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Abstract—Object detection is a fundamental step for automated video analysis in many vision applications. Object detection in a video

is usually performed by object detectors or background subtraction techniques. Often, an object detector requires manually labeled

examples to train a binary classifier, while background subtraction needs a training sequence that contains no objects to build a

background model. To automate the analysis, object detection without a separate training phase becomes a critical task. People have

tried to tackle this task by using motion information. But existing motion-based methods are usually limited when coping with complex

scenarios such as nonrigid motion and dynamic background. In this paper, we show that the above challenges can be addressed in a

unified framework named DEtecting Contiguous Outliers in the LOw-rank Representation (DECOLOR). This formulation integrates

object detection and background learning into a single process of optimization, which can be solved by an alternating algorithm

efficiently. We explain the relations between DECOLOR and other sparsity-based methods. Experiments on both simulated data and

real sequences demonstrate that DECOLOR outperforms the state-of-the-art approaches and it can work effectively on a wide range of

complex scenarios.

Index Terms—Moving object detection, low-rank modeling, Markov Random Fields, motion segmentation

Ç

1 INTRODUCTION

AUTOMATED video analysis is important for many vision
applications, such as surveillance, traffic monitoring,

augmented reality, vehicle navigation, etc. [1], [2]. As
pointed out in [1], there are three key steps for automated
video analysis: object detection, object tracking, and beha-
vior recognition. As the first step, object detection aims to
locate and segment interesting objects in a video. Then, such
objects can be tracked from frame to frame, and the tracks
can be analyzed to recognize object behavior. Thus, object
detection plays a critical role in practical applications.

Object detection is usually achieved by object detectors
or background subtraction [1]. An object detector is often a
classifier that scans the image by a sliding window and
labels each subimage defined by the window as either object
or background. Generally, the classifier is built by offline
learning on separate datasets [3], [4] or by online learning
initialized with a manually labeled frame at the start of a
video [5], [6]. Alternatively, background subtraction [7]
compares images with a background model and detects the
changes as objects. It usually assumes that no object appears
in images when building the background model [8], [2].
Such requirements of training examples for object or
background modeling actually limit the applicability of
above-mentioned methods in automated video analysis.

Another category of object detection methods that can
avoid training phases are motion-based methods [1], [2],
which only use motion information to separate objects from
the background. The problem can be rephrased as follows:
Given a sequence of images in which foreground objects are
present and moving differently from the background, can we
separate the objects from the background automatically? Fig. 1a
shows such an example, where a walking lady is always
present and recorded by a handheld camera. The goal is to
take the image sequence as input and directly output a
mask sequence of the walking lady.

The most natural way for motion-based object detection
is to classify pixels according to motion patterns, which is
usually named motion segmentation [9], [10]. These
approaches achieve both segmentation and optical flow
computation accurately and they can work in the presence
of large camera motion. However, they assume rigid motion
[9] or smooth motion [10] in respective regions, which is not
generally true in practice. In practice, the foreground motion
can be very complicated with nonrigid shape changes. Also,
the background may be complex, including illumination
changes and varying textures such as waving trees and sea
waves. Fig. 1b shows such a challenging example. The video
includes an operating escalator, but it should be regarded as
background for human tracking purpose. An alternative
motion-based approach is background estimation [11], [12].
Different from background subtraction, it estimates a
background model directly from the testing sequence.
Generally, it tries to seek temporal intervals inside which
the pixel intensity is unchanged and uses image data from
such intervals for background estimation. However, this
approach also relies on the assumption of static background.
Hence, it is difficult to handle the scenarios with complex
background or moving cameras.
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In this paper, we propose a novel algorithm for moving
object detection which falls into the category of motion-
based methods. It solves the challenges mentioned above in
a unified framework named DEtecting Contiguous Outliers
in the LOw-rank Representation (DECOLOR). We assume
that the underlying background images are linearly
correlated. Thus, the matrix composed of vectorized video
frames can be approximated by a low-rank matrix, and the
moving objects can be detected as outliers in this low-rank
representation. Formulating the problem as outlier detec-
tion allows us to get rid of many assumptions on the
behavior of foreground. The low-rank representation of
background makes it flexible to accommodate the global
variations in the background. Moreover, DECOLOR per-
forms object detection and background estimation simulta-
neously without training sequences. The main contributions
can be summarized as follows:

1. We propose a new formulation of outlier detection
in the low-rank representation in which the outlier
support and the low-rank matrix are estimated
simultaneously. We establish the link between our
model and other relevant models in the framework
of Robust Principal Component Analysis (RPCA)
[13]. Differently from other formulations of RPCA,
we model the outlier support explicitly. DECOLOR
can be interpreted as ‘0-penalty regularized RPCA,
which is a more faithful model for the problem of
moving object segmentation. Following the novel
formulation, an effective and efficient algorithm is
developed to solve the problem. We demonstrate
that, although the energy is nonconvex, DECOLOR
achieves better accuracy in terms of both object
detection and background estimation compared
against the state-of-the-art algorithm of RPCA [13].

2. In other models of RPCA, no prior knowledge on the
spatial distribution of outliers has been considered.
In real videos, the foreground objects usually are
small clusters. Thus, contiguous regions should be
preferred to be detected. Since the outlier support is
modeled explicitly in our formulation, we can
naturally incorporate such contiguity prior using
Markov Random Fields (MRFs) [14].

3. We use a parametric motion model to compensate
for camera motion. The compensation of camera
motion is integrated into our unified framework and
computed in a batch manner for all frames during
segmentation and background estimation.

The MATLAB implementation of DECOLOR, experi-
mental data, and more results are publicly available at
http://bioinformatics.ust.hk/decolor/decolor.html.

2 RELATED WORK

Previous methods for object detection are vast, including

object detectors (supervised learning), image segmentation,
background subtraction, etc., [1]. Our method aims to
segment objects based on motion information and it
comprises a component of background modeling. Thus,
motion segmentation and background subtraction are the

most related topics to this paper.

2.1 Motion Segmentation

Inmotion segmentation, themoving objects are continuously
present in the scene, and the backgroundmay also move due
to cameramotion. The target is to separate different motions.

A common approach for motion segmentation is to
partition the dense optical-flow field [15]. This is usually

achieved by decomposing the image into different motion
layers [16], [17], [10]. The assumption is that the optical-flow
field should be smooth in each motion layer, and sharp
motion changes only occur at layer boundaries. Dense optical
flow and motion boundaries are computed in an alternating

manner named motion competition [10], which is usually
implemented in a level set framework. A similar scheme is
later applied to dynamic texture segmentation [18], [19], [20].
While high accuracy can be achieved in these methods,
accuratemotion analysis itself is a challenging task due to the

difficulties raised by aperture problem, occlusion, video
noises, etc. [21]. Moreover, most of the motion segmentation
methods require object contours to be initialized and the
number of foreground objects to be specified [10].

An alternative approach for motion segmentation tries to

segment the objects by analyzing point trajectories [9], [22],
[23], [24]. Some sparse feature points are first detected and
tracked throughout the video and then separated into
several clusters via subspace clustering [25] or spectral
clustering [24]. The formulation is mathematically elegant

and it can handle large camera motion. However, these
methods require point trajectories as input and only output
a segmentation of sparse points. The performance relies on
the quality of point tracking and postprocessing is needed
to obtain the dense segmentation [26]. Also, they are limited

when dealing with noisy data and nonrigid motion [25].

2.2 Background Subtraction

In background subtraction, the general assumption is that a
backgroundmodel can be obtained from a training sequence
that does not contain foreground objects. Moreover, it

usually assumes that the video is captured by a static camera
[7]. Thus, foreground objects can be detected by checking the
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Fig. 1. Two examples to illustrate the problem. (a) A sequence of 40 frames, where a walking lady is recorded by a handheld camera. From left to

right are the first, 20th, and 40th frames. (b) A sequence of 48 frames clipped from a surveillance video at the airport. From left to right are the first,

24th, and 48th frames. Notice that the escalator is moving. The objective is to segment the moving people automatically without extra inputs.



difference between the testing frame and the background
model built previously.

A considerable number of works have been done on
background modeling, i.e., building a proper representation
of the background scene. Typical methods include single
Gaussian distribution [27], Mixture of Gaussian (MoG) [28],
kernel density estimation [29], [30], block correlation [31],
codebook model [32], Hidden Markov model [33], [34], and
linear autoregressive models [8], [35], [36].

Learning with sparsity has drawn a lot of attention in
recent machine learning and computer vision research [37],
and several methods based on the sparse representation for
backgroundmodeling have been developed. One pioneering
work is the eigen backgroundsmodel [38], where the principal
component analysis (PCA) is performed on a training
sequence. When a new frame arrives, it is projected onto
the subspace spanned by the principal components, and the
residues indicate the presence of new objects. An alternative
approach that can operate sequentially is sparse signal
recovery [39], [40], [41]. Background subtraction is formu-
lated as a regression problem with the assumption that a
new-coming frame should be sparsely represented by a
linear combination of preceding frames except for fore-
ground parts. These models capture the correlation between
video frames. Thus, they can naturally handle global
variations in the background such as illumination change
and dynamic textures.

Background subtractionmethodsmentioned above rarely
consider the scenario where the objects appear at the start
and are continuously present in the scene (i.e., the training
sequence is not available). Very little literature considers the
problem of background initialization [11], [42]. Most of them
seek a stable interval, inside which the intensity is relatively
smooth for each pixel independently. Pixels during such
intervals are regarded as background, and the background
scene is estimated from these intervals. The validity of this
approach relies on the assumption of static background.
Thus, it is limited when processing dynamic background or
videos captured by a moving camera.

3 CONTIGUOUS OUTLIER DETECTION IN THE

LOW-RANK REPRESENTATION

In this section, we focus on the problem of detecting
contiguous outliers in the low-rank representation. We first
consider the case without camera motion. We will discuss
the scenarios with moving cameras in Section 4.

3.1 Notations

In this paper, we use following notations. Ij 2 IRm denotes
the jth frame of a video sequence, which is written as a
column vector consisting of m pixels. The ith pixel in the
jth frame is denoted as ij. D ¼ ½I1; . . . ; In� 2 IRm�n is a
matrix representing all n frames of a sequence. B 2 IRm�n is
a matrix with the same size of D, which denotes the
underlying background images. S 2 f0; 1gm�n is a binary
matrix denoting the foreground support:

Sij ¼ 0; if ij is background
1; if ij is foreground:

�

ð1Þ

We use PSðXÞ to represent the orthogonal projection of a
matrix X onto the linear space of matrices supported by S,

PSðXÞði; jÞ ¼ 0; if Sij ¼ 0

Xij; if Sij ¼ 1;

�

ð2Þ

and PS?ðXÞ to be its complementary projection, i.e.,
PSðXÞ þ PS?ðXÞ ¼ X.

Four norms of a matrix are used throughout this paper.
kXk0 denotes the ‘0-norm, which counts the number of
nonzero entries. kXk1 ¼

P

ij jXijj denotes the ‘1-norm.
kXkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ij X
2
ij

q

is the Frobenius norm. kXk� means the
nuclear norm, i.e., sum of singular values.

3.2 Formulation

Given a sequence D, our objective is to estimate the
foreground support S as well as the underlying background
images B. To make the problem well posed, we have the
following models to describe the foreground, the back-
ground, and the formation of observed signal.

Background model. The background intensity should be
unchanged over the sequence except for variations arising
from illumination change or periodical motion of dynamic
textures.1 Thus, background images are linearly correlated
with each other, forming a low-rank matrix B. Besides the
low-rank property, we don’t make any additional assump-
tion on the background scene. Thus, we only impose the
following constraint on B:

rankðBÞ � K; ð3Þ
where K is a constant to be predefined. Intrinsically, K
constrains the complexity of the background model. We
will discuss more on this parameter in Section 5.1.

Foreground model. The foreground is defined as any
object that moves differently from the background. Fore-
ground motion gives intensity changes that cannot be fitted
into the low-rank model of background. Thus, they can be
detected as outliers in the low-rank representation. Gen-
erally, we have a prior that foreground objects should be
contiguous pieces with relatively small size. The binary
states of entries in foreground support S can be naturally
modeled by a Markov Random Field [43], [14]. Consider a
graph G ¼ ðV; EÞ, where V is the set of vertices denoting all
m� n pixels in the sequence and E is the set of edges
connecting spatially or temporally neighboring pixels.
Then, the energy of S is given by the Ising model [14]:

X

ij2V
uijðSijÞ þ

X

ðij;klÞ2E
�ij;kljSij � Sklj; ð4Þ

where uij denotes the unary potential of Sij being 0 or 1, and
the parameter �ij;kl > 0 controls the strength of dependency
between Sij and Skl. To prefer Sij ¼ 0 that indicates sparse
foreground, we define the unary potential uij as

uijðSijÞ ¼ 0; if Sij ¼ 0

�ij; if Sij ¼ 1;

�

ð5Þ

where the parameter �ij > 0 penalizes Sij ¼ 1. For simpli-
city, we set �ij and �ij;kl as constants over all locations. That
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1. Background motion caused by moving cameras will be considered in
Section 4.



is, �ij ¼ � and �ij;kl ¼ �, where � > 0 and � > 0 are positive
constants. This means that we have no additional prior
about the locations of objects.

Signal model. The signal model describes the formation
ofD, givenB and S. In the background regionwhere Sij ¼ 0,
we assume that Dij ¼ Bij þ �ij, where �ij denotes i.i.d.
Gaussian noise. That is, Dij � NðBij; �

2Þ, with �2 being the
variance of Gaussian noise. Thus, Bij should be the best
fitting to Dij in the least squares sense when Sij ¼ 0. In the
foreground regions where Sij ¼ 1, the background scene is
occluded by the foreground. Thus,Dij equals the foreground
intensity. Since we don’t make any assumption about the
foreground appearance,Dij is not constrained when Sij ¼ 1.

Combining above three models, we propose to minimize
the following energy to estimate B and S:

min
B;Sij2f0;1g

1

2

X

ij:Sij¼0
ðDij �BijÞ2

þ �
X

ij

Sij þ �
X

ðij;klÞ2E
jSij � Sklj;

s:t: rankðBÞ � K:

ð6Þ

This formulation says that the background images should
form a low-rank matrix and fit the observed sequence in the
least squares sense except for foreground regions that are
sparse and contiguous.

To make the energy minimization tractable, we relax the
rank operator onBwith the nuclear norm. The nuclear norm
has proven to be an effective convex surrogate of the rank
operator [44]. Moreover, it can help to avoid overfitting,
which will be illustrated by experiments in Section 5.1.2.

Writing (6) in its dual form and introducing matrix
operators, we obtain the final form of the energy function:

min
B;Sij2f0;1g

1

2
kPS?ðD�BÞk2F þ �kBk�

þ �kSk1 þ � kAvecðSÞk1:
ð7Þ

Here, A is the node-edge incidence matrix of G, and � > 0 is
a parameter associated withK, which controls the complex-
ity of the background model. Proper choice of �, �, and �
will be discussed in detail in Section 3.3.3.

3.3 Algorithm

The objective function defined in (7) is nonconvex and it
includes both continuous and discrete variables. Joint
optimization over B and S is extremely difficult. Hence,
we adopt an alternating algorithm that separates the energy
minimization over B and S into two steps. B-step is a
convex optimization problem and S-step is a combinatorial
optimization problem. It turns out that the optimal
solutions of B-step and S-step can be computed efficiently.

3.3.1 Estimation of the Low-Rank Matrix B

Given an estimate of the support Ŝ, the minimization in (7)
over B turns out to be the matrix completion problem [45]:

min
B

1

2
kPŜ?ðD�BÞk2F þ �kBk�: ð8Þ

This is to learn a low-rank matrix from partial observations.
The optimal B in (8) can be computed efficiently by the

SOFT-IMPUTE algorithm [45], which makes use of the
following lemma [46]:

Lemma 1. Given a matrix Z, the solution to the optimization
problem

min
X

1

2
kZ �Xk2F þ �kXk� ð9Þ

is given by X̂ ¼ ��ðZÞ, where �� means the singular value
thresholding

��ðZÞ ¼ U��V
T : ð10Þ

Here, �� ¼ diag½ðd1 � �Þþ; . . . ; ðdr � �Þþ�, U�V T is the
SVD of Z, � ¼ diag½d1; . . . ; dr�, and tþ ¼ maxðt; 0Þ.

Rewriting (8), we have

min
B

1

2
kPŜ?ðD�BÞk2F þ �kBk�

¼ min
B

1

2
k½PŜ?ðDÞ þ PŜðBÞ� �Bk2F þ �kBk�:

ð11Þ

Using Lemma 1, the optimal solution to (8) can be obtained
by iteratively using

B̂ ��ðPŜ?ðDÞ þ PŜðB̂ÞÞ ð12Þ

with arbitrarily initialized B̂. Please refer to [45] for the
details of SOFT-IMPUTE and the proof of its convergence.

3.3.2 Estimation of the Outlier Support S

Next, we investigate how to minimize the energy in (7) over
S given the low-rank matrix B̂. Noticing that Sij 2 f0; 1g,
the energy can be rewritten as follows:

1

2
kPS?ðD� B̂Þk2F þ �kSk1 þ �kA vecðSÞk1

¼ 1

2

X

ij

ðDij � B̂ijÞ2ð1� SijÞ þ �
X

ij

Sij þ �kA vecðSÞk1

¼
X

ij

� � 1

2
ðDij � B̂ijÞ2

� �

Sij þ �kA vecðSÞk1 þ C;

ð13Þ
where C ¼ 1

2

P

ij ðDij � B̂ijÞ2 is a constant when B̂ is fixed.
The above energy is in the standard form of the first-order
MRFs with binary labels, which can be solved exactly using
graph cuts [47], [48].

Ideally, both spatial and temporal smoothness can be
imposed by connecting all pairs of nodes in G which
correspond to all pairs of spatially or temporally neighbor-
ing pixels in the sequence. However, this will make G
extremely large and difficult to solve. In implementation,
we only connect spatial neighbors. Thus, G can be
separated into subgraphs of single images, and the graph
cuts can be operated for each image separately. This
dramatically reduces the computational cost. Based on
our observation, the spatial smoothness is sufficient to
obtain satisfactory results.

3.3.3 Parameter Tuning

The parameter � in (7) controls the complexity of the
background model. A larger � gives a B̂ with smaller

600 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 3, MARCH 2013



nuclear norm. In our algorithm, we first give a rough
estimate to the rank of the background model, i.e., K in (6).
Then, we start from a large �. After each run of SOFT-
IMPUTE, if rankðB̂Þ � K, we reduce � by a factor �1 < 1

and repeat SOFT-IMPUTE until rankðB̂Þ > K. Using warm-
start, this sequential optimization is efficient [45]. In our
implementation, we initialize � to be the second largest
singular value of D, and �1 ¼ 1=

ffiffiffi

2
p

.
The parameter � in (7) controls the sparsity of the outlier

support. From (13), we can see that Ŝij is more likely to be 1
if 1

2
ðDij � B̂ijÞ2 > �. Thus, the choice of � should depend on

the noise level in images. Typically, we set � ¼ 4:5�̂2, where
�̂2 is estimated online by the variance of Dij � B̂ij. Since the
estimation of B̂ and �̂ is biased at the beginning iterations,
we propose to start our algorithm with a relatively large �,
and then reduce � by a factor �2 ¼ 0:5 after each iteration
until � reaches 4:5�̂2. In other words, we tolerate more error
in model fitting at the beginning since the model itself is not
accurate enough. With the model estimation getting better
and better, we decrease the threshold and declare more and
more outliers.

In conclusion, we only have two parameters to choose,
i.e., K and �. In Section 5.1.2, we will show that DECOLOR
performs stably if K and � are in proper ranges. In all our
experiments, we let K ¼ ffiffiffi

n
p

and � ¼ � and 5� for
simulation and real sequences, respectively.

3.3.4 Convergence

For fixed parameters, we always minimize a single lower
bounded energy in each step. The convergence property of
SOFT-IMPUTE has been proven in [45]. Therefore, the
algorithm must converge to a local minimum. For adaptive
parameter tuning, our strategy guarantees that the coeffi-
cients (�; �; �) keep decreasing for each change. Thus, the
energy in (7) decreases monotonically with the algorithm
running. Furthermore, we can manually set lower bounds
for both � and � to stop the iteration. Empirically,
DECOLOR converges in about 20 iterations for a conver-
gence precision of 10�5.

3.4 Relation to Other Methods

3.4.1 Robust Principal Component Analysis

RPCA has drawn a lot of attention in computer vision [49],
[50]. Recently, the seminal work [13] showed that, under
some mild conditions, the low-rank model can be recovered
from unknown corruption patterns via a convex program
named Principal Component Pursuit (PCP). The examples
in [13] demonstrate the superior performance of PCP
compared with previous methods of RPCA and its
promising potential for background subtraction.

As discussed in [13], PCP can be regarded as a special
case of the following decomposition model:

D ¼ Bþ E þ �; ð14Þ
where B is a low-rank matrix, E represents the intensity
shift caused by outliers, and � denotes the Gaussian noise.
PCP only seeks for the low-rank and sparse decomposition
D ¼ Bþ E without considering �. Recently, Stable Principal
Component Pursuit (SPCP) has been proposed [51]. It
extends PCP [13] to handle both sparse gross errors and

small entrywise noises. It tries to find the decomposition by
minimizing the following energy:

min
B;E

1

2
kD�B�Ek2F þ � rankðBÞ þ �kEk0: ð15Þ

To make the optimization tractable, (15) is relaxed by
replacing rankðBÞ with kBk� and kEk0 with kEk1 in PCP or
SPCP. Thus, the problem turns out to be convex and can be
solved efficiently via convex optimization. However, the ‘1
relaxation requires that the distribution of corruption
should be sparse and random enough, which is not
generally true in the problem of motion segmentation.
Experiments in Section 5 show that PCP is not robust
enough when the moving objects take up relatively large
and contiguous space of the sequence.

Next, we shall explain the relation between our formula-
tion in (7) and the formulation in (15). It is easy to see that,
as long as Eij 6¼ 0, we must have Eij ¼ Dij �Bij to
minimize (15). Thus, (15) has the same minimizer with the
following energy:

min
B;E

1

2

X

ij:Eij¼0
ðDij �BijÞ2 þ � rankðBÞ þ �kEk0: ð16Þ

The first term in (16) can be rewritten as 1
2
kPS?ðD�BÞk2F .

Noticing that kEk0 ¼ kSk1 and replacing rankðBÞwith kBk�,
(16) can be finally rewritten as (7) if the last smoothness
term in (7) is ignored.

Thus, DECOLOR can be regarded as a special form of
RPCA where the ‘0-penalty on E is not relaxed and the
problem in (15) is converted to the optimization over S in
(6). One recent work [52] has shown that the ‘0-penalty
works effectively for outlier detection in regression, while
the ‘1-penalty does not. As pointed out in [52], the
theoretical reason for the unsatisfactory performance of
the ‘1-penalty is that the irrepresentable condition [53] is
often not satisfied in the outlier detection problem. In order
to go beyond the ‘1-penalty, nonconvex penalties have been
explored in recent literature [52], [54]. Compared with the
‘1-norm, nonconvex penalties give an estimation with less
bias but higher variance. Thus, these nonconvex penalties
are superior to the ‘1-penalty when the signal-noise-ratio
(SNR) is relatively high [54]. For natural video analysis, it is
the case.

In summary, both PCP [13] and DECOLOR aim to
recover a low-rank model from corrupted data. PCP [13],
[51] uses the convex relaxation by replacing rankðBÞ with
kBk� and kEk0 with kEk1. DECOLOR only relaxes the rank
penalty and keeps the ‘0-penalty on E to preserve the
robustness to outliers. Moreover, DECOLOR estimates the
outlier support S explicitly by formulating the problem as
the energy minimization over S, and models the continuity
prior on S using MRFs to improve the accuracy of detecting
contiguous outliers.

3.4.2 Sparse Signal Recovery

With the success of compressive sensing [55], sparse signal
recovery has become a popular framework to deal with
various problems in machine learning and signal processing
[37], [56], [57]. To make use of structural information about
nonzero patterns of variables, the structured sparsity is
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defined in recent works [58], [59], and several algorithms
have been developed and applied successfully on back-
ground subtraction, such as Lattice Matching Pursuit
(LaMP) [39], Dynamic Group Sparsity (DGS) recovery [40],
and Proximal Operator usingNetwork Flow (ProxFlow) [41].

In sparse signal recovery for background subtraction, a
testing image y 2 IRm is modeled as a sparse linear
combination of n previous frames � 2 IRm�n plus a sparse
error term e 2 IRm and a Gaussian noise term � 2 IRm:

y ¼ �wþ eþ �: ð17Þ
w 2 IRn is the coefficient vector. The first term �w accounts
for the background shared between y and �, while the
sparse error e corresponds to the foreground in y. Thus,
background subtraction can be achieved by recovering w

and e. Taking the latest algorithm ProxFlow [41] as an
example, the following optimization is proposed:

min
w;e

1

2
ky� �w� ek22 þ �1kwk1 þ �2kek‘1=‘1 ; ð18Þ

where k � k‘1=‘1 is a norm to induce the group-sparsity.
Please refer to [41] for the detailed definition. In short, the
‘1=‘1-norm is used as a structured regularizer to encode the
prior that nonzero entries of e should be in a group
structure, where the groups are specified to be all over-
lapping 3� 3-squares on the image plane [41].

In (17), � can be interpreted as a basis matrix for linear
regression to fit the testing image y. In the literature
mentioned above, � is fixed to be the training sequence [41]
or previous frames on which background subtraction has
been performed [40]. Then, the only task is to recover the
sparse coefficients.

In our problem formulation, � is unknown. DECOLOR
learns the bases and coefficients for a batch of test images
simultaneously. To illustrate this, we can rewrite (14) as

D ¼ �W þ E þ �; ð19Þ
where the original low-rank B is factorized as a product of a
basis matrix � 2 IRm�r and a coefficient matrix W 2 IRr�n

with r being the rank of B.
In summary, LaMP,DGS, and ProxFlow aim to detect new

objects in a new testing image given a training sequence not
containing such objects. The problem is formulated as linear
regression with fixed bases. DECOLOR aims to segment
moving objects from a short sequence during which the
objects continuously appear, which is a more challenging
problem. To this end, DECOLOR estimates the foreground
and background jointly by outlier detection during matrix
learning. The difference between DECOLOR and sparse
signal recovery will be further demonstrated using experi-
ments on real sequences in Section 5.2.1.

4 EXTENSION TO MOVING BACKGROUND

The above derivation is based on the assumption that the
videos are captured by static cameras. In this section, we
introduce domain transformations into our model to
compensate for the background motion caused by moving
cameras. Here, we use the 2D parametric transforms [60] to

model the translation, rotation, and planar deformation of

the background.
Let Dj 	 	j denote the jth frame after the transformation

parameterized by vector 	j 2 IRp, where p is the number of

parameters of the motion model (e.g., p ¼ 6 for the affine

motion or p ¼ 8 for the projective motion). Then, the

proposed decomposition becomesD 	 	 ¼ BþE þ �, where
D 	 	 ¼ ½D1 	 	1; . . . ; Dn 	 	n� and 	 2 IRp�n is a vector

comprising all 	j. A similar idea can be found in the recent

work on batch image alignment [57].
Next, we substitute D in (7) with D 	 	 and estimate 	

along with B, S by iteratively minimizing

min
	;B;S

1

2
kPS?ðD 	 	 �BÞk2F þ �kBk�

þ �kSk1 þ �kAvecðSÞk1:
ð20Þ

Now, we investigate how to minimize the energy in (20)

over 	 , given B̂ and Ŝ:

	̂ ¼ arg min
	
kPŜ?ðD 	 	 � B̂Þk2F : ð21Þ

Here, we use the incremental refinement [57], [60] to solve

this parametric motion estimation problem: At each itera-

tion, we update 	̂ by a small increment �	 and linearize

D 	 	 as D 	 	̂ þ J	̂�	 , where J	̂ denotes the Jacobian matrix
@D
@	 j	¼	̂ . Thus, 	 can be updated in the following way:

	̂  	̂ þ argmin
�	
kPŜ?ðD 	 	̂ � B̂þ J	̂�	Þk2F : ð22Þ

The minimization over �	 in (22) is a weighted least

squares problem which has a closed-form solution.
In practice, the update of 	1; . . . ; 	n can be done separately

since the transformation is applied on each image individu-
ally. Thus, the update of 	 is efficient. To accelerate the

convergence of DECOLOR, we initialize 	 by roughly

aligning each frame Dj to the middle frame Dn
2
before the

main loops of DECOLOR. The prealignment is done by the

robust multiresolution method proposed in [61].
All steps of DECOLOR with adaptive parameter tuning

are summarized in Algorithm 1.

Algorithm 1. Moving Object Segmentation by DECOLOR

1. Input: D ¼ ½I1; . . . ; In� 2 IRm�n

2. Initialize: 	̂ ; B̂ D 	 	̂ ; Ŝ  0; �; �.

3. repeat

4. 	̂  	̂ þ argmin�	kPŜ?ðD 	 	̂ � B̂þ J	̂�	Þk22;
5. repeat

6. B̂ ��ðPŜ?ðD 	 	̂Þ þ PŜðB̂ÞÞ;
7. until convergence

8. if rankðB̂Þ � K then

9. � �1�;

10. go to Step 5;

11. end if

12. estimate �̂;

13. �  maxð�2�; 4:5�̂2Þ;
14. Ŝ  argminS

P

ij ð� � 1
2
ð½D 	 	̂ �ij � B̂ijÞ2ÞSij

þ�kA vecðSÞk1
15. until convergence

16. Output: B̂,Ŝ,	̂
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5 EXPERIMENTS

5.1 Simulation

In this section, we perform numerical experiments on
synthesized data. We consider the situations with no
background motion and mainly investigate whether DE-
COLOR can successfully separate the contiguous outliers
from the low-rank model.

To better visualize the data, we use a simplified scenario:
The video to be segmented is composed of 1D images. Thus,
the image sequence and results can be displayed as 2D
matrices. We generate the input D by adding a foreground
occlusion with support S0 to a background matrix B0. The
background matrix B0 with rank r is generated as
B0 ¼ UV T , whereU and V arem� r and n� rmatrices with
entries independently sampled from a standard normal
distribution. We choose m ¼ 100, n ¼ 50, and r ¼ 3 for all
experiments. Then, an object with width W is super-
imposed on each column of B0 and shifts downward for
1 pixel per column. The intensity of this object is
independently sampled from a uniform distribution
Uð�c; cÞ, where c is chosen to be the largest magnitude of
entries in B0. Also, we add i.i.d. Gaussian noise � to D with
the corresponding signal-to-noise ratio defined as

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðB0Þ
varð�Þ

s

: ð23Þ

Fig. 2a shows an example where the moving foreground
can be recognized as contiguous outliers superposed on a
low-rank matrix. Our goal is to estimate S0 and recover B0

at the same time.
For quantitative evaluation, we measure the accuracy of

outlier detection by comparing Ŝ with S0. We regard it as a
classification problem and evaluate the results using
precision and recall, which are defined as

precision ¼ TP

TPþ FP
; recall ¼ TP

TPþ FN
; ð24Þ

where TP, FP, TN, and FN mean the numbers of true
positives, false positives, true negatives, and false negatives,
respectively. Precision and recall are widely used when the
class distribution is skewed [62]. For simplicity, instead of
plotting precision/recall curves, we use a single measure-
ment named F-measure that combines precision and recall:

F-measure ¼ 2
precision � recall
precisionþ recall

: ð25Þ

The higher the F-measure is, the better the detection accuracy
is. On our observation, PCP requires proper thresholding to
generate a really sparse Ŝ. For fair comparison, Ŝ of PCP is
obtained by thresholding jDij � B̂ijj with a threshold that
gives the maximal F-measure. Furthermore, we measure the
accuracy of low-rank recovery by calculating the difference
between B̂ and B0. We use the Root Mean Square Error
(RMSE) to measure the difference

RMSE ¼ kB̂�B0kF
kB0kF

: ð26Þ

5.1.1 Comparison to PCP

Fig. 2 gives a qualitative comparison between PCP and
DECOLOR. Fig. 2c presents the results of PCP. Notice the
artifacts in B̂ that spatially coincide with S0, which shows
that the ‘1-penalty is not robust enough for relatively dense
errors distributed in a contiguous region. Fig. 2d shows the
results of DECOLOR. We see fewer false detections in
estimated Ŝ compared with PCP. Also, the recovered B̂ is
less corrupted by outliers.

For quantitative evaluation, we perform random experi-
ments with different object widthW and SNR. Fig. 3a reports
the numerical results as functions of W . We can see that all
methods achieve ahighaccuracywhenW ¼ 10,whichmeans
all of them work well when outliers are really sparse. As W
increases, the performance of PCP degrades significantly,
while that of DECOLOR keeps less affected. This demon-
strates the robustness of DECOLOR. The result of DECOLOR
with � ¼ 0 falls in between those of PCP andDECOLORwith
� ¼ �, and it has a larger variance. This shows the importance
of the contiguityprior.Moreover,we can find thatDECOLOR
gives a very stable performance for outlier detection
(F-measure), while the accuracy of matrix recovery (inverse
to RMSE) drops obviously asW increases. The reason is that
some background pixels are always occluded when the
foreground is too large such that they cannot be recovered
even when the foreground can be detected accurately.

Fig. 3b shows the results under different noise levels.
DECOLOR maintains better performance than PCP if SNR
is relatively high, but drops dramatically after SNR < 2.
This can be interpreted by the property of nonconvex
penalties. Compared with ‘1-norm, nonconvex penalties are
more robust to gross errors [63] but more sensitive to
entrywise perturbations [54]. In general cases of natural
video analysis, SNR is much larger than 1. Thus, DECOLOR
can work stably.

5.1.2 Effects of Parameters

Fig. 3c demonstrates the effects of parameters in Algo-
rithm 1, i.e., K and �.
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Fig. 2. (a) An example of synthesized data. Sequence D 2 IR100�50 is a
matrix composed of 50 frames of 1D images with 100 pixels per image.
(b) The foreground support S0 and underlying background images B0.
rankðB0Þ ¼ 3. D is generated by adding a foreground object with width
W ¼ 40 to each column of B0, which moves downward for 1 pixel per
column. Also, i.i.d. Gaussian noise is added to each entry, and
SNR ¼ 10. (c) The results of PCP. The top panel is Ŝ and the bottom
panel is B̂. Ŝ of PCP is obtained by thresholding jDij � B̂ijj with a
threshold that gives the largest F-measure. Notice the artifacts in both Ŝ
and B̂ estimated by PCP. (d) The results of DECOLOR. Here, Ŝ is
directly output by DECOLOR without postprocessing.



The parameterK is the rough estimate of rankðB0Þ, which
controls the complexity of the background model. Here, the
true rank of B0 is 3. From the top plot in Fig. 3c, we can see
that the optimal result is achieved at the turning point where
K ¼ 3. After that, the accuracy decreases very smoothly asK
increases. This insensitivity to K is attributed to the
shrinkage effect of the nuclear norm in (7), which plays an
important role to prevent overfitting when estimating B.
Specifically, given parameters K and �, the singular values
of B̂ are always shrunk by � due to the soft-thresholding
operator in (10). Thus, our model overfits slowly when K is
larger than the true rank. Similar results can be found in [45].

The parameter � controls the strength of mutual
interaction between neighboring pixels. From the bottom
plot in Fig. 3c, we can see that the performance remains
very stable when � 2 ½�; 10��.

5.1.3 Inseparable Cases

In previous simulations, the foreground was always
moving and the foreground entries were sampled from a
uniform distribution with a relatively large variance. Under
these conditions, DECOLOR performs effectively and stably
for foreground detection (F-measure) unless SNR is too bad.
Next, we would like to study the cases when DECOLOR
cannot separate the foreground from the background
correctly.

First, we let the foreground not move for d frames when
generating the data. Fig. 4a shows the averaged F-measure
as a function of d. Here, rankðB0Þ ¼ 3. We can see that, with
the default parameter K ¼ 7, the accuracy of DECOLOR
will decrease dramatically as long as d > 0. This is because
DECOLOR overfits the static foreground into the back-
ground model, as the model dimension K is larger than its
actual value. When we decrease K to 3, DECOLOR
performs more stably until d > 6, which means that
DECOLOR can tolerate temporary stopping of foreground

motion. In short, when the object is not always moving,

DECOLOR becomes more sensitive to K, and it cannot

work when the object stops for a long time.
Next, to investigate the influence of foreground texture,

we also run DECOLOR on random problems with outlier
entries sampled from uniform distributions with random
mean and different variances �2

F . Fig. 4b displays the
fraction of trials in which DECOLOR gives a high accuracy
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Fig. 3. Quantitative evaluation. (a) F-measure and RMSE as functions of W when SNR ¼ 10. (b) F-measure and RMSE as functions of SNR when

W ¼ 25. (c) The effects of parameters, i.e., K and �. The results are averaged over 50 random trials with W ¼ 25 and SNR ¼ 10. The top panel

shows the effect of K. The true rank of B0 is 3. The accuracy increases sharply when K changes from 1 to 3 and decreases smoothly after K is

larger than 3. The bottom panel shows the effect of �. The accuracy keeps stable within ½�; 10��.

Fig. 4. Simulation to illustrate inseparable cases of DECOLOR. (a) F-
measure as a function of d, where d is the number of frames within which
the foreground stops moving. The true rank of B0 is 3. (b) Fraction of
trials of accurate foreground detection (F-measure > 0:95) over 200 trials
as a function of �F andW . Here, �F represents the standard deviation of
foreground intensities and W denotes the foreground width. �B is the
standard deviation of B0.



of foreground detection (F-measure > 0:95) over 200 trials
as a 2D function of �2F and W . The result of PCP is also
shown for comparison. As we can see, DECOLOR can
achieve accurate detection with a high probability over a
wide range of conditions, except for the upper left corner
where W is large and �2

F is small, which represents the
case of large and textureless foreground. In practice, the
interior motion of a textureless object is undetectable. Thus,
its interior region will remain unchanged for a relatively
long time if the object is large or moving slowly. In this
case, the interior part of the foreground may fit into the
low-rank model, which makes DECOLOR fail.

5.2 Real Sequences

We test DECOLOR on real sequences from public datasets
for background subtraction, motion segmentation and
dynamic texture detection. Please refer to Table 1 for the
details of each sequence.

5.2.1 Comparison to Sparse Signal Recovery

As discussed in Section 3.4.2, a key difference between
DECOLOR and sparse signal recovery is the assumption on
availability of training sequences. Background subtraction
via sparse signal recovery requires a set of background
images without foreground, which is not always available,
especially for surveillance of crowded scenes. Fig. 5a gives
such a sequence, clipped from the start of an indoor
surveillance video, where the couple is always in the scene.

Fig. 5b shows the results of the 24th frame. For sparse
signal recovery, we apply the ProxFlow algorithm2 [41] to
solve the model in (18). The previous 23 frames are used as
the bases (� in (18)). Since the subspace spanned by
previous frames also includes foreground objects, Prox-
Flow cannot recover the background and gives inaccurate
segmentation. Instead, DECOLOR can estimate a clean
background from occluded data. In practice, DECOLOR
can be used for background initialization. For example, the
last column in Fig. 5b shows the results of running
ProxFlow with � being low-rank B̂ learned by DECOLOR.
That is, we use the background images recovered by
DECOLOR as the training images for background subtrac-
tion. We can see that the results are improved apparently.

5.2.2 Background Estimation

In this part, we test DECOLOR on several real sequences
selected from public datasets of background subtraction.

Since we aim to evaluate the ability of algorithms in
detecting moving objects at the start of videos, we focus on
short clips composed of beginning frames of videos. All
examples in Fig. 6 have only 24 or 48 frames, corresponding
to 1 or 2 seconds for a frame rate of 24 fps. We compare
DECOLOR with three methods that are simple in imple-
mentation but effective in practice. The first one is PCP [13],
which is the state-of-the-art algorithm for RPCA. The second
method is median filtration, a baseline method for unimodal
background modeling. The median intensity value around
each pixel is computed, forming a background image. Then,
each frame is subtracted by the background image and the
difference is thresholded to generate a foregroundmask. The
advantage of using median rather than mean is that it is a
more robust estimator to avoid blending pixel values, which
is more proper for background estimation [11]. The third
method is mixture of Gaussians [28]. It is popularly used for
multimodal backgroundmodeling and has proven to be very
competitive compared with other more sophisticated tech-
niques for background subtraction [7], [65].

The sequences and results are presented in Fig. 6. The first
example shows an office with two people walking around.
Although the objects are large and always presented in all
frames, DECOLOR recovers the background and outputs a
foreground mask accurately. Notice that the results are
direct outputs of Algorithm 1 without any postprocessing.
The results of PCP are relatively unsatisfactory. Ghosts of the
foreground remain in the recovered background. This is
because the ‘1-penalty used in PCP is not robust enough to
remove the influence of contiguous occlusion. Such corrup-
tion of extracted background will result in false detections as
shown in the segmentation result. Moreover, without the
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TABLE 1
Information of the Sequences Used in Experiments

Fig. 5. An example illustrating the difference between DECOLOR and
sparse signal recovery. (a) The first, middle, and last frames of a
sequence of 24 images. Several people are walking and are
continuously presented in the scene. (b) The estimated background
(top) and segmentation (bottom) corresponding to the last frame.
ProxFlow means sparse signal recovery by solving (18) with the
ProxFlow algorithm [41], where the first 23 frames are used as the basis
matrix � in (18). ProxFlow+ means applying ProxFlow with bases �

being the low-rank matrix B̂ learned by DECOLOR.

2. The code is available at http://www.di.ens.fr/willow/SPAMS/.



smoothness constraint, occasional light changes (e.g., near
the boundary of fluorescent lamps) or video noises give rise

to small pieces of falsely detected regions. The results of
median filtration depend on how long each pixel is taken by

foreground. Thus, from the recovered background of
median filtration, we can find that the man near the door

is clearly removedwhile theman turning at the corner leaves
a ghost. Despite scattered artifacts, MoG gives fewer false

positives due to its multimodal modeling of background.
However, blending of foreground intensity can be seen

obviously in the recovered background, which results in
more false negatives in the foreground mask, e.g., the
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Fig. 6. Five subsequences of surveillance videos. Sequence information is given in Table 1. The last frame of each sequence and its manual

segmentation are shown in Column 1. The corresponding results by four methods are presented from Columns 2 to 5, respectively. The top panel is

the estimated background and the bottom panel is the segmentation.



interior region of objects. Similar results can be found in the
next two examples.

The last two examples include dynamic background.
Fig. 6d presents a sequence clipped from a surveillance
video of an airport, which is very challenging because the
background involves a running escalator. Although the
escalator is moving, it is recognized as a part of background
by DECOLOR since its periodical motion gives repeated
patterns. As we can see, the structure of the escalator is
maintained in the background recovered by DECOLOR or
PCP. This demonstrates the ability of low-rank representa-
tion to model dynamic background. Fig. 6e gives another
example with a water surface as background. Similarly, the
low-rank modeling of background gives better results with
fewer false detections on the water surface and DECOLOR
obtains a cleaner background compared against PCP.

We also give a quantitative evaluation for the segmenta-
tion results shown in Fig. 6. The manual annotation is used
as ground truth and the F-measure is calculated. As shown
in Table 2, DECOLOR outperforms other approaches on all
sequences.

5.2.3 Moving Cameras

Next, we demonstrate the potential of DECOLOR applied to
motion segmentation problems using the Berkeley motion
segmentation dataset.3 We use two people sequences and
12 car sequences, which are specialized for short-term

analysis. Each sequence has several annotated frames as the
ground truth for segmentation. Fig. 7 shows several
examples and the results of DECOLOR. The transformed
images D 	 	̂ are shown in Column 2. Notice the extra-
polated regions shown in black near the borders of these
images. To minimize the influence of this numerical error,
we constrain these pixels to be background when estimat-
ing S, but consider them as missing entries when estimating
B. Fig. 7 demonstrates that DECOLOR can align the images,
learn a background model, and detect objects correctly.

For comparison, we also test the motion segmentation
algorithm recently developed by Brox and Malik [24]. The
Brox-Malik algorithm analyzes the point trajectories along
the sequence and segment them into clusters. To obtain
pixel-level segmentation, the variational method [26] can be
applied to turn the trajectory clusters into dense regions.
This additional step makes use of the color and edge
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TABLE 2
Quantitative Evaluation (F-Measure)
on the Sequences Shown in Fig. 6

3. http://lmb.informatik.uni-freiburg.de/resources/datasets/moseg.
en.html.

Fig. 7. Four sequences captured by moving cameras. Sequence information is given in Table 1. Only the last frame of each sequence and the
corresponding results are shown. Columns 2-4 present the results of DECOLOR, i.e., the transformed image, the estimated background, and

the foreground mask. Column 5 shows the results given by Brox and Malik’s algorithm for motion segmentation [24]. The last column shows

the ground truth.



information in images [26], while DECOLOR only uses the
motion cue and directly generates the segmentation.

Quantitatively, we calculate the precision and recall of
foreground detection, as shown in Table 3. In summary, for
most sequences with moderate camera motion, the perfor-
mance of DECOLOR is competitive. On the people
sequences, DECOLOR performs better. The feet of the lady
are not detected by the Brox-Malik algorithm. The reason is
that the Brox-Malik algorithm relies on correct motion
tracking and clustering [26], which is difficult when the
object is small and moving nonrigidly. Instead, DECOLOR
avoids the complicated motion analysis. However, DECO-
LOR works poorly on the cases where the background is a
3D scene with a large depth and the camera moves a lot,
e.g., the sequences named cars9 and cars10. This is because
the parametric motion model used in DECOLOR can only
compensate for the planar background motion.

5.2.4 Dynamic Foreground

Dynamic texture segmentation has drawn some attention in
recent computer vision research [18], [20]. While we have
shown that DECOLOR can model periodically varying
textures like escalators or water surfaces as background, it is
also able to detect fast changing textures whose motion has
little periodicity and cannot be modeled as low rank. Fig. 8
shows such an example, where the smoke is detected as
foreground. Here, the background behind the smoke cannot
be recovered since it is always occluded.

5.2.5 Computational Cost

Our algorithm is implemented in Matlab. All experiments
are run on a desktop PC with a 3.4 GHz Intel i7 CPU and
3 GB RAM. Since the graph cut is operated for each frame
separately, as discussed in Section 3.3.2, the dominant cost
comes from the computation of SVD in each iteration. The
cpu times of DECOLOR for sequences in Fig. 6 are 26.2,
13.3, 14.1, 11.4, and 14.4 seconds, while those of PCP are
26.8, 38.0, 15.7, 39.1, and 21.9 seconds, respectively. All
results are obtained with a convergence precision of 10�4.
The memory costs of DECOLOR and PCP are almost the
same since both of them need to compute SVD. The peak
values of memory used in DECOLOR for sequences in
Figs. 6a and 7b are around 65 MB and 210 MB, respectively.

6 DISCUSSION

In this paper, we propose a novel framework named
DECOLOR to segment moving objects from image

sequences. It avoids complicated motion computation by

formulating the problem as outlier detection and makes

use of the low-rank modeling to deal with complex

background.
We established the link between DECOLOR and PCP.

Compared with PCP, DECOLOR uses the nonconvex

penalty and MRFs for outlier detection, which is more

greedy to detect outlier regions that are relatively dense and

contiguous. Despite its satisfactory performance in our

experiments, DECOLOR also has some disadvantages.

Since DECOLOR minimizes a nonconvex energy via

alternating optimization, it converges to a local optimum

with results depending on initialization of Ŝ, while PCP

always minimizes its energy globally. In all our experi-

ments, we simply start from Ŝ ¼ 0. Also, we have tested

other random initialization of Ŝ and it generally converges

to a satisfactory result. This is because the SOFT-IMPUTE

step will output similar results for each randomly generated

Ŝ as long as Ŝ is not too dense.
As illustrated in Section 5.1.3, DECOLOR may misclassi-

fy unmoved objects or large textureless regions as back-

ground since they are prone to entering the low-rank

model. To address these problems, incorporating additional

models such as object appearance or shape prior to improve

the power of DECOLOR can be further explored in future.
Currently, DECOLOR works in a batch mode. Thus, it

is not suitable for real-time object detection. In the future,

we plan to develop the online version of DECOLOR that

can work incrementally, e.g., the low-rank model ex-

tracted from beginning frames may be updated online

when new frames arrive.
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