) estimation algorithms have been

presented for DT partitioned large-scale systems. The stability

properties of MH estimation have been studied in [20], [21],

[24] for linear and nonlinear systems.

On another research hotspot, in response to the prompt

development of network communication technique, network-

based signal transmission scheme becomes a mainstream

communication method for numerous industrial applications.

Compared with the conventional point-to-point (PtP) commu-

nication technology, network-based communication has supe-

riorities in the cost, installation, maintenance and reliability.

Networked systems (NSs) are dynamical systems where the

signal transmission among system components (e.g. sensors,

estimator) is implemented over the shared communication

networks. So far, NSs have been successfully applied in the

numerous fields including unmanned vehicles, industrial au-

tomation, advanced aircraft, smart grids and distributed/mobile

communications [4], [19], [29]. Accordingly, significant re-

search efforts has been directed toward the SE problems for

NSs subject to various networked-induced constraints, see [3],

[6], [14], [15], [17], [27], [32] and the references therein.

In the context of the MH estimation problem for NSs

subject to networked-induced constraints, some recent typical

research results are discussed as follows. In [13], by extending

the aforementioned robust MH estimation approach, the MH

estimation issue has been investigated for NSs with quantized

measurements and packet dropouts. The MH estimation issue

has been investigated for NSs in [30] with multiple packet

dropouts. In [9], a decentralized MH estimator has been

designed for navigation-oriented NSs with communication link

failures and random parametric uncertainties. The distributed

MH estimation issue has been handled in [31] subject to data
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losses and transmission delays.

Among most of the existing results of the SE problems

for NSs, an underlying assumption is that all the networked

nodes are capable of simultaneously accessing the commu-

nication channel and transmitting signals. Unfortunately, in

numerous practical NSs, it is almost impossible to implement

such a communication scheme since simultaneous multiple

accessing the communication network would inevitably result

in data collisions. An effective method of “protecting” signal

transmissions from data collisions is to orchestrate the data

transmissions subject to some predefined “agreements”, based

on which the network access opportunity would be assigned

to one node at each transmission instant. These agreements

are known as communication protocols (CPs). There are three

widely adopted protocols in NSs, namely the random access

(RA) protocol (or stochastic CP) [25], [34]–[36], the Try-

Once-Discard (TOD) protocol [37] and the Round-Robin (RR)

protocol [38].

Among the aforementioned CPs, the RA protocol is a

preferred one in practical engineering. One of the repre-

sentative RA protocol is the carrier-sense multiple access

(CSMA) protocols [25]. Generally speaking, the scheduling

behaviors of RA protocol could be described by two kinds

of stochastic models, namely the discrete-time Markov chain

(DTMC) [7] and the sequence of independent and identically

distributed (i.i.d) variables [25]. For the control and filtering

problems of NSs, the employment of the RA protocol would

generate certain specific protocol-induced effects, which, in

turn, complicate the analysis and synthesis issues of the NSs.

To this end, a seemingly valuable and interesting research

topic is to consider the MH estimation problem for NNSs with

certain CP. However, as far as the authors’ knowledge goes,

such a problem has not received adequate research attention

yet and this leads to the primary motivation of our study.

In response to the above discussion, this work is concerned

with the MH estimation issue for NNSs with the RA protocol

scheduling effects, which is non-trivial due to the following

three technical challenges: 1) how to generate the estimates

of states based on the MH estimation strategy for NNSs with

certain CP scheduling effects? 2) how to handle the bounded-

ness analysis (BA) problem of the EE for NNSs? 3) how to

understand the effects of the RA protocol scheduling on the

estimation performance? It is, therefore, the primary objective

of our study to provide satisfactory answers to the above three

questions. The essential contributions of our work are listed

as follows. 1) The MH estimation problem is, for the first

time, considered for NNSs with the RA protocol scheduling.

2) A novel robust MH estimation strategy is employed to

deal with the nonlinearity of the NSs and the RA protocol

scheduling behaviors. 3) Sufficient conditions are obtained for

approximate MH estimation to ensure the exponential ultimate

boundedness of the EE in mean square.

The remainder of our work is organized as follows. In

Section II, the NNS with the RA protocol scheduling is

introduced and the corresponding MH estimation problem

is formulated. In Section III, a novel robust MH estimation

approach and an approximate MH estimation scheme are

proposed to solve the aforementioned MH estimation problem.

Then, the BA issue of the EE is studied for the approximate

MH estimation scheme. Furthermore, two numerical examples

are provided in Section IV to examine the effective of the

main results. Finally, the conclusion of this work is presented

in Section V.

Notations: The notations utilized in this work are given as

follows, which are standard except where otherwise stated.

Rm×n and Rn stand for, respectively, the set of all m×n real

matrices and n dimensional Euclidean space. R+ represents

the set of positive real scalars. The sets of nonnegative integers,

negative integers and integers are represented by N+, N− and

N, respectively. Letting ΦA and ΦB be two real symmetric

matrices, the notation ΦA < ΦB (ΦA ≤ ΦB) denote that the

matrix ΦA − ΦB is negative definite (negative semi-definite).

For any real matrix M , the transpose of M is represented by

MT and the Moore-Penrose pseudo inverse of M is denoted

by M †. For any matrix P ∈ Rn×n, σ̄{P} (σ{P}) is the largest

(smallest) eigenvalue of P , and tr{P} means the trace of P .

Furthermore, ‖P‖ =
√

σ̄(PTP ) is the spectral norm of P .

The zero matrix with compatible dimensions is represented by

0. 1N stands for an N dimensional row vector with all ones. I
is the identity matrix with compatible dimensions. E{u|v} and

E{u} denote, respectively, the expectation of u conditional on

v and the expectation of u. The shorthand diag{· · · } denotes a

block-diagonal matrix. For any vector u ∈ Rn, ‖u‖ means the

Euclidean norm of u. Furthermore, for any matrix P satisfying

P ∈ Rn×n and P > 0, ‖u‖P stands for the weighted norm

of the vector u (i.e. ‖u‖P ,
√
uTPu). δ(s) denotes the

Kronecker delta function (i.e. δ(s) =

{

1, if s = 1
0, otherwise

).

It is assumed that matrices have compatible dimensions if they

are not explicitly specified.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. The system model

The SE problem considered in this work is shown in Fig. 1,

in which the communication between the state estimator and

sensors is executed via a communication network with certain

CP.

Fig. 1: State estimation issue for a networked system

Next, we shall consider the plant, communication network

and the state estimator in a mathematical way. The underlying

plant is a DT nonlinear system of the following form:
{

x(k + 1) = f(k, x(k)) + ω(k)

y(k) = Cx(k) + ν(k)
(1)

in which x(k) ∈ Rnx denotes the state vector; y(k) ∈ Rny

represents the measurement output before transmitted; ω(k) ∈
X , {ℓ|ℓT ℓ ≤ √

ωmax; ℓ ∈ Rnx} and ν(k) ∈ Y , {ℓ|ℓT ℓ ≤√
νmax; ℓ ∈ Rny} denote the system noise and the measure-

ment noise, respectively. ωmax and νmax are known positive

constants. C is constant matrix of proper dimension. f(·, ·) is

the vector-valued time-varying (TV) nonlinear function.
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Assumption 1: f(·, ·) is a sector-bounded nonlinearity sat-

isfying the following condition:

(

f(k, ϑ1)− f(k, ϑ2)− F1(ϑ1 − ϑ2)
)T (

f(k, ϑ1)− f(k, ϑ2)

− F2(ϑ1 − ϑ2)
)

≤ 0, f(k, 0) = 0, ∀ϑ1, ϑ2 ∈ Rnx , ∀k ∈ N+

(2)

in which F1, F2 are real constant matrices satisfying F1 > F2.

B. Description of the communication protocol

Let us now discuss the effects of the protocol scheduling.

In the underlying NS, the measurement data is transmitted

through a shared and constrained communication network sub-

ject to the so-called random access (RA) protocol scheduling.

Without loss of generality, it is assumed that the sensors of the

plant are grouped into M (M > 1) sensor nodes according

to their spatial distribution. For technical analysis, we rewrite

the output vector y(k) as follows:

y(k) =
[

yT1 (k) yT2 (k) · · · yTM (k)
]T

(3)

where yi(k) (i ∈ {1, 2, · · · ,M}) represents the measurement

output before transmitted of the i-th sensor node.

In network-based communication schemes, the CPs are

developed to assign the network access opportunity for sen-

sor nodes. In the underlying NNS, we suppose that only 1
sensor node is physically selected to access the channel per

transmission for the sake of avoiding data collisions. Let the

integer variable 1 ≤ ̺(k) ≤ M denote the chosen sensor

node assigned with the opportunity accessing the channel at

transmission instant k. As described in [7], under the effects

of the RA protocol scheduling, ̺(k) can be characterized by

a DTMC, whose occurrence probability of ̺(k + 1) = j
(M ≥ j ≥ 1) conditioned on ̺(k) = i (∀i ∈ {1, 2, · · · ,M})

is

Prob{̺(k + 1) = j|̺(k) = i} = pij (4)

where pij ≥ 0 represents the transition probability (TP) from

node i to node j at transmission instant k and
∑M

i=j pij = 1
(i ∈ {1, 2, · · · ,M}).

Remark 1: It is worth noting that, in this work, the plant

(1) and the scheduling effects (4) share the same time scale

(i.e. the k-th scheduling behavior is triggered at the k-th

time instant of the plant for any k ∈ N+). In fact, the

nonlinear system (1) could be regarded as the discretization

of a continuous-time nonlinear plant subject to the operation

period (or sampling period) of the network. In other words, the

plant and communication channel share the same the sampling

period in this paper. The results of this paper could be easily

extended to the case that the operation of the communication

network is faster than the sampling of the plant by applying

the method in our previous work [35].

In what follows, we are going to consider the signal

received by the state estimator. Let the measurement signal

after transmitted over the communication network be ȳ(k) ,
[

ȳT1 (k) ȳT2 (k) · · · ȳTM (k)
]T ∈ Rny where ȳi(k) ∈ Rni

y

with
∑M

i=1 n
i
y = ny . The updating rule of ȳi(k) (k ∈ N+,

i ∈ {1, 2, · · · ,M}) with the RA protocol scheduling effects

is characterized by

ȳi(k) =

{

yi(k), i = ̺(k)
0, otherwise.

(5)

According to (5), we have

ȳ(k) = ̥(̺(k))y(k) (6)

in which

̥(̺(k)) = diag
{

δ̄1,̺(k)In1
y
, δ̄2,̺(k)In2

y
, · · · , δ̄M,̺(k)InM

y

}

and δ̄i,̺(k) , δ(̺(k) − i) ∈ {0, 1} (i = 1, 2, · · · ,M ) is the

Kronecker delta function.

C. Moving horizon state estimator

In this work, we shall employ the ME estimation strategy

to design an estimator for the NNS (1) with the RA protocol

scheduling effects described by (6). Specifically, for each time

instant k ≥ N (N ≥ 0), we aim to find the estimates

for system states x(k − i) (N ≥ i ≥ 0) according to the

past measurement data {ȳ(i)}k−N≤i≤k and a prior prediction

x̄(k−N) of the state vector x(k−N), where N+1 represents

the window length or horizon. Let x̂(i|k) (k ≥ i ≥ k−N ) be

the state estimates of x(i) (k ≥ i ≥ k −N ) at time instant k,

respectively.

The MH estimation problem considered in this work is

presented as follows.

Problem 1: For the received measurement output data

{ȳ(i)}k≥i≥k−N , the estimates x̂∗(k − N |k) is derived by

suppressing the following QCF at each time instant k:

Ik(x̂(k −N |k)) = ‖x̂(k −N |k)− x̄(k −N)‖2Q

+

N
∑

i=0

‖ŷ(k − i|k)− ȳ(k − i)‖2 (7)

subject to










x̄(k −N) = f(k − 1−N, x̂∗(k − 1−N |k − 1))

x̂(i|k) = f(i, x̂(i − 1|k)), k ≥ i ≥ 1 + k −N

ŷ(i|k) = ̥(̺(i))Cx̂(i|k), k ≥ i ≥ k −N

(8)

where the weight matrix Q > 0 is the estimator parameter.

Roughly speaking, it is quite difficult to minimize the QCF

Ik(x̂(k − N |k)) subject to a nonlinearity. The solution of

such a MP is always achieved by solving certain nonlinear

programming problem on-line and such a task will result in

heavy calculations. Next, let us introduce an alternative MH

estimation problem by extending the “robust MH estimation”

approach studied in [1]. Firstly, let ~fk = f(k, x̂(k)) −
f(k, x(k)) − F̄ (x̂(k) − x(k)) where F̄ = F1+F2

2 . Then, it

follows from Assumption 1 that

(

~fk − F̂ (x̂(k)− x(k))
)T (~fk + F̂ (x̂(k)− x(k))

)

≤ 0

where F̂ = F1−F2

2 , which implies that ‖~fk‖2 ≤ ‖F̂ (x̂(k) −
x(k))‖2. Similar to [5], it can be concluded that there exists

at least a function Θk satisfying ~fk = Θk(x̂(k) − x(k))
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and ΘT
kΘk ≤ F̂T F̂ . Letting ∆F (k) = ΘkF̂

−1, we have

∆FT (k)∆F (k) ≤ I . Then, it can be derived that

f(k, x̂(k)) =
(

∆F (k)F̂ + F̄
)

(x̂(k)− x(k)) + f(k, x(k)),

∀x(k), x̂(k) ∈ Rnx , ∀k ∈ N+ (9)

with the uncertainty ∆F (k) satisfying the constrain-

t ‖∆F (k)‖ ≤ 1. Therefore, by denoting z(k − N |k) =
x̄(k −N)− x̂(k −N |k), for all k ≥ i ≥ k −N , we have

ȳ(i)− ŷ(i|k)

= s(i) +̥(̺(i))C

N
∏

j=k−i+1

(

∆F (k − j)F̂ + F̄
)

z(k −N |k),

where

s(i) = ȳ(i)−̥(̺(i))Cf (i−k+N)(x̄(k −N))

with f (j)(x̄(k−N)) = f(j − 1+ k−N, f (j−1)(x̄(k−N))),
f (0)(x̄(k−N)) = x̄(k−N) and

∏N
j=N+1(·) = 1. Therefore,

the QCF Ik(x̂(k −N |k)) can be reformulated as follows:

Ik(x̂(k −N |k))

=
∥

∥z(k −N |k)
∥

∥

2

Q
+

k
∑

i=k−N

∥

∥

∥

∥

s(i) +̥(̺(i))C

×
N
∏

j=k−i+1

(

F̄ +∆F (k − j)F̂
)

z(k −N |k)
∥

∥

∥

∥

2

=
∥

∥

∥

¯̥ k
k−N (¯̺k)

(

∆F(k) + Fk
k−N

)

z(k −N |k)

+ s̄kk−N

∥

∥

∥

2

+
∥

∥z(k −N |k)
∥

∥

2

Q
(10)

where

s̄kk−N =
[

sT (k −N) sT (k −N + 1) · · · sT (k)
]T

,

F
k
k−N =

[

CT (CF̃k−N )T · · ·
(

C
∏N

j=1 F̃k−j

)T
]T

¯̥ k
k−N (¯̺k) =







̥(̺(k−N)) 0 ··· 0
0 ̥(̺(k−N+1)) ··· 0

...
...

. . .
...

0 0 ··· ̥(̺(k))






,

F̃i = ∆F (i)F̂ + F̄ ,

Fk
k−N =

[

CT (CF̄ )T · · · (CF̄N )T
]T

,

¯̺k =
[

̺T (k −N) ̺T (k −N + 1) · · · ̺T (k)
]T

,

and ∆F(k) = F k
k−N −Fk

k−N . For the sake of briefness, we

shall write ¯̥ k
k−N instead of ¯̥ k

k−N (¯̺k). Then, as shown in

[1], there exist a matrix Γ > 0 such that
∥

∥∆F̄(k)
∥

∥ ≤ 1. (11)

where ∆F(k) , ∆F̄(k)Γ
1

2 . A typical choice is to define the

matrix Γ as Γ , γ2I with γ = max∆F (k) ‖∆F(k)‖. Then,

we can conclude from (10) and (11) that

Ik(x̂(k −N |k)) = Īk(x̂(k −N |k),∆F̄(k))

,
∥

∥z(k −N |k)
∥

∥

2

Q
+
∥

∥

∥
s̄kk−N +

(

¯̥ k
k−NFk

k−N

+ ¯̥ k
k−N∆F̄(k)Γ

1

2

)

z(k −N |k)
∥

∥

∥

2

. (12)

Based on the above analysis and manipulations, the follow-

ing alternative robust MH estimation problem is employed in

this work:

Problem 2: Based on the received measurement output data

{ȳ(i)}k≥i≥k−N , the estimates x̂(k − N |k) is acquired by

solving the following optimization problem (OP):

x̂∗(k −N |k) = arg min
x̂k−N

max
‖∆F̄(k)‖≤1

Īk(x̂k−N ,∆F̄(k))

(13)

subject to the constraint (8).

This paper aims to develop a MH estimator by solving

Problem 2 at each time step. Moreover, we shall handle the

BA issue on the EE.

III. MAIN RESULTS

A. Moving-horizon estimator

To state the following results, we shall introduce the fol-

lowing lemma.

Lemma 1: [22] Consider the following robust OP:

min
z

max
‖S‖≤1

{

‖z‖2Q +
∥

∥(B +∆B)z − (D +∆D)
∥

∥

2

R

}

(14)

where ∆B = HSEb, ∆D = HSEd. H , Eb and Ed are

known matrices, S is an arbitrary contraction. As such, the

unique global minimum z∗ of the OP (14) is described by

z∗ = (Q̂+BT R̂B)−1
(

BT R̂D + λ∗ET
b Ed

)

(15)

where Q̂ = Q+λ∗ET
b Eb, R̂ = R+RH(λ∗I−HTRH)†HTR.

The value of λ∗ is calculated by

λ∗ = arg min
λ≥‖HT RH‖

{

λ
∥

∥Ebz(λ)− Ed

∥

∥

2
+
∥

∥z(λ)
∥

∥

2

Q

+
∥

∥Bz(λ)−D
∥

∥

2

R̂(λ)

}

(16)

where

z(λ) =
(

Q̂(λ) +BT R̂(λ)B
)−1(

BT R̂(λ)D + λET
b Ed

)

,

Q̂(λ) = Q+ λET
b Eb,

R̂(λ) = R+RH(λI −HTRH)†HTR.

By virtue of Lemma 1, the following theorem is derived.

Theorem 1: Consider the received measurement output data

{ȳ(i)}k≥i≥k−N and the MH estimation constraint (8). The

solution to Problem 2 is given by

x̂(k −N |k) = x̄(k −N) +
(

Q(λ∗) +
(

¯̥ k
k−NFk

k−N

)T

×R(λ∗) ¯̥ k
k−NFk

k−N

)−1
(

¯̥ k
k−NFk

k−N

)TR(λ∗)s̄kk−N (17)

where R(λ∗) = I + ¯̥ k
k−N

(

λ∗I − ¯̥ k
k−N

)† ¯̥ k
k−N , Q(λ∗) =

Q+ λ∗Γ, and the value of λ∗ is derived as follows:

λ∗ = argmin
λ≥1

{

∥

∥zk−N (λ)
∥

∥

2

Q
+ λ

∥

∥Γ
1

2 zk−N (λ)
∥

∥

2

+
∥

∥ ¯̥ k
k−NFk

k−Nzk−N (λ) + s̄kk−N

∥

∥

2

R(λ)

}

(18)

with

zk−N (λ) = −
(

(

¯̥ k
k−NFk

k−N

)TR(λ) ¯̥ k
k−NFk

k−N
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+Q(λ)
)−1

(

¯̥ k
k−NFk

k−N

)TR(λ)s̄kk−N .

Proof: The proof of Theorem 1 can be directly obtained

from Lemma 1, which is omitted here for conciseness.

Remark 2: The moving-horizon estimator proposed in The-

orem 1 could be regarded as an extension of the robust MH

estimation approach developed in [1]. It can be seen from

the estimator (17) that both the information of the nonlinear

function f(·) and RA protocol scheduling behaviors has been

reflected in the expression of x̂(k − N |k). The uncertainty

∆F (k), which is generated in 9, could be seen as a kind

of “linearization error” of the nonlinear function. Such an

uncertainty has also been reselected in the term Q(λ∗).
By means of the above Theorem, the corresponding

Moving-Horizon Estimation algorithm is summarized as fol-

lows:

Moving-Horizon Estimation algorithm:

Step 1. Let the window length N + 1 and the MH estimator parameter
Q > 0 be given. Set k = N and x̄(0) = 0.

Step 2. Calculate the value of Γ as Γ = γ2I where the scalar γ is
determined by γ = max∆F (k) ‖∆F(k)‖.

Step 3. Compute the scalar parameter λ∗ by solving the one-dimensional
OP (18).

Step 4. Generate the matrix ¯̥k

k−N
and the vector s̄k

k−N
based on

{̥(̺(i))}k≥i≥k−N and {ȳ(i)}k≥i≥k−N . Then, x̂(k −N |k)
can be obtained by (17).

Step 5. Set k = k + 1 and compute the value of x̄(k −N) by (8) and
go to Step 3.

As to the optimization issue in (18), if the boundary point

λ = 1 is excluded, as shown in [22], the pseudoinverse

operation of R(λ∗) is solved as follows:

R(λ∗) = I +
1

λ∗ − 1
¯̥ k
k−N

and hence, the estimation of (17) is rewritten as follows

x̂(k −N |k) = λ∗

λ∗ − 1

(

λ∗

λ∗ − 1

(

Fk
k−N

)T ¯̥ k
k−NFk

k−N

+Q+ λ∗Γ

)−1
(

Fk
k−N

)T ¯̥ k
k−N s̄kk−N + x̄(k −N) (19)

In view of the expressions (18) and (19), it can be found

that the presented MH estimator is a TY and nonlinear one due

mainly to the derivation of the parameter λ∗, which is obtained

by solving an OP via certain on-line algorithm. However, it

is sometimes difficult to solve such a problem in the required

computational time (i.e. the interval between sampling time

instants). For the purpose of real-time implementation, we

can choose a reasonable approximation to the expression (17)

by setting the scalar λ∗ as λ∗ = α + 1 where the scalar α
can be properly adjusted off-line based on certain numerical

simulations, and this gives rise to the approximate solution of

Problem 2 with the following form:

x̂(k −N |k) =
(

α−1 + 1
)(

Q+ (1 + α)Γ + (α−1 + 1)

×
(

Fk
k−N

)T ¯̥ k
k−NFk

k−N

)−1
(

Fk
k−N

)T

× ¯̥ k
k−N s̄kk−N + x̄(k −N). (20)

The approximate MH Estimation algorithm associating with

(20) can be easily accessible from the MH estimation algorith-

m. Hence, we omit the details of the approximate MH estima-

tion algorithm here for conciseness. Obviously, by eliminating

the computation of the scalar parameter λ∗, the computational

effort of the approximate MH estimation algorithm could be

largely reduced compared with the MH estimation algorithm.

Next, let us study the boundedness of the EE according to

the obtained approximate MH estimation scheme (20).

B. Boundedness analysis issue of the estimation error

In what follows, we shall investigate the boundedness

properties for the EE. Let us first consider the dynamics of

the EE. For the sake of clarity of exposition, by defining

Ψα(¯̺k) ,
(

1 +
1

α

)

(

Q+ (1 + α)Γ +
(

1 +
1

α

)

×
(

Fk
k−N

)T ¯̥ k
k−NFk

k−N

)−1
(

Fk
k−N

)T ¯̥ k
k−N ,

it follows from (20) that

x̂(k −N |k)− x̄(k −N) = Ψα(¯̺k)s̄
k
k−N . (21)

On the other hand, by defining e(i−N) , x(i−N)− x̂(i−
N |i), it can be derived from the definition of s(i) and the

expression of x̄(k −N) that














































































s(k −N) =̥(̺(k −N))
(

CF̃k−N−1e(k −N − 1)

+ ν(k −N) + Cω(k −N − 1)
)

...

s(k − i) =̥(̺(k − i))

(

C

N+1
∏

j=i+1

F̃k−je(k −N − 1)

+ ν(k − i) + C

N+1
∑

j=i+1

j−1
∏

t=i+1

F̃k−tω(k − j)

)

,

(N − 1 ≥ i ≥ 0)

Hence, we have

s̄kk−N = ¯̥ k
k−NF

k
k−N F̃k−N−1e(k −N − 1)

+ ¯̥ k
k−NGkω̄(k − 1) + ¯̥ k

k−N ν̄(k) (22)

where

Gk =











C 0 · · · 0

CF̃k−N C · · · 0
...

...
. . .

...

C
∏N

j=1 F̃k−j C
∏N−1

j=1 F̃k−j · · · C











,

ν̄(k) =











ν(k −N)
ν(k −N + 1)

...

ν(k)











, ω̄(k − 1) =











ω(k −N − 1)
ω(k −N)

...

ω(k − 1)











,

C = diagN+1{C}.
By taking (21) and (22) into account, we have

e(k −N)
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=
(

F̃k−N−1 −Ψα(¯̺k)F
k
k−N F̃k−N−1

)

e(k −N − 1)

+
(

I −Ψα(¯̺k)Gk

)

ω̄(k − 1)−Ψα(¯̺k)ν̄(k) (23)

where I =
[

I 0 0 · · · 0
]

.

Similar to the same technique in [1], we first rewrite the EE

dynamics (23) as follows:

e(k −N) =
(

∆A(¯̺k) +A(¯̺k)
)

e(k −N − 1)

+
(

∆B(¯̺k) + B(¯̺k)
)

ω̃(k) (24)

where

B(¯̺k) =
[

I −Ψα(¯̺k)Gk −Ψα(¯̺k)
]

,

A(¯̺k) = F̄ −Ψα(¯̺k)Fk
k−N F̄ ,

∆A(¯̺k) = ∆F (k − 1−N)F̂ −Ψα(¯̺k)

×
(

F
k
k−N F̃k−1−N −Fk

k−N F̄
)

,

∆B(¯̺k) =
[

−Ψα(¯̺k)
(

Gk − Gk

)

0
]

,

Gk =











C 0 · · · 0
CF̄ C · · · 0

...
...

. . .
...

CF̄N CF̄N−1 · · · C











, ω̃(k) =

[

ω̄(k − 1)
ν̄(k)

]

.

with the matrix inequalities ∆AT (¯̺k)∆A(¯̺k) ≤ ΓA(¯̺k)
and ∆BT (¯̺k)∆B(¯̺k) ≤ ΓB(¯̺k) in which ΓA(¯̺k) and

ΓB(¯̺k) represent two known positive definite matrices. Triv-

ial yet conservative choices for ΓA(¯̺k) and ΓB(¯̺k) can

be given by ΓA(¯̺k) = γ2
A(¯̺k)I and ΓB(¯̺k) = γ2

B(¯̺k)I
where γA(¯̺k) = max{∆F (i)}k−N≤i≤k

‖∆A(¯̺k)‖, γB(¯̺k) =
max{∆F (i)}k−N≤i≤k

‖∆B(¯̺k)‖.

So far, we have obtained the dynamics of the EE. Next, let

us reformulating the EE system (24) by mapping the sequence

̺(k − i) (i = 0, 1, · · · , N ) to one stochastic process.

Proposition 1: Map the RA protocol scheduling behavior

governed by {̺(k − i)}0≤i≤N to the new variable ℵ(k) ∈
Q , {1, 2, · · · ,MN+1} according to the following mapping

function:

ℵ(k) = R(¯̺k) ,

N
∑

i=0

M i
(

̺(k − i)− 1
)

+ 1. (25)

Then, for the given value of ℵ(k), the values of ̺(k − i)
(0 ≤ i ≤ N ) can be calculated by the function φi(ℵ(k))
(N ≥ i ≥ 0):

̺(k − i) = φi(ℵ(k)) , mod

(⌊ℵ(k)− 1

M i

⌋

,M

)

+ 1. (26)

Proof: Firstly, it is easy to see that the value of ℵ(k)
obtained by (25) satisfies ℵ(k) ∈ Q. Next, we shall prove that

̺(k − i) derived in (26) is correct. For any given ℵ(k) ∈ Q,

we have

φi(ℵ(k)) = mod

(⌊ℵ(k)− 1

M i

⌋

,M

)

+ 1

= mod

( N
∑

j=i

M j−i
(

̺(k − j)− 1
)

,M

)

+ 1

= ̺(k − i)− 1 + 1 = ̺(k − i).

The proof is complete.

Obviously, ℵ(k) is a random variable and the corresponding

characteristics are given in the following proposition.

Proposition 2: The sequence {ℵ(k)}k≥0 is a DTMC with

the TP matrix P̄(k) ,
[

p̌ij
]

MN×MN given as follows:

p̌ij = Prob
(

ℵ(k + 1) = j|ℵ(k) = i
)

=

{

0, π̌(i, j) > M
pφ0(i)φ0(j), otherwise

(27)

in which π̌(i, j) = j−M
(

i−1−MN
(

φN (i)−1
)

)

and pij(·)
has been defined in (4).

Proof: According to Proposition 1, we can obtain that

p̌ij =Prob
(

ℵ(k + 1) = j|ℵ(k) = i
)

=Prob
(

¯̺k+1 = φ̄k+1(j)| ¯̺k = φ̄k(i)
)

where φ̄k(i) =
[

φT
N (i) φT

N−1(i) · · · φT
0 (i)

]T
. Let φ̄t

k(i)
be the t-th element of the vector φ̄k(i). Note that φ̄t

k(i) =
φ̄t−1
k+1(j), which implies that

j − φ0(j) = M
(

i− 1−MN (φN (i)− 1)
)

.

As such, it can be concluded that p̌ij = 0 if π̌(i, j) > M .

Moreover, if the π̌(i, j) ≤ M , we have

p̌ij = Prob
(

¯̺k+1 = φ̄k+1(j)| ¯̺k = φ̄k(i)
)

= Prob
(

̺(k + 1) = φ0(j)|̺(k) = φ0(i)
)

= pφ0(i)φ0(j).

The proof is complete.

According to Propositions 1 and 2, the EE dynamical system

(24) is reformulated as follows

e(k −N) =
(

Aℵ(k) +∆Aℵ(k)

)

e(k −N − 1) +
(

Bℵ(k)

+∆Bℵ(k)

)

ω̃(k) (28)

with Aℵ(k) = A(¯̺k), ∆Aℵ(k) = ∆A(¯̺k), Bℵ(k) = B(¯̺k),
∆Bℵ(k) = ∆B(¯̺k), ΓA,ℵ(k) = ΓA(¯̺k) and ΓB,ℵ(k) =
ΓB(¯̺k).

Remark 3: Due to the RA protocol scheduling and the

sector-bounded nonlinearity, the EE system (24) is described

by a dynamical system with a DTMC ℵ(k) and the norm-

bounded uncertainties. Due to the TV nature of the scalar

parameter λ∗, it is difficult to analyze the dynamical behaviors

of the EE. Moreover, the value of λ∗ is computed by solving

an one-dimensional OP and thereby increasing the on-line

computational effort of the MH estimation approach. In what

follows, we shall focus our attention on the EE dynamics

resulting from the approximate MH estimation approach based

on the stochastic analysis technique.

Before deriving further results, we firstly give the definition

about the exponential ultimate boundedness in mean square.

Definition 1: Consider the EE dynamics (24). Assume that

there exist 3 constants µ1 > 0, µ2 > 0 and µ3 > 0 satisfying

the following constraint

E{‖e(k)‖2|e(0)} < µk
1µ2 + µ3 (29)

where µ1 ∈ [0, 1). Then, the dynamics of e(k) is said to be

exponentially ultimately bounded (EUB) in mean square. The
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parameters µ3 and µ1 are denoted as the asymptotic upper

bound (AUB) and the decay rate of E{‖e(k)‖2}, respectively.

Theorem 2: Consider the NNS (1) under the RA protocol

scheduling effects. Let the TP matrix of the DTMC ̺(k) and

the updating rule (5) be given. It is supposed that there exist

2MN+1 positive definite matrices Pi, ~Pi (i = 1, 2 · · · ,MN ),

Υ = diag{r1I, r2I, · · · , r2N+2I}, 2M positive scalars θi (i =
1, 2 · · · ,M ) and ǫi satisfying

Ω̄i =









Ω̄11
i Ω̄12

i Ω̄13
i Ω̄14

i

∗ Ω̄22
i Ω̄23

i Ω̄24
i

∗ ∗ Ω̄33
i Ω̄34

i

∗ ∗ ∗ Ω̄44
i









< 0 (30)

where

P̄i =

MN

∑

j=1

p̌ijPj , Ω̄11
i = AT

i P̄iAi − Pi + ~Pi + θiΓA,i,

Ω̄12
i = AT

i P̄i, Ω̄
13
i = AT

i P̄iBi, Ω̄
14
i = AT

i P̄i, Ω̄
24
i = P̄i,

Ω̄22
i = P̄i − θiI, Ω̄23

i = P̄iBi, Ω̄44
i = P̄i − ǫiI,

Ω̄33
i = BT

i P̄iBi + ǫiΓB,i −Υ, Ω̄34
i = BT

i P̄i.

Then, the EE dynamics (28) is EUB in mean square with

the AUB ε
ρmin1≤i≤M{σ(Pi)}

where ρ = σ(~Pi)
σ̄(Pi)

and ε =
(
∑2N+2

i=N+2 riν
2
max +

∑N+1
i=1 riω

2
max

)

.

Proof: For the purpose of studying the ultimately bound-

edness issue of the EE e(k), choose the Lyapunov-like function

as follows:

M (k) = eT (k −N − 1)Pℵ(k)e(k −N − 1). (31)

The difference of M (k) (i.e. ∆M (k) , M (k+1)−M (k))
along the trajectory of the EE dynamics (28) is computed as

follows:

∆M (k) = eT (k −N)Pℵ(k+1)e(k −N)

− eT (k −N − 1)Pℵ(k)e(k −N − 1)

=
(

(

Aℵ(k) +∆Aℵ(k)

)

e(k −N − 1) +
(

Bℵ(k)

+∆Bℵ(k)

)

ω̃(k)
)T

Pℵ(k+1)

(

(

Aℵ(k) +∆Aℵ(k)

×
)

e(k −N − 1) +
(

∆Bℵ(k) + Bℵ(k)

)

ω̃(k)
)

− eT (k −N − 1)Pℵ(k)e(k −N − 1) (32)

Then, take the conditional mathematical expectation on the

equation (32) and we have

E
{

∆M (k)
∣

∣ℵ(k) = i
}

=E

{(

(

Ai +∆Ai

)

e(k − 1−N) +
(

Bi +∆Bi

)

ω̃(k)
)T

P̄i

×
(

(

Ai +∆Ai

)

e(k − 1−N) +
(

Bi +∆Bi

)

ω̃(k)
)

− eT (k − 1−N)Pie(k − 1−N)
}

=E
{

̟T (k)Ωi̟(k)
∣

∣ℵ(k) = i
}

(33)

where

̟(k) =









e(k − 1−N)
∆Aie(k − 1−N)

ω̃(k)
∆Biω̃(k)









,

Ωi =









AT
i P̄iAi − Pi AT

i P̄i AT
i P̄iBi AT

i P̄i

∗ P̄i P̄iBi P̄i

∗ ∗ BT
i P̄iBi BT

i P̄i

∗ ∗ ∗ P̄i









.

Adding the following zero term

0 = ρM (k) + θie
T (k − 1−N)∆AT

i ∆Aie(k − 1−N)

− θie
T (k − 1−N)∆AT

i ∆Aie(k − 1−N)

+ ǫiω̃
T (k)∆BT

i ∆Biω̃(k)− ǫiω̃
T (k)∆BT

i ∆Biω̃(k)

+ ω̃T (k)Υω̃(k)− ρM (k)− ω̃T (k)Υω̃(k) (34)

to the right-hand side of (33), we have

E
{

∆M (k)
∣

∣ℵ(k) = i
}

=E
{

ρM (k) +̟T (k)Ωi̟(k) + θie
T (k − 1−N)∆AT

i

×∆Aie(k −N − 1) + ǫiω̃
T (k)∆BT

i ∆Biω̃(k)

− ρM (k)− θie
T (k −N − 1)∆AT

i ∆Aie(k − 1−N)

− ǫiω̃
T (k)∆BT

i ∆Biω̃(k) + ω̃T (k)Υω̃(k)

− ω̃T (k)Υω̃(k)
∣

∣ℵ(k) = i
}

≤E
{

ǫiω̃
T (k)ΓB,iω̃(k) +̟T (k)Ωi̟(k)

+ θie
T (k −N − 1)ΓA,ie(k − 1−N)

+ ρM (k)− θie
T (k − 1−N)∆AT

i ∆Aie(k −N − 1)

+ ω̃T (k)Υω̃(k)− ǫiω̃
T (k)∆BT

i ∆Biω̃(k)

− ω̃T (k)Υω̃(k)− ρM (k)
∣

∣ℵ(k) = i
}

≤E
{

̟T (k)Ω̄i̟(k)
∣

∣ℵ(k) = i
}

− ρE{M (k)|ℵ(k) = i}
+ ω̃T (k)Υω̃(k)

< − ρE{M (k)|ℵ(k) = i}+ ε (35)

where ε =
∑2N+2

i=N+2 riν
2
max +

∑N+1
i=1 riω

2
max. Then, for any

positive constant ς > 0, it can be derived that

E
{

ς1+k
M (1 + k)

∣

∣ℵ(k) = i
}

− E
{

ςkM (k)
∣

∣ℵ(k) = i
}

= ς1+k
(

E{M (1 + k)|ℵ(k) = i} − E{M (k)|ℵ(k) = i}
)

+ ςk(ς − 1)E{M (k)|ℵ(k) = i}
< ςk

(

ς − ρς − 1
)

E{M (k)|ℵ(k) = i}+ ςk+1ε (36)

Letting ς = ς∗ = 1
1−ρ

and summing up both sides of (36)

from 0 to t− 1 with respect to k, we have

−E
{

M (0)
}

+ E
{

ςt∗M (t)
∣

∣r(t− 1) = i
}

<
ς∗(1− ςt∗)

1− ς∗
ε

(37)

which implies that

E{M (k)|ℵ(k) = i}

<ς−k
∗

(

− ς∗
ς∗ − 1

ε+ E
{

M (0)
}

)

− ς∗
1− ς∗

ε

=(1 − ρ)k
(

− ε

ρ
+ E

{

M (0)
}

)

+
ε

ρ
. (38)

Furthermore, it is easy to see that

E{‖e(k − 1−N)‖2} ≤ E{M (k)|ℵ(k) = i}
min1≤i≤M{σ(Pi)}

.
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Hence, it is finally concluded from Definition 1 that the

EE dynamics (28) is EUB in mean square with the AUB
ε

ρmin1≤i≤M{σ(Pi)}
. The proof is complete now.

The inequality (30) is a typical linear matrix inequality

(LMI). The feasibility of LMIs is a P (i.e. polynomial)

problem, which could be easily confirmed by certain well-

known algorithms such as interior-point methods. In this paper,

we shall solve the LMIs by using the LMI toolbox in Matlab.

Remark 4: In the above theorem, the BA issue of the EE

for the nonlinear system (1) with RA protocol scheduling

based on the approximate MH estimation scheme (20) is

considered. It is worth mentioning that, the results obtained

in Theorems 1 and 2 contain all the information reflecting

the system complexities (e.g. the sector-bounded nonlinearity,

RA protocol scheduling constraints, bounds of noises and the

length of the moving estimation window). The scheduling

behavior of the RA protocol does have an impact on the

calculation of the estimates and the boundedness analysis

of the estimation error. More specifically, we have defined

the QCF (4) according to the protocol scheduling behavior

by using the scheduling matrix ̥(̺(i)). The state estimate

is derived by applying Theorem 1 based on the scheduling

matrix ¯̥ k
k−N (¯̺k). Then, the boundedness of the estimation

error is analyzed based on the occurrence probabilities about

the scheduling behavior. Compared with the existing research

works, this work possesses the following 3 distinguishing

features: 1) this work is one of the first attempts to address

the MH estimation problem for a class of NNSs under certain

CP scheduling; 2) a novel robust MH estimation strategy is

employed to deal with the nonlinearity of the systems and

the RA protocol scheduling behaviors; and 3) some sufficient

conditions are obtained for handling the BA issue of the EE in

mean square under the approximate MH estimation approach.

C. The linear case

In this subsection, we are going to cope with the MH

estimation issue for linear systems with RA protocol schedul-

ing, which means that the TV nonlinear function f(·, ·) is

specialized to the following form:

f(k, x(k)) = F̄ x(k).

In this case, the corresponding MH estimator is designed by

the following proposition.

Proposition 3: The solution to the MH estimation problem

for the following linear system
{

x(k + 1) = F̄ x(k) + ω(k)

y(k) = Cx(k) + ν(k)
(39)

with the RA protocol scheduling associating with (4) is given

by



















x̄(k −N) = F̄ x̂(k −N − 1|k − 1)

x̂(k −N |k) =
(

(

¯̥ k
k−NFk

k−N

)T ¯̥ k
k−NFk

k−N

+Q
)−1

(

¯̥ k
k−NFk

k−N

)T
s̃kk−N + x̄(k −N)

(40)

where

s̃kk−N =
[

ŝT (k −N) ŝT (k −N + 1) · · · ŝT (k)
]T

,

ŝ(i) = ȳ(i)−̥(̺(i))CF̄ i−k+N x̄(k −N).

Proof: Consider the linear system (39), the corresponding

QCF is given by

Ik(x̂(k −N |k)) = ‖x̂(k −N |k)− x̄(k −N)‖2Q +
∥

∥

∥
s̃kk−N

+ ¯̥ k
k−N (¯̺k)Fk

k−N

(

x̄(k −N)− x̂(k −N |k)
)

∥

∥

∥

2

(41)

For the minimization of the QCF (41), we have

∂Ik(x̂(k −N |k))
∂x̂(k −N |k) = 2Q

(

x̂(k −N |k)− x̄(k −N)
)

− 2
(

¯̥ k
k−N (¯̺k)Fk

k−N

)T (
s̃kk−N + ¯̥ k

k−N (¯̺k)Fk
k−N

×
(

x̄(k −N)− x̂(k −N |k)
))

= 0 (42)

which is equivalent to
(

(

¯̥ k
k−NFk

k−N

)T ¯̥ k
k−NFk

k−N +Q
)

(

− x̄(k −N)

+ x̂(k −N |k)
)

=
(

¯̥ k
k−N (¯̺k)Fk

k−N

)T
s̃kk−N . (43)

Then, it is easy to see that the solution to (43) is (40). The

proof is completed.

Based on the estimator (40), we have the following EE

system:

e(k −N) = Āℵ(k)e(k −N − 1) + B̄ℵ(k)ω̃(k) (44)

where

Āℵ(k) = F̄ − Ψ̄ℵ(k)Fk
k−N F̄ ,

B̄ℵ(k) =
[

I − Ψ̄ℵ(k)Gk −Ψ̄ℵ(k)

]

,

Ψ̄ℵ(k) =
(

Q+
(

Fk
k−N

)T ¯̥ k
k−NFk

k−N

)−1
(

Fk
k−N

)T ¯̥ k
k−N .

Theorem 3: For the linear NS (39) with the RA protocol

scheduling governed by the DTMC ̺(k) associating with (4)

and the updating rule (6), it is supposed that there exist 2MN+
1 positive definite matrices P̂i, P̃i (i = 1, 2 · · · ,MN ) and

Υ̂ = diag{r̂1I, r̂2I, · · · , r̂2N+2I} satisfying

Ω̂i =

[

ĀT
i P̌iĀi − P̂i + P̃i ĀT

i P̌iB̄i

∗ B̄T
i P̌iB̄i − Υ̂

]

< 0 (45)

where

P̌i =

MN

∑

j=1

p̌ij P̂j .

Then, the EE dynamics ‖e(k)‖ is EUB in mean square

with the AUB ε
ρmin1≤i≤M{σ(Pi)}

where ρ = σ(P̃i)

σ̄(P̂i)
and

ε =
(
∑N+1

i=1 r̂iω
2
max +

∑2N+2
i=N+2 r̂iν

2
max

)

.

Proof: The proof is similar to that of Theorem 2 and is

therefore omitted for the conciseness.

Remark 5: In Proposition 3 and Theorem 3, the MH

estimator has been proposed for the linear system with the

RA protocol scheduling, and sufficient conditions have been

obtained to ensure the ultimately boundedness of the EE in

mean square. Obviously, the MH estimator (40) is a special
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case of (17). By setting Q(λ∗) = Q and R(λ∗) = I in

(17), the MH estimator (17) for nonlinear systems could be

degraded to the MH estimator (40) for linear systems.

Remark 6: It is easy to see that the MH estimation scheme

obtained in this work could be easily extended to the MH

estimation issue for NSs under the RR protocol scheduling

effects. More specifically, with the MH estimator given by

Theorem 1 (or (40)), the results in Theorem 2 (or Theorem

3) still hold true by setting P̄i = Pi−1 (or P̌i = P̂i−1) for

i = 2, 3, · · · ,MN and P̄1 = PMN (or P̌1 = P̂MN ).

Remark 7: The results obtained in Theorems 2 and 3 are

achieved based on linear matrix inequalities (LMIs), and the

corresponding algorithm dealing with LMIs has a polynomi-

al time complexity. Specifically, the number N (ε) of flops

needed to compute an ε-accurate solution is bounded by

O(MN 3 log(V/ε)), where M is the total row size of the LMI

system, N is the total number of scalar decision variables, V is

a data-dependent scaling factor, and ε is relative accuracy set

for algorithm. As such, the computational complexities of the

established results in Theorems 2 and 3 could be represented

as O((3nx + (N + 1)(nx + ny))(M
N (n2

x + nx) + 2N +
2)3 log(V/ε)) and O((nx + (N + 1)(nx + ny))(M

N (n2
x +

nx) + 2N + 2)3 log(V/ε)), respectively. Obviously, such two

computational complexities depend not only on the variable

dimensions, but also on the number of sensor nodes. This is

mainly due to the fact that the number of LMIs is determined

by the number of sensor nodes. On the other hand, it is worth

noting that the computation complexity of the moving horizon

estimation algorithm is independent of the number of sensor

nodes. It can be find from Theorem 1 that such a computation

complexity depends largely on the window length of the

moving horizon estimation algorithm since the estimate is

determined by the measurement output data {ȳ(i)}k≥i≥k−N ,

whose dimension depends on the window length.

IV. TWO ILLUSTRATIVE EXAMPLES

In what follows, we would like to provide two numerical

examples to verify the effectiveness and correctness of the

developed MH estimation scheme and approximate MH esti-

mation scheme.

Example 1: To make our simulation nontrivial, consider an

unstable system of the following form:











x(k + 1) = 0.5
(

sin(k)(1ג − x(k)(2ג + 1ג)

+ x(k)(2ג
)

+ ω(k)

y(k) =Cx(k) + ν(k)

in which

1ג =





0.86 0.1 0
0.1 0.98 0
0 0 1.04



 , 2ג =





0.82 0.1 0
0.1 0.92 0
0 0 0.98



 ,

C = I, ω(k) = 0.6 cos(0.4k)
[

1 1 1
]T

,

ν(k) = 0.4 sin(0.3k)
[

1 1
]T

.

In this example, assume that there are three sensor nodes

of the system and the TP matrix of the RA protocol is

P =





0.3 0.3 0.4
0.3 0.4 0.3
0.2 0.3 0.5



 .

The weight matrix Q is set to be Q = I . We choose the

window length as N + 1 = 6. Then, by applying Theorem

1, we can obtain the corresponding moving-horizon estimator

of the form (17). For the purpose of dealing with the one-

dimensional OP (18), we adopt a Particle Swarm optimization

(PSO) algorithm to search the best solution for λ∗ at each step.

On the other hand, by choosing a reasonable approximation of

λ∗ as λ∗ = 1.5, we can obtain an approximate moving-horizon

estimator of the form (20).

Set the state initial value be x(0) =
[

1 2 −1
]T

. Based

on the above obtained estimators, the tracking performance

is shown in Figs. 2-4. Fig. 5 depicts the response of the

EE (i.e. ‖e(k)‖2). Fig. 6 plots the sensor node obtaining

access to the communication network. The simulation result

has verified that both the MH estimation approach and the

approximate MH estimation method are indeed effective for

the addressed NNSs under the RA protocol scheduling effects.

From Fig. 5, we can find that the MH estimation approach
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performs better than the approximate MH estimation approach

which is mainly due to the real-time computation of λ∗. On the

other hand, such a computation process would largely increase
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the computational effort. The average CPU time on solving the

MH estimation problem and the approximate MH estimation

problem at each step is 6.72 × 10−2s and 4.82 × 10−4s,

respectively, on a standard personal computer (CPU: Intel

(R) Core(TM) i7-4720HQ; RAM: 8GB; Operating System:

Windows 8.1).

Example 2: Consider the isothermal continuous stirred

tank reactor (CSTR) studied in [2], [12]. A discretized and

linearized model is obtained as follows:






x(k + 1) =

[

0.6472 0
0.2135 0.7202

]

x(k) + ω(k)

y(k) = x(k) + ν(k)

where ν(k) ∈ R2 and ω(k) ∈ R2 are bounded noise with

the upper bounds ωmax = 0.2 and νmax = 0.1, respectively.

We suppose that the two sensors belong to different sensor

nodes and the corresponding TP matrix of the RA protocol is

P =

[

0.1 0.9
0.9 0.1

]

. Choosing the weight matrix Q = I and the

window length N + 1 = 2, we can obtain the approximate

moving-horizon estimator of the form (40). Simulation results

are presented in Figs. 6-8.

Next, let us consider the AUB of the EE. According to

Proposition 1, we can easily verify that ℵ(k) ∈ Q ,

{1, 2, 3, 4}. Then, by applying Theorem 3, the positive definite

matrices can be obtained as follows:

P̂1 =

[

3.2059 1.3849
1.3849 4.5197

]

, P̂2 =

[

1.7855 −0.0476
−0.0476 1.0032

]

,

P̂3 =

[

1.0595 0.0473
0.0473 1.9109

]

, P̂4 =

[

3.4585 −1.0390
−1.0390 2.2146

]

.

Furthermore, based on the derived results in Theorem 3,

we obtain the AUB of the ‖e(k)‖: 0.31317. The simulation

results have confirmed the MH estimation performance and

our theoretical analysis on the AUB of the EE.
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V. CONCLUSION

In this work, a nonlinear moving-horizon (MH) estimator

has been constructed for a type of NNSs under the so-called
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Fig. 9: Example 2 — The estimation error ‖e(k)‖2 and the upper bound

random access (RA) protocol scheduling effects. A DTMC

with known TP matrix has been introduced to model the

scheduling behaviors of the RA protocol. The corresponding

MH estimator and approximate MH estimator have been

developed to provide the state estimates by extending the

robust MH estimation scheme. By using the stochastic analysis

technology combined with the mapping approach, some suf-

ficient conditions have been obtained to handle the BA issue

of the EE dynamics in mean square under the approximate

MH estimation scheme. Moreover, the main results have been

further specialized to linear NSs with the RA protocol schedul-

ing. Finally, two illustrative examples have been provided to

verify the correctness and effectiveness of our derived results.
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