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A moving mass him controller 
increase the accuracy of axisymmetric, ballistic vehi- 
cles. The MMTC is different than other moving mass 
schemes because it generates an angle-of-attack (AOA) 
directly from the mass motion. The nonlinear equations 
of motion for a ballistic vehicle with one moving point 
mass are derived and provide the basis for a detailed 
simulation model. The full nonlinear equations are lin- 
earized to produce a set of linear, time-varying autopilot 
equations. These autopilot equations are analyzed and 
used to develop theoretical design tools for the creation 
of MMTCs for both fast and slow spinning vehicles. A 
fast spinning MMTC is designed for a generic artillery 
rocket that uses principal axis misalignment to generate 
trim AOA. A slow spinning MMTC is designed for a 
generic reentry vehicle that generates a trim AOA with a 
center of mass offset and aerodynamic drag. The perfor- 
mance of both MMTCs are evaluated with the detailed 
simulation. 

is proposed to 

lntrroductlon 

Over &he years, techniques for controlling the flight 
characteristics of missiles and reentry vehicles (RV) 
have gravitated to systems that deliver relatively large 
amounts of control authority. For certain missions, such 
as an air-to-air missile or an RV designed to evade 
defenses, a large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlateral acceleration capability was 
required. The technologies used to perform these mis- 
sions ranged from actuated canards, elevons, and flaps 
to jet interaction, thrust vector control, and a variety of 
other techniques zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[l]. Because of inherent navigation 
inaccuracies, systems that provided modest amounts of 
control capability were of little or no value. However, 
with the maturity of the Global Positioning System 
(GPS), it is possible to mate simpler control techniques 
with GPS to increase the accuracy of existing systems. 

- 

One such control technology is a moving mass controller. 
This technique has previously been evaluated in conjunc- 
tion with other control methods such as the moving mass 
roll control of an aerodynamically asymmetric RV [2,3]. 
A more direct application of moving mass control tech- 
nology is the moving mass trim controller (MMTC). The 
MhUC generates a trim angle-of-attack (AOA) on an 
axisymmetric, ballistic vehicle directly from the motion 
of the mass. It is a novel, lightweight, lowcost retrofit to 
spinning ballistic vehicles that require modest fight path 
corrections to obtain increased accuracy. 

Over ten years ago, initial studies of the Mh4TC were per- 
formed by Frank Regan at the Naval Systems Warfare 
Center (NSWC) [4]. Regan and his coworkers devised a 
single-shot MMTC that would provide modest range cor- 
rections near the target. At Sandia National Laboratories 
(SNL), the h4MTC was an outgrowth of the Deconing 
Device Test (DDV described by White and Robineu [5].  
The DDT provided an initial glimpse of the effects of 
principal axis misalignment (PAM), roll rate, and center 
of mass offset. The MMTCs developed at SNL address 
the issue of roll rate, static margin (SM), PAM, and center 
of mass offset. The trim AOA for a fast spinning vehicle 
is generated by a PAM, whereas a slow spinning vehicle 
with a small static margin relies on a center of mass offset 
to create a trim AOA due to aerodynamic drag. This 
report derives the general nonlinear equations of motion 
for a one-moving mass system, the general linear, time- 
varying autopilot equations, and theoretical design tools, 
and develops conceptual hardware designs for a generic 
artillery rocket and a generic RV. 

Eauatlons of Motion 

The system under consideration is shown in Figure 1. 
Rigid body B of mass mB and moving point mass P of 
mass mp combine to form system S of mass m,, where m, 
= mg + mp Points of interest are B*, the mass center of B 
and S*, and the mass center of S. Coordinate frames are 
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the earthcentered i n d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAframe I, the local geodetic 
frame G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcom.pri& af north, east, and down unit vectors 
(denoted as g l  ,g29g3), the body-fixed frame B (unit 
vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl ,i2,E3), and the nonrolling frame N (unit 
vectors n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,n3 ) which pitches and yaws but does not 
roll with 4. dtch, yaw, and roll are defmed as a 
sequence of rotations as follows. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAfter initial alignment 
of the G and B frames, rotations are performed_ in the 
following order: 1) yaw (angle W) about the b3 unit 
v_ector, 2) pitch (angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 )  about the new location of the 
b2 unit vecm,,_and 3) roll (angle $) about the f d  
location of the b, unit vector. 

The mass may move in all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree directions in the body, 
but its position, velocity, and acceleration in the B frame 
are controlled using third order actuator transfer func- 
tions in each direction. Therefore, the system is treated 
as having six degrees of freedom (6DOF). 

‘ 

Rolllng Frame Equations of Motion 

To verify results equations of motion expressed in the B 
frame were derived using two methods. Method 1 uses 
Newton’s second law applied to S* to derive transla- 
tional equations and equates the applied moments about 
S* to the derivative in the inertial frame of the inertial 
angular momentum of S for S* to derive rotational 
equations. Kane’s method 161 is used in method 2. 

Method 1: 

The inertial angular velocity of B and the inertial veloc- 
ity of B* are defmed as 

- - - 
IGB = a1 b, + a2 b2 + a3 b3 

I+* = vlbl + v2b2 + v3b3 
- - 

V 

The mass ratio p is defmed as 

m 

m 
I=-- P 

S 
The position vector from B* to P is given by 

(3) 

(4) 

2 

The aerodynamic force is defined as 
- 
Fa,, = F1bl +F2b2 + F3h3 

and the force due to gravity is given by 

grav 

where g is the gravitational acceleration and GXB is the 
direction cosine mapix relating the B frame to the G 
frame. The three elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof interest for the yaw, pitch, 
and roll sequence described previously are 

G B  x~~ = -sin(e) 

The torque about B* from aerodynam..: forces 
defmed as 

TB* = Tlbl + T2b2 + T3b3 

which results in a moment about S* of 

The inertial angular momentum of S for S* is given by 

+ pmB (pliil +p2b2 +p3ii3) xIip 

where the inertia dyadic of B for B* and for B frame 
unit vectors is defined as 

$”* = B116161+B12(6162+62ii1) 

+ B13 (blL3 + b361) + BZ62b2 

+ B, (6263 + 6362) + B33 (6363) 

Evaluation of equation 13 yields 



the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfollowing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsix equations of motion may be obtained. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Derivation of the rolling frame equations of motion 
using Kane's method follows. 

The generalized inertia force equation is given by 

I-B* I-B* I-P I-P F*, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -mBvr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa -mpvr 0 a 

(r = 1, ...., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6) (22) I-B - * + or 'TB 

and the generalized active force equation is 

I+ - + v, OF, 
(r = 1, ...., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6) (23) 

In the following equations ui = q and q + 3  = vi (i = 1,2, 
3) from method 1. 

The inertial angular velocity of B is 

= u16, + + U3b3 (24) 
IGB 

The inertial velocity of points B* and P are given below. 

- - - I-B* v = u4bl +u5b2+ u6b3 

4 

The aerodynamic fokce and its torque about B* are given 
by equations 6 and 1 1, respectively. The force due to 
gravity on p in t  B* is 

The force on P is given by 

- 
F p  = mpg ( G g l b l  + Gg2b2+ Gg3b l )  

No actuator force is applied to P or to a point of B due to 
the use of the actuator uansfer function. 

The partial velocities and partial angular velocities in 
equations 22 and 23 are found from equations 24 t h q g h  
26. Using F, + F,* = 0, solving the r=4 equation for u4, 
the r=S equation for us, and the 1=6 equation for U6 in 
terns of u, , u , and U3 yield equations of motion rden- 
tical to those ofmethod I. 

Nonrolling Frame Equations of Motion 



s 



Elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe direction cosine matrix relating the N 
frame to the G frame appearing in equations 30 through 
32 are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e) (47) 

y2 = 0 

G$3 =  COS(^> (49) 

The inertial angular velocity of N is 

The autopilot equations are a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAset of mathematical rela- 
tionships that relate the angles-of-attack and side-slip in 
the nonrolling frame to the mass motion in the body- 
fixed frame. In this manner, the guidance commands zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
can be directly related to the actuam commands. The 
autopilot equations are obtained by linearizing the non- 
rolling equations of motion (Equations 30 through 35) 
that were derived in the preceding section. The result of 
the linearizing procedure is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAset of linear, timevarying 
equations that describe nonrolling angles-of-attack and 
side-slip of the ballistic vehicle. 

The inertial velocity of B* is 

I-B* - - - 
v = vnlnl + vn2n2 + vn3n3 (37) 

The aerodynamic force is given by 

Fa,,, = Fnl n1 + Fn2n2 + Fdn3 

The moment from this force about B* is 

- - - - 

- - - 
ffB* = Tnlnl + Tn2n2 + Tn3n3 (39) 

The inertia dyadic of B for B* and for N frame unit 
vectors is given by 

The linearization procedure follows Reference 7 and 
begins with sevedal simplifying assumptions: 

1. 

2. 

The effects of gravity are negligible 

The vehicle experiences only small angular 
perturbations (a, << 1 radian and mn2. 
%,,-,, v 2, and vn3 are small perturbation 

The moment of inertia tensor is symmetric 
with I = N z =  N33 and I,= N11 

The pass o?!y moves radially @,,I = constant 
and pnl = pnl = 0) and mdm, e 1  

The nonrolling IOU rate is constant (b, 
= 0) and equal to zero, and $ is small &s 
will be justified later) 

The vehicle has linear aerodynamics and 
retains basic aerodynamic symmetry with 
respect to the longitudinal axis, which 
implies that aerodynamic asymmetries are 

qmtitia 

small (lcmpm,l 9 ypm,l <<1)* 

3. 
where 

4. 

5. 

6. 

(45) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 



p = v  /v. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(57) Using the first two and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfifih assumptions and 
neglecting nonlinear terms, the translational equations 
of motion become zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn2 

Next, equations 55.56. and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA57 are differentiated to pro- 
duce 

Fn3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ms (*n3-?INnZVnl) 

-m,dfin2* 

The third through the fifth assumptions lead to the fol- 
lowing transverse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArate equations. 

pact fo&ulation for the angles-of-attack and side-slip, 
and the body rates 

. 
p f Jn2/V-pFn /msV , 

(52) . .  
and complex notation is used to produce a more com- 

M'n2 = "'INn2 + I x x h N n 3  

-pm B pn 1 pn3 

vn2 + iv,, 
V 

4 = p+ia = 9 

(53) 

- qn2 + iGn3 = p+i&+---(P+ia>, Fnl 

M'n3 - 1"INn3-1xx6WINn2 V mSV 

+ pmBPnlpn2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(54) 

At this point, the nonrolling angles-of-attack and side- 
slip are defined as 

a = tan-' (vn3/vnl) ,and 

p = sin-' (vn2/v) 

where 

one obtains 
The relationships are linearized by applying assumption 
2, 

v = v n l  , 

Fn2+iFn3 - e F n l  - 
= [+--[-iSZ 

(55) mSV mSV 

a Z v  /V,and (56) + K3 (On3 - iOn2) 
n3 

7 



M'n2+iM'n3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa - iK1a - K2 (Pn3 - ipnz) 

I' 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, ,and 
WNn3 WNn3 

Cn 

c " ia  = cmip zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWhere 

K1 = -@, 
'XX 

and K3 = - pmB 

mSV 
= T P n 1 *  

I' 

m B i  
-. - ._ 

Fn2 + iF, = qS [Cy + iCzo- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 5 
0 Na J 

The next step is to specify the form of the aerodynamic 
forces and moments of eqWhtlS 64 and 65 h terms of 

tion 6, the aerodynamic forces and moments are defrned 

Mtn2 + iM'n3 = q s  [ d (C + i c  ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, 6, and their time derivatives. By applying assump 

as 

mo "0 

+ CLP,~ (Cz 0 - iC Yo 1 + CLCA ( ~ n 3 - i ~ n 2 )  

Tn2 = qSd[Cmo +Cmaa+Cm d 

where 

1 2  
9 = ZPV 

p = atmospheric density 

s = cross sectional area 

Equations 64 and 66 can be allebraigdly manipulated to 
give a relationship between fi and <. 

The substitution of equation 68 and its first derivative, 
along with equation 67 into equation 65, produces the 
desii linear, time-varying autopilot equation 

d = reference length, 

and the zero-subscripted terms account for small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaere 
dynamic asymmetries. These aerodynamic forces and 
moments can be simplified by applying the aerody- 
namic symmetry assumption to obtain 

8 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SIN = 

..N - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E ? -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where c$ = cos($) and s$ = sin($). 

The last step is to justify the assumption that is small. 
By linearizing the nonrolling roll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArate equation, the fol- 
lowing relationship is derived, 

',xi = ~ n l +  P [P~sF,, - P ~ ~ F J  

which demonstrates that 6 is small for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall 
aerodynamic asymmetries and roll torques. 

Evaluation of Ad- 

The goal of this section is to derive a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAset of theoretical 
design tools for choosing and sizing MMTC systems. 
The first step is to solve equation 69 for the steady-state 
complex AOA. If one considers a slender vehicle 
(I'>>In) that flies along a constant flight pam angle 
through an exponential atmosphere, then the B term 
reduces to 

a 



and neglecting aerodynamic asymmeaies, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 
becomes 

term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc2 where 

- - 
m e  major contriiution of ST, to CT is difficult to 
evaluate in the nonrolling frame, but zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be determined 
in the body-fixed h e .  The limiting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtrim angle is given 
by Hodapp [7] and is equal to the PAM angle. 

(77) 

where pnB is the largest radial displacement of the 
moving mass. 

C2 = [ K ~ K ~  + ih,] (pn2+ ipn3) + 
W2 + i ~ ~ l  (pn2 + mn3) 

c 
The steady-state complex AOA is 

Where 
- 

= CT, + CT2 

E ,  c2 
==+= 
B B  

where 4 T, is thetrim angle contribution due to center of 
mass offset and CT is&e contribution due to PAM. The 
major contribution%f CT to C is defined by setting 
the body-fixed roll rate to'zero zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 )  and assuming 
the m a s  is not moving in the body-fixed frame to obtain 

This dividing line determines the dominance of either 
aerodynamic or inertial forces and moments. The aero- 
dynamic forces dominate when the body-fixed roll rate 
is below w,, whereas the inertial forces dominate when 
the roll rate is above a, Consequently, one is designing 
an MMTC that is either a trim due to drag system (sub- 
critical) or a trim due to PAM system (supercritical). (Pn2 + iPn3) 

('mod - C, a PPn 1 ) 
- - 

Performance ExamDleS 

or 

(74) 

(75) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As a result, one can expect to obtain an AOA that is 
approximately equal to the PAM angle if the moving 
mass can be manipulated properly. The proper manipu- 
lation of the mass will be descr i i  in the next section. 

The theoretical design tools, or rules-of-thumb, are 
equations 75 through 77. Equations 75 and 76 are used 
to size an MMTC for slow spinning ballistic vehicles 
that have small static margins (SM < 10% of body 
length), while equation 77 is employed for fast spinning 
vehicles that have static margins greater than 10% of 
body length. The dividing line between slow and fast 
spinning is the critical roll rate: 

1 /2 

I' - Ixx 
Ocr 

The fmt step in sizing an MMTC is to perform 3DOF 
trajectory simulations of the ballistic vehicle to deter- 
mine the required trim AOA for a given divert capabil- 
ity. The results of 3DOF simulations for a spherecone 
RV and a rocket are presented in Figures 2 through 5. 
The divert capability for an RV is strongly influenced 
by the flight path angle and the divert initiation altitude. 
The steeper trajectories require more AOA for the same 
divert capability, and there is an upper divert initiation 
altitude limit at approximately 90 kft. The results of the 
rocket simulations show an interesting correlation 
between pre- and post-apogee maneuvers and down- 

10 



range and crossrange divert capability. The pre-apogee 
maneuvers generate mostly downrange dispersion while 
post-apogee maneuvers produce mostly ctossrange zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdis- 
persion. Given these relationships between divert capa- 
bility and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAOA, one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan employ the mles-of-thumb of 
the previous section to design MMTG for ballistic 
vehicles. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Subcritical Control (RV) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstated earlier, the subcritical control example is a 
sphere-cone RV. Equation 75 is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused to calculate the 
approximate relationship between the steady-state trim 
AOA and the required m a s  moment. The results are 
displayed in Figure 6. The required mass moment is a 
linear function of the AOA, and the slope of the line 
becomes steeper as the SM is decreased. For thii 
example, the desired divert capability is 1150 ft which 
corresponds to a trim AOA of 0.22" for a flight path 
angle of 41'. a m a s  moment of 170 Ibm-in, and a static 
margin of 8%. The MMTC was designed with a 
maximum radial stroke of 7 in. and a 24-lbm moving 
mass. The simulation results of the RV MMTC with a 
simple autopilot that holds the moving mass fixed in the 
nonrolling frame in the crossrange direction are 
presented in Figures 7 through 1 1. Figure 7 confirms 
that the MMTC delivers the desired crossrange divert 
while Figure 8 shows minimal downrange change. 
Figure 9 verifies the desired him AOAperfonnance. 
Figures 10 and 11 show that the divert initiation altitude 
was 50 kft and the roll rate performance is stable. 

Three conceptual layouts for the RV Mh4TC are 
presented in Figure 12. The first and third layouts 
require two moving masses while the second uses a 
single mass. The approximate layout for a given RV 
depends on the application. 

Supercritical Control (Rocket) 

The supercritical performance example is a fast 
spinning rocket. Equation 77 is used to calculate the 
approximate relationship between the trim AOA and the 
required PAM. The results for a sea level flight are 
presented in Figure 13. Since the rocket is ff ying 
through a varying atmosphere (from 0 to 40,000 ft), the 
sizing of the mass must be iterated upon using the 
simulation. For this example, the desired divert 
capability is 8000 ft which corresponds to a trim AOA 
of 0.35' for control after burnout to impact This 
required trim AOA is an average value over the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
trajectory, and the peak AOAis approximately an order 
of magnitude larger than the value given by equation 77. 

11 

The MMTC was designed with a maximum stroke of 4 
in. and a 5-lbm moving mass which produces a cross 
product of inertia equa~ to 1200 1b-in2. m e  simulation 
results of the rocket Mh4TC are displayed in Figures 14 
through 17. Figure 14 confirms that the PAM h4MTC 
provides the desired crossrange divert while the trim 
due to drag h4MTC produces nearly zero divert.. Figure 
15 shows the AOA and side-slip angle performance 
match the prediction of equation 77 at low altitudes near 
launch and impact (AOA G 0.1') and follow the 
dynamic pressure profie (Figure 16) and the altitude 
history (Figure 17). The autopilot system in this MMTC 
simulation is more complicated than the RV MhlTC 
since one is attempting to create inertial forces due to 
PAM in a nonrolling W e .  This is a problem because 
the inertial forces rely on the roll rate squared, and the 
nonrolling roll rate is approximately zero. The way to 
overcome this problem is to articulate the mass in the 
body-fixed frame such that the m a s  is held fixed over a 
portion of the cycle in the desired direction. The motion 
of the mass is presented in Figure 18. This cyclic motion 
accounts for the cyclic variation of the AOA. This 
autopilot can be characterized as a "bang-bang" type of 
control system where the AOA is controlled by the 
number of times the mass is actuated in a given 
direction. The conceptual layout is a relatively simple 
one as most bang-bang actuators are in practical 
applications. Figure 19 shows a single m a s  that slides 
in a piston tube behind the warhead section. 

Summarv 

The focus of this work was to assess the feasiiility of 
Mh4"Cs to increase the accuracy of axisymmetric, bal- 
listic vehicles. A general set of equations of motion for a 
single moving m a s  was derived in the body-fmed and 
nonrolling frames. These equations of motion were lin- 
earized and manipulated to produce a general set of 
autopilot equations that relate the motion of the moving 
mass in the body-fixed frame to the AOA and side-slip 
angle in the nonrolling frame. These autopilot equations 
can be used to develop closed-loop control systems for 
the M M T C s .  

The assessment began by evaluating the effectiveness of 
aerodynamic versus inertial forces for different vehicles. 
A set of rules-of-thumb were developed that categorize 
the ballistic vehicles of interest. Basically, fast spinning 
vehicles use trim due to PAM bemuse the body-fixed 
roll rate is above the critical roll rate and the inertial 
forces are dominant. The slow spinning vehicles employ 
trim due to drag since the roll rate is subcritical and the 
aerodynamic forces are dominant. One important point 



about slow spinners is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASM must be sufficiently small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(less than 10%) to produe a reasonably S h e d  bIM"c. 

These design rules-of-thumb were verified by simulat- 
ing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMMXs for a spherecone RV and a rocket. The RV 
MMTC performed as predicted by the design rules 
while the mket  MMTC predictions were low because 
the design rules assumed a constant atmosphere and a 
constant flight path angle. However, during each inter- 
val that these assumptions were valid, the predictions 
were accurate. 

Finally, conceptual designs were presented that demon- 
strated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe feasibility of MMTCs, given reasonable 
physical constraints. The MMTCs fit within the allow- 
able volume and weighed only a few percent of the 
vehicle's total weight for these examples. Although 
these example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcases demonstrated the feasibility of 
MMKs, the most important aspect of this paper is the 
presentation of general design and anatysis tools to eval- 
uate prospective ballistic vehicles and h4IvlTCs. 



I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Ballistic vehicle with one moving point mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0.06 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.1 0.16 0.e 0 

ta-lxn -e of attadk (decs) 
M 

Fig. 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARV: divert capability from various initial conditions 

A ~ O S S  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARange (fi) 

Fig. 3 Rocket with constant aerodynamic trim 
(trim control from burnout to impact) 

Fig. 4 Rocket with constant aerodynamic trim 
(trim control from burnout to apogee) 
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RockaImpactsforVarionsTrimConditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*&&-so.w-* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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A h R a n g e ( f t )  

Fig. 5 Rocket with constant aerodynamic trim 
(trim control from apogee to impact) 

u.Xnec=-rrdr> 

Fig. 8 RV: 24 Ibm point mass offset 7 inches 

Fig. 7 RV: 24 Ibm point mass  Offset7 inches 

B a 0.5 
V I I I I I I 
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Fig. 10 RV: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24 Ibm point mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&et7 inches 

Fig. 12 Three moving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmass layouts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
15 

time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<reoondr> 

Fig. 11 RV: 24 Ibm point mass Offset7 inches 

crorrprodrrotoiin& &ln&h l  

Fig. 13 rocket : effect of PAM on trim angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof attack 
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Fig. 14 rocket 5 Ibm point mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith 4 inch 
maximum offset 

angk? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof sidesip 

tim~ <recon*> 

Fig. 16 rocket 5 Ibm point mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith 4 inch 
maximum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoffset 

Mass is held hed n- * - * '  *-., (rolls inthe- with the body) 
\ 

, 
Nonrolling 
crossrange 
direction 

Rapidy moved across 
the diameter (small 
M o n  of a cyde) 

, I - -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*-e' 

Fig. 18 Moving mass articulation 

45000 

0 20 40 60 SO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 1: 
t ime <secondr> 

Fig. 17 rocket 5 Ibm point mass with 4 inch 
maximum offset 

:0 

Fig. 19 Bang-bang actuator 
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