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Abstract. This work presents the first effort in designing a moving mesh algorithm to solve the
incompressible Navier–Stokes equations in the primitive variables formulation. The main difficulty
in developing this moving mesh scheme is how to keep it divergence-free for the velocity field at each
time level. The proposed numerical scheme extends a recent moving grid method based on harmonic
mapping [R. Li, T. Tang, and P. W. Zhang, J. Comput. Phys., 170 (2001), pp. 562–588], which
decouples the PDE solver and the mesh-moving algorithm. This approach requires interpolating
the solution on the newly generated mesh. Designing a divergence-free-preserving interpolation
algorithm is the first goal of this work. Selecting suitable monitor functions is important and is
found challenging for the incompressible flow simulations, which is the second goal of this study.
The performance of the moving mesh scheme is tested on the standard periodic double shear layer
problem. No spurious vorticity patterns appear when even fairly coarse grids are used.
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1. Introduction. Many of the modern high resolution methods for solving in-
compressible flows use the upwind Godunov approach combined with Chorin’s projec-
tion technique [7]; see, e.g., Bell, Colella, and Glaz [1], Brown and Minion [3], E and
Shu [9], LeVeque [20], and Lopez and Shen [25]. Because the Godunov upwinding
approach stabilizes the computed flows for cell Reynolds numbers where a strictly
centered finite difference scheme would produce spurious oscillations and often in-
stability, these Godunov-type methods enable us to make simulations in situations
where it is not possible to carefully resolve the smallest scales everywhere. With cur-
rently available computing machines, such underresolution is often unavoidable. It is
noted that the Godunov-type methods use exact or approximate Riemann solvers that
greatly complicate the upwind algorithms, making them difficult to implement and to
generalize to more complex systems. To improve this, Kupferman and Tadmor [26]
proposed a second order difference method for incompressible flows. Their method is
based on an extension of the classic Lax–Friedrichs scheme introduced for hyperbolic
conservation laws [27] and a new discrete Hodge projection. Other state-of-the-art
numerical methods for solving incompressible flow problems include the discontinuous
Galerkin method (see, e.g., [24]) and high order schemes (see, e.g., [4, 11, 21]).
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In this work, we study numerical approximations for the incompressible Navier–
Stokes equations by using the moving mesh finite element methods. Several moving
mesh techniques have been introduced in the past, the most advocated method of
which is based on solving elliptic PDEs first proposed by Winslow [36]. Winslow’s
formulation requires the solution of a nonlinear Poisson-like equation to generate a
mapping from a regular domain in a parameter space Ωc to an irregularly shaped do-
main in physical space Ω. By connecting points in the physical space corresponding
to discrete points in the parameter space, the physical domain can be covered with
a computational mesh suitable for the solution of finite difference/element equations.
Brackbill and Saltzman [2] formulated the grid equations in a variational form to
produce satisfactory mesh concentration while maintaining relatively good smooth-
ness and orthogonality. Their approach has become one of the more popular methods
used for mesh generation and adaptation. In [8], Dvinsky suggests that harmonic
function theory may provide a general framework for developing useful mesh gen-
erators. His method can be viewed as a generalization and extension of Winslow’s
method. However, unlike most other generalizations which add terms or functionals
to the basic Winslow grid generator, his approach uses a single functional to accom-
plish the adaptive mapping. The critical points of this functional are harmonic maps.
Meshes obtained by Dvinsky’s method enjoy desirable properties of harmonic maps,
particularly regularity or smoothness [15, 30].

Motivated by the work of Dvinsky, a moving mesh finite element strategy based
on harmonic mapping was proposed and studied by Li, Tang, and Zhang in [22].
The key idea of this strategy is to construct the harmonic map between the physical
space and a parameter space by an iteration procedure. This procedure is simple,
easy to program, and enables us to keep the map harmonic even after a long time
of numerical integration. In our approach, the overall method contains two parts: a
solution algorithm and a mesh selection algorithm. These two parts are independent
in the sense that the change of the PDEs will affect the first part only.

In this work, using the framework introduced in [22], we develop a moving mesh
scheme for solving the incompressible Navier–Stokes equations in the primitive vari-
ables formulation. To achieve our goal, the main effort is to design a divergence-free
interpolation which is essential for the incompressible problems. By some careful anal-
ysis, we conclude that this can be done by solving linearized, inviscid Navier–Stokes-
type equations. Some possible choices of the monitor function will be investigated,
which are also essential for the incompressible flow computations.

This paper is organized as follows. In section 2, we briefly describe a standard
mixed finite element method for solving the Navier–Stokes equations in the primitive
variables formulation. In section 3, a moving mesh scheme for solving the Navier–
Stokes equations is proposed. Since the monitor functions play important roles in the
moving mesh implementation, their possible choices are discussed in section 4. Nu-
merical experiments demonstrating the efficiency of the proposed numerical methods
are carried out in section 5. Concluding remarks are given in the final section.

2. A mixed finite element method. We consider a two-dimensional incom-
pressible Navier–Stokes equation in primitive variables formulation,

{

∂tu + u · ∇u = −∇p + ν∆u, in Ω,

∇ · u = 0, in Ω,
(2.1)

where u = (u, v) is the fluid velocity vector, p is the pressure, and ν is the kinematic
viscosity. Without loss of generality, let Ω be the unit square (0, 1) × (0, 1). For ease
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Fig. 1. A typical element κn. Here Ai is the middle point of the corresponding edge, and Ci

is the barycenter of the corresponding element.

of illustration, we consider a well-known periodic double shear layer problem so the
following periodic boundary condition is assumed:

u(x, 0; t) = u(x, 1; t), u(0, y; t) = u(1, y; t),(2.2a)

∂nu(x, 0; t) = ∂nu(x, 1; t), ∂nu(0, y; t) = ∂nu(1, y; t),(2.2b)

p(x, 0; t) = p(x, 1; t), p(0, y; t) = p(1, y; t).(2.2c)

Denote

V = H1(Ω)2 ∩ {v | v satisfies (2.2a)–(2.2b)},

P = L2
0(Ω) ∩ {q | q satisfies (2.2c)}.

The classical variational formulation for the Navier–Stokes equations (2.1) reads as
follows: Find a pair (u, p) in V × P such that

{

(∂tu,v) + (u · ∇u,v) = (p,∇ · v) − ν(∇u,∇v) ∀v ∈ V,

(q,∇ · u) = 0 ∀q ∈ P.
(2.3)

Assume the domain Ω is triangulated into a triangle mesh Th and the elements of
the triangulation are denoted as κ; see Figure 1 for a typical mesh setting. Let Vh

and Ph be two finite element spaces with triangulation parameter h such that

Vh ⊂ V, Ph ⊂ P.

Then (2.3) can be approximated as follows: Find a pair (uh, ph) ∈ Vh×Ph such that

{

(∂tuh,vh) + (uh · ∇uh,vh) = (ph,∇vh) − ν(∇uh,∇vh) ∀vh ∈ Vh,

(qh,∇ · uh) = 0 ∀qh ∈ Ph.
(2.4)

Let V be the subspace of H1(Ω) satisfying the periodic boundary condition, which
is a component of space V. Each velocity component is then approximated piecewise
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linearly on every triangle element, which forms a continuous finite element space
Vh ⊂ V . Denote Vh = (Vh)2. This is an order-one approximation for the velocity.
For the pressure p, we adopt the piecewise constant finite element space Ph ⊂ P on
the dual mesh of Th. Thus, the a priori error estimates of such an approximation are
known (see, e.g., [13, 14]),

‖u − uh‖1,Ω + ‖p− ph‖0,Ω ≤ C1h(|u|2,Ω + |p|1,Ω).(2.5)

Furthermore, if Ω is convex, then the above result can be further improved to

‖u − uh‖0,Ω ≤ C2h
2(|u|2,Ω + |p|1,Ω).(2.6)

In the temporal direction, a multistep Runge–Kutta scheme will be employed. Ac-
cording to E and Liu [11], for a convection-dominated problem (which is our interest),
the order of the Runge–Kutta scheme should be at least three in order to guarantee
the numerical stability. In this work, a three-step Runge–Kutta scheme is used,
∀(vh, qh) ∈ Vh × Ph:

1. Stage 1:

⎧

⎪

⎨

⎪

⎩

(

u1
h − u

(n)
h

∆t/3
,vh

)

+ (u
(n)
h · ∇u

(n)
h ,vh) = (p1

h,∇vh) − ν(∇u1
h,∇vh),

(∇ · u1
h, qh) = 0.

(2.7)

2. Stage 2:

⎧

⎪

⎨

⎪

⎩

(

u2
h − u

(n)
h

∆t/2
,vh

)

+ (u1
h · ∇u1

h,vh) = (p2
h,∇vh) − ν(∇u2

h,∇vh),

(∇ · u2
h, qh) = 0.

(2.8)

3. Stage 3:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

u
(n+1)
h − u

(n)
h

∆t
,vh

)

+ (u2
h · ∇u2

h,vh) = (p
(n+1)
h ,∇vh) − ν(∇u

(n+1)
h ,∇vh),

(∇ · u
(n+1)
h , qh) = 0.

(2.9)

It is noted that the above scheme needs only one set of intermediate variables. More-
over, the viscosity terms are treated implicitly and the nonlinear terms are treated
explicitly. It is known (see, e.g., [11]) that for problems with very small viscosities
(again, as is the case of our interest) an explicit Runge–Kutta treatment for the vis-
cosity terms is acceptable for time marching. However, if there is a thin internal
layer, as in our numerical examples, then the mesh needs to be highly adapted to
resolve such a layer, which will affect the choice of time step restriction of an explicit
method. To be more specific, let us take a one-dimensional viscous Burgers equation
with layer width O(ǫ) as an example. Roughly speaking, the time-step restriction
should satisfy ∆t ∼ min{∆tCFL,∆tvis}, where ∆tCFL is the standard CFL condition
and ∆tvis is the viscous time step in the layer regions. The viscous time step is defined



1040 YANA DI, RUO LI, TAO TANG, AND PINGWEN ZHANG

by ∆tvis ∼ ∆x2/ǫ, where ∆x is the mesh diameter in the layer region. For the viscous
Burgers equation with layer size O(ǫ), this implies that

∆x ∼ c1ǫ.(2.10)

It follows that if the proportional constant c1 is sufficiently small, then the time-step
restriction of an explicit method will be determined by the viscous time step rather
than the CFL condition. In moving mesh computations, the proportional constant c1
in (2.10) may be very small due to the mesh-moving effect. As a result, with an
explicit scheme the (very small) viscous time step has to be used. In this case, the
methods of handling the extremely small time steps include the use of locally varying
time steps (see, e.g., [31]) or an implicit treatment of the viscous terms. In this work,
the latter method is employed, which is quite standard in handling the incompressible
Navier–Stokes equations; see, e.g., [12, 19].

3. A moving mesh strategy. At time t = tn+1, a finite element solution

(u
(n+1)
h , p

(n+1)
h ) is obtained using the method described in the last section. Now the

question is how to obtain a new mesh T
(n+1)
h using this new solution and the old

mesh T
(n)
h . To this end, we extend the method proposed in [22, 23] to deal with the

incompressible flow problems in this section.
We follow the framework given in [22, 23] but highlight the main differences

and difficulties due to the incompressibility constraint. Roughly speaking, the mesh
generation scheme consists of the following three steps:

• Step 1: Solve the elliptic system

∇�x

(

m∇�x
�ξ
)

= 0(3.1)

together with the boundary conditions

�ξ(0, y) + (1, 0)T = �ξ(1, y), �ξ(x, 0) + (0, 1)T = �ξ(x, 1),(3.2a)

∂n

�ξ(0, y) = ∂n

�ξ(1, y), ∂n

�ξ(x, 0) = ∂n

�ξ(x, 1),(3.2b)

where the function m in (3.1) is a monitor function which is, in general,

dependent on the solution (u
(n+1)
h , p

(n+1)
h ). We assume m is given here; its

choice is crucial to the moving mesh method and is discussed in section 5.
• Step 2: Denote the initial (fixed uniform) mesh in the logical domain as Tc

(with nodes A(0)) and the new logical mesh obtained by solving (3.1)–(3.2)
as T ∗

c (with nodes A∗). Their difference,

δA = A(0) −A∗,(3.3)

is used to determine the displacement δXi in the physical domain. Then
select a suitable ratio-parameter µ, and move the old mesh in the physical
domain to a new one by using

X
(n+1)
i = X

(n)
i + µδXi.(3.4)

• Step 3: Update the numerical solution on the new mesh X
(n+1)
i using the

solution (u
(n+1)
h , p

(n+1)
h ) and the meshes X

(n)
i , X

(n+1)
i . It is important to

remain divergence-free in this updating (interpolation) step.
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3.1. Step 1: Obtain new logical mesh. In [22], the elliptic system (3.1) with
a Dirichlet boundary condition is solved. Since the present problem has a periodic
boundary condition (3.2), we first introduce a coordinate transformation,

�η = �ξ − �x.(3.5)

With this transformation, (3.1) becomes

∇�x (m∇�x�η) = ∇xm,(3.6)

and the boundary condition (3.2) becomes

�η(0, y) = �η(1, y), �η(x, 0) = �η(x, 1),(3.7a)

∂n�η(0, y) = ∂n�η(1, y), ∂n�η(x, 0) = ∂n�η(x, 1).(3.7b)

The above system can be written in a weak formulation as follows: Find �η ∈ V such
that

∫

Ω

m∇�x�η∇�x
�ζd�x =

∫

Ω

m∇�x
�ζd�x ∀�ζ ∈ V.(3.8)

The solution of this problem is unique subject to a constant vector. The weak formu-
lation for the above problem reads as follows: Find �ηh ∈ Vh such that

∫

Ω

m∇�x�ηh∇�x
�ζhd�x =

∫

Ω

m∇�x
�ζhd�x ∀ζh ∈ Vh.(3.9)

The solution of the above system is not unique in Vh, which will be handled by remov-
ing one row and one column from the resulting matrix and moving the corresponding
contributions to the right-hand side of the linear system. This implies that one of
node-points of the mesh is kept fixed. This fixed point can be chosen arbitrarily. In
our computation, it is chosen randomly. The resulting linear system is solved using a
Bi-CGSTAB solver [35] preconditioned with an incomplete LU decomposition [29].

After obtaining the solution of (3.9), the numerical solution for (3.1)–(3.2) can

be obtained using the transformation (3.5): �ξh = �ηh + �xh.

3.2. Step 2: Mesh-motion in physical domain. We first introduce some no-
tation. The triangulation of the physical domain is Th. The ith node is denoted by Xi,
and the set of elements containing the ith node is denoted by Ti. The correspond-
ing notations on the computational domain are Tc, Ai, and Ti,c, respectively. The
coordinates of the nodes Ai in the computational domain are denoted by (A1

i ,A
2
i )

T .
After finishing Step 1 in the last subsection, a new logical mesh T ∗

c with nodes A∗
i

is obtained. For a given element E ∈ Th, with XEk
, 0 ≤ k ≤ 2, as its vertices, the

piecewise linear map from VT ∗

c
(Ωc) to VT (Ω) has constant gradient on E and satisfies

the following linear system:

(

A∗,1
E1

−A∗,1
E0

A∗,1
E2

−A∗,1
E0

A∗,2
E1

−A∗,2
E0

A∗,2
E2

−A∗,2
E0

)

⎛

⎜

⎜

⎝

∂x1

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ1

∂x2

∂ξ2

⎞

⎟

⎟

⎠

=

(

X1
E1

−X1
E0

X1
E2

−X1
E0

X2
E1

−X2
E0

X2
E2

−X2
E0

)

.(3.10)
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Solving the above linear system gives ∂�x/∂ξ in E. If we take the volume of the element
as the weight, the weighted average displacement of X at the ith node is defined by

δXi =

∑

E∈Ti

|E|
∂�x

∂ξ

∣

∣

∣

∣

in E

δAi

∑

E∈Ti

|E|
,(3.11)

where |E| is the volume of the element E, and δA = A(0)−A∗ is the difference between
the fixed mesh Tc (with nodes A(0)) and the logical mesh T ∗

c (with nodes A∗). We
point out that once the initial mesh (in the logical domain) is given, it will be kept
unchanged throughout the computation. In other words, the initial mesh in the logical
domain Ωc is used as a reference mesh.

To avoid mesh tangling, a scale-parameter µ is used so that the nodes in the new
mesh T ∗ on the physical domain are taken as

X∗
i = Xi + µδXi.(3.12)

A simple method for choosing µ was proposed in [22, 23]. Here we give a more accurate
alternative. Given a triangle element Ei with vertex coordinates �x0, �x1, and �x2, as
well as the corresponding moving vectors δ �x0, δ �x1, and δ �x2 given by (3.11), let the
minimal positive root of the quadratic equation

det

(

1 1 1
�x0 + µδ�x0 �x1 + µδ�x1 �x2 + µδ�x2

)

= 0(3.13)

be µ∗
i . Then we set

µ = min(1, µ∗
i /2).(3.14)

It is obvious that such a choice of the scale-parameter can prevent mesh tangling.
Another issue for the mesh-motion in the physical domain is the boundary mesh

redistribution. With a periodic boundary condition, the physical domain does not
need to be fixed anymore (although the logical domain is kept fixed). We still use
(3.12) to perform the boundary mesh redistribution, but special care has to be taken
in computing δXi in (3.11) when Xi belongs to the boundary. In this case, the neigh-
boring points include not only those elements next to Xi but also those mirror points
on the corresponding opposite boundary; i.e., the periodic structure of the physi-
cal domain should be reflected here. This procedure will keep the physical domain
periodic, as will be seen in Figure 5.

3.3. Step 3: Divergence-free interpolation. In using the moving mesh meth-
od for incompressible flow simulations, it is essential to remain divergence-free in
the interpolation step. Below we propose a divergence-free-preserving interpolation
scheme, which is obtained by solving a simple convection equation whose convection
speed is the same as the mesh-moving speed. Assume that a finite element solution uh

in a finite element space Wh is uh = uiφ
i, where the standard summation convention

is used and φi is the basis function of Wh. We introduce a virtual time variable τ
and assume that in the mesh-moving process the basis function φi and the pointwise
value ui both depend on the virtual time variable τ , i.e., φi = φi(�x, τ), ui = ui(τ).
To be more precise, we introduce a continuous transformation

x(τ) = xold + τ(xnew − xold), τ ∈ [0, 1],(3.15)
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where xold and xnew are two sets of coordinates in the physical domain, which in the
discrete level satisfy xold

i = Xi and xnew
i = X∗

i . In particular, the change for the
discrete nodes is given by

xi(τ) = Xi + τ(X∗
i −Xi), τ ∈ [0, 1].(3.16)

With the linear transformation (3.15), the corresponding basis function and the point-
wise value can be defined by φi(τ) := φi(x(τ)) and ui(τ) := ui(x(τ)).

Assume the solution curve uh = φi(τ)ui(τ), τ ∈ [0, 1], is independent of τ ; namely,
it is unchanged in the mesh-moving process. This assumption leads to

∂τuh = 0.(3.17)

By direct computation we obtain

∂φi

∂τ
= −∇�xφ

i · δ�x,(3.18)

where δ�x := xnew − xold, which is well defined in the discrete level. It follows from
the above two equations that ∀ψ ∈ Wh

0 = (∂τuh, ψ)

= (φi∂τui + ui∂τφ
i, ψ)

= (φi∂τui − ui∇�xφ
i · δ�x, ψ)

= (∂τuh −∇�xuh · δ�x, ψ).(3.19)

It is seen that (3.19) is in fact the discretization of the convection problem

∂u

∂τ
−∇u · δ�x = 0 for u ∈ Wh.(3.20)

We now apply this formulation to the velocity field of an incompressible flow by letting
Wh be the divergence-free space

Wh = Vh ∩ {uh | ∇ · uh = 0}.(3.21)

Then (3.19) becomes the following: Find wh ∈ Wh such that

(∂τwh −∇�xwh · δ�x, zh) = 0 ∀zh ∈ Wh.(3.22)

The above result implies that

∂τwh −∇�xwh · δ�x ∈ Wh
⊥,(3.23)

where the right-hand side of the above equation denotes the orthogonal space of Wh

in L2. It follows from Theorem 2.7 of [13] that if the solution domain Ω is simply
connected, then

Wh
⊥ = {∇q | q ∈ H1(Ω)}.(3.24)

Using the above two results, we can show that solving (3.22) is equivalent to finding
(uh, ph) ∈ Vh × Ph such that

(∂τuh −∇�xuh · δ�x, vh) = (ph, ∇vh) ∀vh ∈ Vh,(3.25a)

(∇�x · u, qh) = 0 ∀qh ∈ Ph.(3.25b)
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It can be further concluded that solving (3.25) is equivalent to solving the following
system:

∂u

∂τ
−∇�xu · δ�x = −∇p,(3.26a)

∇�x · u = 0,(3.26b)

in some appropriate space. In practice, any appropriate numerical methods for solving
(3.26) can be used to realize the solution redistribution, although (3.25) is the most
straightforward approach in the present setting. The initial value for (3.25) and (3.26)
is the Navier–Stokes solutions at t = tn+1 obtained by using the mesh at t = tn.

Again, a three-step Runge–Kutta scheme similar to (2.7)–(2.9) is applied for the
temporal discretization:

1. Stage 1:
⎧

⎪

⎨

⎪

⎩

(

u1
h − u

(n)
h

∆τ/3
,vh

)

− (δ�x · ∇u
(n)
h ,vh) = (p1

h,∇vh),

(∇ · u1
h, qh) = 0,

(3.27)

2. Stage 2:
⎧

⎪

⎨

⎪

⎩

(

u2
h − u

(n)
h

∆τ/2
,vh

)

− (δ�x · ∇u1
h,vh) = (p2

h,∇vh),

(∇ · u2
h, qh) = 0,

(3.28)

3. Stage 3:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

u
(n)
h,∗ − u

(n)
h

∆τ
,vh

)

− (δ�x · ∇u2
h,vh) = (p

(n)
h,∗,∇vh),

(∇ · u
(n)
h,∗, qh) = 0,

(3.29)

where u
(n)
h and ph are the numerical solution of the Navier–Stokes equations at

t = tn+1 obtained using the mesh at t = tn, and u
(n)
h,∗ and p

(n)
h,∗ are the desired updated

solution at t = tn+1 on the new mesh. Again, the periodic boundary condition is
applied to the above scheme. In our computations, the virtual time step ∆τ is taken
as 1. In other words, we only use one marching step to realize the solution redistri-
bution. The reason for allowing the large time step is that the convection speed in
(3.25) or (3.26), namely δ�x, is very small. The speed for most of the nodes is as small
as O(h).

3.4. Spatial smoothing. In practice, it is common to use some temporal or
spatial smoothing on the monitor function or directly on the mesh to obtain smoother
meshes. One of the reasons for doing this is to avoid producing very singular meshes.
Several smoothing techniques have been proposed before. In this work, the smoothing
technique proposed in [22] is used.

• First, we interpolate the monitor function m from L2(Ω) into H1,h(Ω), namely
from piecewise constant to piecewise linear, by the following formula:

(πhm)|at P =

∑

P is vertex of e

m|e |e|

∑

P is vertex of e

|e|
.(3.30)
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• Second, we project it back into L2(Ω) by the following formula:

m|on e =
1

d + 1

∑

P is vertex of e

(πhm)at P ,(3.31)

where d is the dimension of Ω.
Our numerical experiments have shown that the total number of spatial smoothings
is proportional to the total number of elements used. For example, with a 40 × 40
mesh, 2–4 smoothings have to be used, while for an 80 × 80 mesh, 5–8 smoothings
are needed. One criterion used to determine these numbers is to require that the
maximum value of the monitor function is less than a given (large) number at each
time step, which can be achieved by several spatial smoothings.

4. Monitor functions. It is very important to choose a suitable monitor func-
tion; otherwise satisfactory adaptations cannot be obtained no matter how good a
moving mesh algorithm is. There are several possible choices of the monitor function
for the incompressible Navier–Stokes approximations. Let

m = 1/G,

where the scalar function m is used in (3.1). In previous computations [5, 6], there
have been several suggestions for the choice of G. One is based on the vorticity

G0 =
√

1 + α|ω|β ,(4.1)

where ω = ∇×u is the vorticity and α > 0 and β > 0 are user-defined constants. In [5],
it was demonstrated via numerical experiments that β = 4 gives good adaptation
results. We point out that in many cases the monitor functions involve some user-
defined parameters which have to be determined experimentally. This is the case for
the choice of β = 4 in [5] as well as for all of the numerical examples in the next
section. Obviously, some theoretical study on how to choose the parameters (or the
general forms of the monitor function) would be very useful. There have been some
efforts in this direction recently. For example, Huang and Sun [17] proposed two types
of monitor functions based on the asymptotic estimates of interpolation errors. Their
work seems useful in developing parameter-free monitor functions. It is obvious that
having more robust parameter-free monitors can make the moving mesh approach
more attractive.

Another natural choice for G is based on the gradient of the solution variables

G1(q) =
√

1 + α|∇q|β ,(4.2)

where q can be density for the Boussinesq equations [6, 10] or velocity for the gas
dynamics problems [32, 33]. For the test problems proposed by Brown and Min-
ion [3], considered in our numerical experiment section, the first velocity component
u is discontinuous. Therefore, it is natural to use the gradient of u in the monitor
function. However, as demonstrated at the end of section 5, although some desired
adaptation effects can be observed, the overall performance using the monitor G1(u)
is not satisfactory.

For a piecewise linear approximation vh to a function v, the following for-
mal a posteriori formula is adopted to approximate the computational error (see,
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e.g., [28]):

|v − vh|1,Ω ∽ η(vh) :=

√

∑

l: interior edge

∫

l

[∇vh · nl]|l
2
dl,

where [ · ]|l denotes the jump along the edge l,

[v]|l = v|l− − v|l+ .

It is natural to equally redistribute the numerical errors η(vh) in each element, which
can be done by choosing the monitor function G as

G2(vh) =
√

1 + αη2(vh).(4.3)

It is found in the numerical computations that the error η is very small in most
parts of the solution domain, which makes the choice of the parameter α difficult. To
overcome this difficulty, we use a scaling and a larger power β > 2 in the monitor

G3(vh) =

√

1 + α
[

η(vh)/max η(vh)
]β

.(4.4)

The above monitor has been found appropriate in our numerical experiments, which
can handle not only the so-called thick layer problems but also the thin layer problems.

5. Numerical results.

5.1. Accuracy test.

Example 5.1. The Navier–Stokes equations (2.1) are defined in the box [0, 2π] ×
[0, 2π] with periodic boundary conditions on both directions. The initial conditions

u(x, y, 0) = − cos(x) sin(y), v(x, y, 0) = sin(x) cos(y)(5.1)

give the following exact solutions for the velocity field:

u(x, y, t) = − cos(x) sin(y)e−2νt, v(x, y, t) = sin(x) cos(y)e−2νt.(5.2)

This example is used to check the accuracy of our moving mesh method when the
underling solutions are smooth. By considering the error estimates (2.5) and (2.6)
which hold for static (uniform) mesh computation, it is hoped that the errors for a
moving mesh algorithm are of the same convergence rate, namely, second order for
the velocity and first order for the pressure.

The moving mesh scheme described in the last section is applied to this test
problem. The monitor function used is the gradient-based monitor (4.2), where q
is chosen as the velocity vector and the parameters (α, β) are chosen as 5 and 2,
respectively. The l2-errors for the numerical velocity and vorticity with ν = 0.05 are
listed in Table 1. It is observed that a second order accuracy for velocity and first
order accuracy for the vorticity are obtained. Since the divergence-free requirement
is important in the computation, its errors and convergence rate are also listed in
Table 1. It is seen that a first order rate of convergence is achieved for the velocity
divergence.

It is noted that the exact solution (5.2) is time separable, and as a result the
moving mesh is time independent. Namely, the initial uniform mesh will be moved
to a nonuniform one at t = 0, which will remain almost the same at the later time.
In Figure 2, the streamline and the moving mesh are plotted at t = 1. It is seen that
this mesh is different with the initial uniform mesh.
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Table 1

Example 5.1: Accuracy check for the moving mesh solutions.

Accuracy of velocity
Mesh l2-error (t = 1) Order l2-error (t = 2) Order l2-error (t = 3) Order

20 × 20 1.16e-3 1.63e-3 1.78e-3
40 × 40 3.85e-4 2.02 4.13e-4 1.98 4.60e-4 1.96
80 × 80 8.74e-5 2.14 1.04e-4 1.98 1.19e-4 1.96

Accuracy of vorticity
Mesh l2-error (t = 1) Order l2-error (t = 2) Order l2-error (t = 3) Order

20 × 20 1.66e-1 1.50e-1 1.36e-1
40 × 40 8.40e-2 0.98 7.60e-2 0.98 6.88e-2 0.99
80 × 80 4.22e-2 0.99 3.82e-2 0.99 3.45e-2 0.99

Accuracy of divergence
Mesh l2-error (t = 1) Order l2-error (t = 2) Order l2-error (t = 3) Order

20 × 20 4.77e-2 4.33e-2 3.93e-2
40 × 40 2.31e-2 1.04 2.01e-2 1.05 1.89e-2 1.05
80 × 80 1.10e-2 1.07 9.97e-3 1.07 9.01e-3 1.07

Fig. 2. Example 5.1: Streamfunction (left) and mesh (right) at t = 1.

5.2. Double shear flow.

Example 5.2. Consider a double shear layer governed by the Navier–Stokes equa-
tions (2.1), in a unit one periodic domain, subject to the initial conditions

u0(x, y) =

{

tanh(ρ(y − 0.25)) for y ≤ 0.5,

tanh(ρ(0.75 − y)) for y > 0.5,

v0(x, y) = δ sin(2πx).

(5.3)

This problem is a canonical test problem for a scheme’s accuracy and resolution
in incompressible flows. Brown and Minion [3] performed a systematic comparison
for this problem between a number of schemes, concentrating on the effect of under-
resolution. They demonstrated that a Godunov-projection method performs as well
as an accurate central difference method in cases where the smallest flow scales are
well resolved. However, in underresolved cases where centered methods compute so-
lutions badly polluted with mesh-scale oscillations, the Godunov-projection method
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sometimes gives smooth, apparently physical solutions. It is found in [3] that these
underresolved solutions, although convergent when the grid is refined, contain spuri-
ous nonphysical vortices that are artifacts of the underresolution. It seems necessary
that powerful numerical methods have to be used to resolve the smallest flow scales,
which can be done by increasing the accuracy order of the numerical method (see,
e.g., [11, 24]) or by using an adaptive grid method. The goal of adaptive grid methods
is to resolve small flow scale by clustering more grid points in the smallest scale areas.

(a) (b)

(c) (d)

Fig. 3. Thick shear layer problem: Vorticity contours at t = 0.8, obtained by using a 40 × 40
mesh (left) and an 80 × 80 mesh (right). Top: Static mesh results. Bottom: Moving mesh results.
Layer width parameter ρ = 30; viscosity ν = 1/10,000.

In (5.3), the parameter ρ determines the slope of the shear layer, and δ represents
the size of the perturbation. The initial layer rolls up in time into strong vortical
structures. In our computations, the perturbation size used is δ = 0.05, but the
shear layer width is varied in order to study the effect of the layer resolution on the
computations.

5.2.1. Thick layer problem. As in [3], the double layer shear is called a thick

layer problem when ρ = 30 and ν = 10−4. In this computation, we use the monitor
function of the form (4.3). Two meshes are used: a 40×40 mesh and an 80×80 mesh.
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Fig. 4. Vorticity contours for the thick shear layer at t = 1.2, obtained by using a 40 × 40
moving mesh (left) and an 80 × 80 moving mesh (right). Layer width parameter ρ = 30; viscosity
ν = 1/10,000.

On both meshes, the parameter α is chosen as 104. In fact, it is not sensitive as long
as it is about O(104). The large value of α can be reduced to O(10) when a scaling
factor is used, as seen in (4.4). For example, with the 40 × 40 mesh, the feasible
parameters of (α, β) are (80, 2), and with the 80 × 80 mesh, the feasible parameters
are (40, 2). The moving mesh results with the monitor functions (4.3) and (4.4) are
found in good agreement.

Figure 5 shows the adaptive meshes for the thick shear layer with 40 × 40 and
80× 80 meshes at t = 0.8 and 1.2. It is expected that the meshes obtained by a good
moving mesh method can represent some useful features of the numerical solutions.
This is indeed the case by comparing Figures 3, 4, and 5. It also can be clearly
observed that more grid points have been clustered in the regions where the solutions
vary rapidly.

The layout of the mesh plots is quite interesting. Since the solution of our test
problem is periodic, the moving meshes are also generated in the periodic setting;
see section 3.2. Using the periodic natures, both the mesh and the corresponding
solutions (velocity, vorticity, etc.) can be easily mapped back to the unit domain.
It is noted that with periodic boundary conditions Brackbill and Saltzman [2] also
obtained an “irregular” mesh layout very similar to those in Figure 5.

In closing this subsection, we demonstrate the convergence rate of our finite ele-
ment method described in section 2 for the thick shear layer problem. Since the exact
solution is not known, the errors are estimated by using the Richardson extrapolation
method on the uniform mesh. This technique was proposed by [3]. To make the com-
parison meaningful, the same parameters of (α, β) are used in the monitor function
(4.4), namely, (α, β) = (40, 2). Table 2 shows the convergence rate estimates for the
velocities, and as expected the order of convergence is two.

5.2.2. Thin layer problem. We now consider Example 5.2 with a thinner shear
layer: ρ = 100 and ν = 1/20,000. It was demonstrated in [3] that this is a challenging
problem. If the mesh is not fine enough, then spurious vortices will be generated in
the numerical solutions. It was concluded in [3] that with the second order Godunov-
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Fig. 5. Thick shear layer problem: Adaptive meshes 40 × 40 (left) and 80 × 80 (right) mesh
resolution. Top: t = 0.8. Bottom: t = 1.2.

projection methods about 512×512 cells have to be used in order to obtain reasonable
approximations.

In the thin layer calculations, we tested the monitor functions (4.3) and (4.4).
Our goal is to use about 150×150 cells to resolve the thin layer problem. However, it
is found that the monitor (4.3) does not perform well to achieve this goal, while the
monitor (4.4) works well. Three mesh resolutions are used: 80 × 80, 100 × 100, and
160 × 160. The parameters (α, β) in (4.4) used for the three meshes are (5, 2), (5, 3),
and (8, 4), respectively.

Figure 6 shows the vorticity contours at t = 0.8 computed with the moving mesh
method on the three mesh resolutions. For comparison, a uniform mesh solution with
a 160× 160 mesh is also included. It is clear that on the coarser grid the appearance
of the moving mesh solution is distinct from the finest mesh reference solutions given
in [3]. The 80 × 80 moving mesh solution and the 160 × 160 uniform mesh solution
both give spurious vortices, developing additional roll-ups in the shear layer. This is
clearly the underresolution effect. However, when the mesh is refined, the spurious
vortices disappear and the numerical solutions converge to a double shear layer with
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(a) (b)

(c) (d)

Fig. 6. Thin shear layer problem: Vorticity contours at t = 0.8 obtained by using moving mesh
methods with resolution (b): 80 × 80, (c): 100 × 100, and (d): 160 × 160. A 160 × 160 static mesh
solution is included in (a). Layer width parameter ρ = 100; viscosity ν = 1/20,000. Contours are
from −70 to 70 by 10.

a single roll-up, as shown in Figures 6 (c) and (d).

The meshes generated by the moving mesh methods at two different times are
shown in Figure 7. Again it is observed that more grid points have been clustered
inside the shear layer and the roll-ups where the solutions have large solution varia-
tions. Figure 8 shows the velocity-divergence at t = 0.8 obtained with a 160 × 160
mesh. As expected, the divergence-free requirement is satisfied away from the areas
with large solution variation, and the overall divergence-free property is kept quite
small.

Figure 9 shows the vorticity contours at a larger time, t = 1.2, with two mesh
resolutions. The convergence of the moving mesh solutions is observed, and the
solutions can be well compared with the finest mesh solutions in [3].

5.2.3. More on monitor functions. Before closing this section we make some
comments on the other two possible monitors discussed in section 4, namely, the vor-
ticity monitor (4.1) and the gradient-based monitor (4.2). Our numerical experiments
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Fig. 7. Thin shear layer problem: The mesh at t = 0.8 (left) and t = 1.2 (right) with a 100×100
mesh. Layer width parameter ρ = 100; viscosity ν = 1/20,000.
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Fig. 8. Thin shear layer problem: The divergence of the velocity field at t = 0.8 with a 160×160
mesh. Layer width parameter ρ = 100; viscosity ν = 1/20,000.

have shown that both of them are less satisfactory. Although they can improve the
uniform mesh solutions, the improvement is not as significant as with the use of (4.3)
and (4.4). To show an example, the thick layer problem is computed at t = 0.8 with
a 40 × 40 mesh using the velocity-gradient monitor G1(u). The corresponding mesh
and vorticity are shown in Figure 10. The moving mesh effect in this figure is clearly
less satisfactory compared with that in Figure 3(c) (the solution) and Figure 5(a) (the
mesh).
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Fig. 9. Thin shear layer problem: Vorticity contours at t = 1.2 with resolution 100× 100 (left)
and 160 × 160 (right). Layer width parameter ρ = 100; viscosity ν = 1/20,000. Contours are from
−70 to 70 by 10.

Fig. 10. Thick shear layer problem: Vorticity (left) and mesh (right) contours at t = 0.8,
obtained by using a 40× 40 mesh with the velocity-gradient monitor (4.2). The results indicate that
this monitor is not as effective as the error-based monitor (4.3) or (4.4).

Table 2

Example 5.2: l2-error and convergence rate for the moving mesh solutions of the velocity. In
each case, the error was estimated using the Richardson extrapolation between two meshes (columns
labeled, e.g., 20–40). The convergence rate exponent was then estimated from these values by com-
paring adjacent error estimates (columns labeled “rate”).

Time 20–40 40–80 Rate 80–160 Rate 160–320 Rate
0.4 2.48e-2 5.88e-3 2.08 1.17e-3 2.32 3.90e-4 1.59
0.8 1.17e-1 3.00e-2 1.96 6.60e-3 2.19 1.72e-3 1.94
1.2 1.36e-1 3.00e-2 2.18 5.78e-3 2.38 1.62e-3 1.84

6. Concluding remarks. This work presents an effective moving mesh algo-
rithm for solving the incompressible Navier–Stokes equations in the primitive vari-
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ables formulation. One of the main contributions is that we propose a (continu-
ous) divergence-free interpolation which solves a linearized inviscid Navier–Stokes-
type equation (3.26). A careful numerical study is presented for a double shear layer
problem by using the proposed moving mesh algorithm.

Most of the solution contours are for the vorticity functions which are recovered
by using the straightforward differentiation to the velocity. Since the flow field solver
used is of second order accuracy, the computed vorticity is of first order accuracy
only. Even with such a low accuracy, the plots for the vorticity of the moving mesh
solutions are of very good quality. The extremely thin layer problems can be well
resolved by a 160 × 160 mesh.

There are several ways to further improve the efficiency of the proposed scheme.
One is to apply the moving mesh technique with some more efficient and robust
finite element solvers for the incompressible Navier–Stokes equations, such as those
developed in [12, 19]. It is useful to have some efficient solvers which are robust for a
large Reynolds number and large ratio of the element volume.

Finally, we comment on the difference between the proposed method and the
arbitrary Lagrangian–Eulerian (ALE) [16, 18] or deforming space-time mesh ap-
proaches [34]. In ALE representations, a grid is established where the cells can move
and distort, but the nodes and cell interfaces are not constrained to move only at the
local fluid velocity. Thus the grid can track the flow in a Lagrangian manner in some
regions but allows the fluid to cross the grid in other regions. ALE is often very useful
for solving flows with sharp interfaces between fluids with different properties. On the
other hand, it often happens that the grid becomes so distorted in an ALE solution
that further motion within the flow must be prohibited in extended regions [16]. Our
method is based on an Eulerian setting, which solves the Navier–Stokes equations in
a standard Eulerian system. Since the Lagrangian representation is not used, dis-
torted grids are not seen in the moving mesh algorithms. In the deforming space-time
mesh approaches [34], the finite element formulations of the governing equations are
written over the space-time domain of the equation. Consequently, changes in the
shape of the spatial domain due to the motion of the boundaries and interfaces are
taken into account automatically. At each time step, the spatial domain occupied by
the fluid changes its shape and some new elements/nodes may be generated, which
are in contrast with the present moving mesh approach. It is pointed out that due to
the periodic nature of the solutions the spatial domain seems deformable in our com-
putations; see, e.g., Figure 3 and [2]. Even in this case, the overall area of the solution
domain for the spatial domain is fixed. When the boundary conditions are nonperiodic
(Dirichlet or Neumann), the geometry of the physical domain is unchanged. This is
also different with the deformable space-time approach.

An animation related to the numerical simulations in this work can be viewed on
the following website: http://www.math.hkbu.edu.hk/∼ttang/MMmovie/NS.
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