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Moving Object Detection in Satellite Videos via

Spatial-Temporal Tensor Model and Weighted

Schatten p-norm Minimization
Qian Yin, Ting Liu, Zaiping Lin, Wei An, Yulan Guo

Abstract—Low-rank matrix decomposition approaches have
achieved significant progress in small and dim object detection in
satellite videos. However, it is still challenging to achieve robust
performance and fast processing under complex and highly
heterogeneous backgrounds, since satellite video data can neither
adequately fit the foreground structure nor the background
model in existing matrix decomposition models. In this paper,
we propose a novel object detection method based on a spatial-
temporal tensor data structure. First, we construct a tensor data
structure to exploit the inner spatial and temporal correlation
within a satellite video. Second, we extend the decomposition
formulation with bounded noise to achieve robust performance
under complex backgrounds. This formulation integrates low
rank background, structured sparse foreground and their noises
into a tensor decomposition problem. For background separation,
a weighted Schatten p-norm is incorporated to provide adaptive
threshold to obtain the singular value of the background tensor.
Finally, the proposed model is solved using the alternative
direction method of multipliers (ADMM) scheme. Experimental
results on various real scenes demonstrate the superiority of
proposed method against the compared approaches.

Index Terms—Moving object detection, satellite video, low-
rank tensor recovery, weighted Schatten p-norm.

I. INTRODUCTION

A
S a new earth observation technology, satellite video is

able to provide a period of continuous observation over

an area, providing rich dynamic information of an object, such

as the moving trajectory, speed and directions. Satellite video

is important for numerous applications, such as space-based

surveillance [1], traffic monitoring, and disaster rescue.

As an important task based on satellite videos, small and

dim moving object detection (MOD) has attracted increasing

attention in recent years. However, this task is highly challeng-

ing due to several facts. (1) Low spatial resolution. Due to the

long distance between a target and the imaging platform, the

object is extremely small. Besides, the appearance of objects

changes significantly between consecutive frames. (2) Large

field of view. Each frame in a satellite video is typically

on the order of several to hundreds of megapixels, resulting

in a large searching space and illumination variation. (3)

Heterogeneous backgrounds and complex noise. Objects are

usually immersed and densely packed in highly heterogeneous

and complex backgrounds.
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Most state-of-the-art MOD methods for satellite videos

follow a motion-based paradigm. That is, the Background

Subtraction (BS) technique is used to separate a frame into

foreground and background components. Typical BS methods

include statistical models [2], [3] and Robust Principal Com-

ponent Analysis (RPCA) based models [4]–[6]. The RPCA

based methods can be categorized into batch-based methods

[4], [5] and online methods [6].

Statistical methods (i.e., median (mean) model and statisti-

cal model (VIBE) [2]) usually compare each video frame with

an adaptive background model (which is free of moving ob-

jects). Ahmadi et al. [3] employed a median background model

to detect objects and used the nearest neighbor algorithm to

produce trajectories. However, these statistical methods do not

consider the structure knowledge of an video (e.g., temporal

similarity of background and spatial contiguity of foreground).

Consequently, their detection performance cannot be further

improved, especially in complex and dynamic backgrounds.

To address this limitation, RPCA [4], [5], [7] were in-

troduced to encode the temporal similarities of video back-

grounds, and mostly useful foreground prior structures (e.g.,

sparsity and spatial continuity). Zhang et al. [6], [8] proposed

several methods based on the Low-rank and Structured Sparse

Decomposition (LSD) framework [5] to achieve moving object

detection in satellite videos. However, these matrix RPCA

based methods can only convert the videos with a natural

3D structure to a 2D data, which can destroy the structure

information and reduce the detection performance. Addition-

ally, these methods cannot achieve robust performance and

fast processing speed in complex and highly heterogeneous

backgrounds.

Motivated by the work for exploiting spatial-temporal and

structural information in [9], [10], we incorporate a spatial-

temporal tensor with RPCA (tensor RPCA) and employ the

weighted Schatten p-norm minimization (WSNM) [11] to

obtain optimal results. In summary, the contributions of this

paper can be summarized as follows:

• We introduce a tensor representation to preserve the

spatial-temporal information of pixels within a satellite

video.

• We propose a tensor RPCA analysis framework with

bounded noise and a generalized WSNM to separate

objects from the background by estimating the low-rank

components. In addition, we adopt tensor singular value

decomposition (t-SVD) for efficient inference.
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• We employ the alternating direction method of multipliers

(ADMM) to solve the low-rank component recovery

problem in our tensor RPCA analysis framework. Ex-

tensive experiments have demonstrated the superiority of

our WSNM-STTN to the state-of-the-art methods.

II. THE PROPOSED MODEL

A. The Matrix Decomposition Model for Moving Object De-

tection

The Extended Matrix Decomposition Model (E-LSD) [8]

considered foreground detection from a viewpoint of decom-

position and optimization problem, which can be defined as:

D = B+ S+E. (1)

Here, D ∈ R
s×n is an observed video, where s and n represent

the number of pixels in a frame and the number of frames

in a sequence, respectively. B ∈ R
s×n, S ∈ R

s×n, and E ∈
R

s×n are the estimated background, foreground, and residuals,

respectively.

In E-LSD, an optimization problem is defined as:

(B∗,S∗,E∗) = argmin
B,S,E

||B||∗ + λ1||S||ℓ1/ℓ∞ + λ2||E||2F ,
s.t. D = B+ S+E

(2)

where λ1 >0 and λ2 >0 are the weights of sparsity term

||S||ℓ1/ℓ∞ and the residual term ||E||2F . ||B||∗ means the

nuclear norm of matrix B, i.e., the sum of its singular values.

|| · ||ℓ1/ℓ∞ is a norm to induce the structural sparsity, || · ||F
represents the Frobenius norm.

However, the matrix decomposition model cannot preserve

the structural information of the input video. It also cannot

make good use of the spatio-temporal correlation prior of the

background and spatio-temporal continuity of the foreground.

In addition, E-LSD adopts convex nuclear norm minimization

(NNM) to characterize the low-rank background, while NNM

treats singular values equally. As a result, the accuracy of

the estimated low-rank component is reduced in highly noisy

scenarios [12], [13], and the low-rank component shrinks too

much, which is called the over contraction problem [13].

B. The Spatial-Temporal Tensor Model for Moving Object

Detection

Since an satellite video has a 3D structure, a matrix ex-

tension of RPCA to Tensor RPCA can be used to address

the aforementioned problem. Further, we propose a tensor

RPCA analysis framework with bounded noise to preserve

the structure information in a satellite video and dig out inter-

frame correlations within a satellite video. The problem of

MOD in satellite videos can be formulated as:

D = B + T +N , (3)

where D,B, T ,N ∈ R
n1×n2×n3 represent the original patch-

tensor, background tensor, target tensor, and noise tensor,

respectively.

In order to recover the low-rank component more accurately

and separate the object from background more perfectly, we in-

corporate WSNM [11] into the low-rank tensor approximation

model. This is because, the principle of WSNM is to assign

different weights to the ℓp norm of singular values, which can

adjust the power p to obtain a more suitable value to recover

the background. The WSNM for a matrix is defined as:

‖X‖w,Sp
=





min{n,m}
∑

i=1

wiσ
p
i





1
p

, (4)

where X ∈ R
m×n represents the input matrix and w =

[

w1, · · · , wmin{n,m}

]

represents weight values satisfying an

non-descending order and the non-negativity requirement. σi

represents the i-th singular value of X ∈ R
m×n and the

value of power p satisfies 0 < p ≤ 1. Both convex Nuclear

Norm Minimization (NNM) and Weighted Nuclear Norm

Minimization (WNNM) are the special cases of WSNM, when

w = [1, · · · , 1] and w =
[

w1, · · · , wmin{n,m}

]

with p = 1,

respectively.

In our model, we generalize the definition of WSNM to

tensor B ∈ R
n1×n2×n3 , that is:

‖B‖pW,Sp
=

1

L

r
∑

i=1

n3
∑

j=1

(

W (i, i, j)
(

S̄ (i, i, j)
)p)

1
p

, (5)

W (i, i, j) =
C
√
mn

S̄ (i, i, j) + ε
, (6)

where r = rankt (B) denotes the tensor tubal rank. S (i, i, 1)
is the entries on the diagonal of the first slice of S (S ∈
R

n1×n2×n3 is a diagonal tensor). The Discrete Fourier Trans-

formation (DFT) of S is denoted as S̄ ∈ R
n1×n2×n3 . The

entries on the diagonal of S̄ (:, :, j) are the singular values of

B̄ (:, :, j). C is a tunning parameter. ε is a positive constant,

and W denotes a weight tensor.

Then, the overall framework can be formulated as:

min
B,T ,N

‖B‖pW,Sp
+ λ‖T ‖1 + β ‖N‖2F s.t. D = B + T +N ,

(7)

where λ and β represent the positive regularization parameters

for the target and noise components, respectively.

C. Solution of the proposed model

To solve the proposed model, we adopt ADMM [14] and

the Inexact Augmented Lagrangian Multiplier (IALM) [15].

The problem in Eq. 7 can be rewritten by IALM as:

L (B, T ,N , y, µ) = ‖B‖pW,Sp
+ λ‖T ‖1 + β ‖N‖2F

+ 〈y,D − B − T −N〉
+ µ

2 ‖D − B − T −N‖2F ,

(8)

where y ∈ R
n1×n2×n3 denotes the Lagrangian multiplier

tensor. µ represents a penalty factor, and 〈·〉 denotes the inner

product operation. ADMM can decompose the problem in Eq.

8 into three optimization subproblems, including B, T , and N .

Since it is hard to optimize all three variables simultaneously,

we approximately solve this optimization problem by alter-

natively minimizing one variable with the others fixed. The

detailed process is given below:
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1) Updating B with other variables fixed, and the formula-

tion Eq. 8 can be defined as:

Bk+1 = argmin
B

‖B‖pW,Sp
+

µk

2

∥

∥

∥D − Bk − T k −N k + yk

µk

∥

∥

∥

2

F
.

(9)

To solve the problem in Eq. 9, we incorporate the Generalized

Soft-Thresholding (GST) method [11] into tensor singular

value thresholding (t-SVT) [16], [17]. Consequently, Eq. 9 can

be rewritten as:

Bk+1 = DW,Sp(µk)−1

(

D − T k −N k +
yk

µk

)

, (10)

where DW,Sp(µk)−1 (·) denotes the ADMM algorithm. It

should be noticed that the weights w = [w1, · · · , wr] are in a

non-descending order, and the singular values satisfy a non-

ascending order: σ1 ≥ σ2 ≥ · · · ≥ σr.

2): Updating T with other variables fixed, and the formu-

lation can be defined as:

T k+1 = argmin
T

λ‖T ‖1+
µk

2

∥

∥

∥D − Bk+1 − T −N k + yk

µk

∥

∥

∥

2

F
.

(11)

The problem in Eq. 11 is a typical l1 regularized minimization

problem. Therefore, we can obtain the overall optimal solution

through an element-wise shrinkage operation [18]:

T k+1 = Fλ/µk

(

D − Bk+1 −N k +
yk

µk

)

, (12)

where Fλ/µk (·) represents the element-wise shrinkage oper-

ator.

3): Updating N with other variables fixed, and the formu-

lation can be defined as:

N k+1 = argmin
N

β ‖N‖2F +

µk

2

∥

∥

∥D − Bk+1 − T k+1 −N + yk

µk

∥

∥

∥

2

F
.

(13)

The solution of the above problem can be obtained by:

N k+1 =
µ
(

D − Bk+1 − T k+1
)

+ yk

2β + µk
. (14)

4): Updating multipliers y with other variables fixed:

yk+1 = yk + µk
(

D − Bk+1 − T k+1 −N k+1
)

. (15)

5): Updating µk+1 by the following equation:

µk+1 = min
(

ρµk, µmax

)

. (16)

Finally, the proposed method is summarized in Algorithm1.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset and Metrics

We evaluated the proposed WSNM-STTN on nine satellite

video datasets (as listed in Table I). The first two videos (i.e.,

Video 001 and Video 002) were captured by SkySat1. Their

spatial resolution is 1.0 meter, while their frame rate is 30

Frame Per Second (FPS). Videos 003-009 are provided by

1https://www.youtube.com/watch?v=lKNAY5ELUZY/

Algorithm 1: The process of WSNM-STTN

Input: The image sequence d1, · · · , dP ∈ R
n1×n2 ,

number of frames L, tunning parameter H , parameters

λ, β, p, µ > 0
Initialize: Transform the image sequence

d1, · · · , dP ∈ Rn1×n2

into the tensor D,B0 = T 0 = N 0 = 0 ∈ Rn1×n2×n3 ,

y0 = 0, µ0 = 1e-2, µmax = 1e7, k = 0,

ρ = 1.5, ζ = 1e-6, β = 100.

While : not converged do

1 : Update Bk+1 according to Eq. 10.

2 : Update T k+1 according to Eq. 11.

3 : Update N k+1 according to Eq. 14.

4 : Update multipliers y according to Eq. 15.

5 : Update µk+1 according to Eq. 16.

6 : Check the convergence conditions
‖D−Bk+1−T k+1−Nk+1‖2

F

‖D‖2
F

≤ ζ.

7 : Update k = k + 1.

endWhile

Output : Bk+1, T k+1,N k+1.

Chang Guang Satellite Technology Co., Ltd 2. Their spatial

resolution is 1.0 meter and their frame rate is 10 FPS. All these

datasets mainly cover traffic scenarios of urban areas. Note

that, moving object detection in videos 003-009 are challenge

due to the complex background. In contrast, the backgrounds

of videos 001-002 captured by SkySat are mainly composed

of roads, which is relatively easy to achieve good detection

performance. In our experiments, moving cars are selected as

the targets of interests.

We use three evaluation metrics, including Precision, Recall,

F1 score [19], to evaluate the performance of our WSNM-

STTN algorithm.

B. Parameter setting

In the proposed WSNM-STTN algorithm, parameters are

properly set to achieve good object detection performance.

The regularized parameter λ in Eq. 8 represents the influence

of the object tensor. λ is set to H√
max(m,n)×L

, where m and n

are the width and the height of the input image, respectively, L

represents the number of input frames used to dig out the inter-

frame information in the model. We use tunning parameter H

to control λ. Figure 1(a)-(c) shows the Recall, Precision, F1

curves with respect to the power p, the number of frames L

and the tunning parameter H on the test datasets, respectively.

Based on the tunning results, we set p = 0.9, L = 8, and H =

4 in the following experiments to obtain the optimal detection

performance.

C. Comparison with the state-of-the-art methods

We conduct extensive experiments to demonstrate the ro-

bustness of our method to various scenarios in real applica-

tions:

2http://www.charmingglobe.com/index.aspx/

https://www.youtube.com/watch?v=lKNAY5ELUZY
http://www.charmingglobe.com/index.aspx
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(a) Recall, Precision, and F1 with respect to p. (b) Recall, Precision, and F1 with respect to L. (c) Recall, Precision, and F1 with respect to H.

Figure 1. Recall, Precision, and F1 results achieved by our model with different values of L, H , and p.

Table I
THE DETAILS OF NINE SATELLITE VIDEO DATASETS.

Module Video 001 Video 002 Video 003˜009

Image Size 400×400 600×400 1024×1024

Vehicles 27,473 52,807 157,525

Frames 700 700 2,250

Table II
DETECTION PERFORMANCE ACHIEVED BY OUR MODEL AND

BATCH-BASED ALGORITHMS ON SKYSAT SATELLITE VIDEOS. THE BEST

RESULTS ARE SHOWN IN RED AND THE SECOND BEST RESULTS ARE

SHOWN IN BLUE (RE: RECALL, PRE: PRECISION).

Method
Video 001 Video 002

Avg(F1)↑

Re ↑ Pre ↑ F1 ↑ Re ↑ Pre↑ F1↑

RPCA [20] 0.94 0.41 0.57 0.90 0.78 0.84 0.70

GoDec [4] 0.95 0.36 0.52 0.90 0.81 0.85 0.69

DECOLOR [7] 0.77 0.59 0.67 0.80 0.81 0.80 0.73

LSD [5] 0.87 0.71 0.78 0.82 0.91 0.86 0.82

E-LSD [8] 0.85 0.79 0.82 0.80 0.94 0.86 0.84

WSNM-STTN 0.94 0.76 0.84 0.95 0.80 0.87 0.86

The SkySat dataset: To test the effectiveness of our

WSNM-STTN on Skysat satellite videos, following [6], [8],

we compare our method with five batch-based state-of-the-art

approaches (i.e., RPCA [20], GoDec [4], DECOLOR [7], LSD

[5], and E-LSD [8]) and one state-of-the-art online approaches

(i.e., O-LSD [6]). As shown in Tables II and III, the WSNM-

STTN method achieves the highest overall performance among

these batch methods and online method, with an average F1
(Avg-F1) of 0.86 being achieved. That is because, the tensor

RPCA in our model can dig out inter-frame information in

consecutive frames to boost the detection performance. In

addition, comparing to the state-of-the-art online approaches

O-LSD, WSNM-STTN achieves a comparable detection per-

formance with significantly reduced processing time. That

is, the processing time for each frame of WSNM-STTN is

thirty times shorter than O-LSD. This is because, the t-SVD

operation in our method can speed up the inference process.

The Jilin-1 dataset: To test the effectiveness of our

Table III
DETECTION PERFORMANCE ACHIEVED BY OUR MODEL AND THE OTHER

METHODS (I.E., E-LSD AND O-LSD) ON SKYSAT SATELLITE VIDEOS.

Method
Video 001 Video 002

Avg(F1)↑

Re ↑ Pre ↑ F1 ↑ FPS ↓ Re ↑ Pre↑ F1↑ FPS ↓

O-LSD [6] 0.65 0.64 0.64 6.57s 0.73 0.90 0.81 10.75s 0.73

E-LSD [8] 0.85 0.79 0.82 17s 0.80 0.94 0.86 33s 0.84

WSNM-STTN 0.94 0.76 0.84 0.23s 0.95 0.80 0.87 0.3s 0.86

WSNM-STTN method on Jilin-1 satellite videos, we compare

our method with three batch RPCA-based state-of-the-art

approaches (i.e., GoDec [4], DECOLOR [7], E-LSD [8]), and

three statics modeling-based methods (i.e., MDTT [3], VIBE

[2], D&T [19]). As shown in Table IV, WSNM-STTN achieves

the highest overall performance against other methods, with

an average precision of 0.90 and an average F1 of 0.83 being

reported. Compared to the matrix decomposition method E-

LSD, the proposed method even improves the performance by

0.12 and 0.13 in term of average precision and average F1,

respectively.

In summary, the proposed WSNM-STTN model can achieve

robust performance and fast processing in complex and highly

heterogeneous backgrounds.

D. Ablation Study

We have demonstrated the effectiveness of introducing

bounded noises N in Eq. 8. In this section, we also conduct ab-

lation experiments and visualize the results of WSNM-STTN

with noises (i.e., WSNM-STTN w/noises) and without noises

(i.e., WSNM-STTN w/o noise) in Fig. 2. It can be observed

that our WSNM-STTN method achieves a high detection rate

and low false alarms rate by introducing bounded noises.

IV. CONCLUSION

In this paper, we propose a WSNM-STTN model to detect

dim and small moving objects in satellite video. With the

STTN model, the proposed model can dig out temporal infor-

mation within a sequence. Besides, we propose an extended

tensor RPCA with bounded noise and incorporate WSNM to
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Table IV
QUANTITATIVE RESULTS ACHIEVED BY DIFFERENT METHODS ON JILIN-1 SATELLITE VIDEOS. THE BEST RESULTS ARE SHOWN IN RED AND THE SECOND

BEST RESULTS ARE SHOWN IN BLUE (RE: RECALL, PRE: PRECISION).

Method
Video 003 Video 004 Video 005 Video 006 Video 007 Video 008 Video 009 Average

Re↑ Pre ↑ F1 ↑ Re ↑ Pre ↑ F1 ↑ Re ↑ Pre ↑ F1 ↑ Re↑ Pre ↑ F1 ↑ Re ↑ Pre ↑ F1↑ Re ↑ Pre↑ F1 ↑ Re↑ Pre ↑ F1 ↑ Re ↑ Pre ↑ F1↑

VIBE [2] 0.61 0.34 0.44 0.82 0.61 0.70 0.68 0.59 0.63 0.65 0.52 0.58 0.72 0.65 0.69 0.60 0.42 0.49 0.45 0.44 0.44 0.65 0.51 0.57

GoDec [4] 0.92 0.51 0.65 0.73 0.81 0.77 0.93 0.53 0.68 0.72 0.38 0.50 0.72 0.74 0.73 0.81 0.42 0.55 0.93 0.25 0.39 0.82 0.52 0.61

DECOLOR [7] 0.24 0.92 0.38 0.77 0.88 0.82 0.89 0.83 0.86 0.44 0.93 0.60 0.74 0.84 0.79 0.71 0.80 0.75 0.30 0.69 0.42 0.58 0.84 0.66

MTTP [3] 0.74 0.67 0.70 0.67 0.84 0.74 0.71 0.84 0.77 0.64 0.86 0.73 0.62 0.77 0.69 0.55 0.73 0.62 0.25 0.49 0.33 0.60 0.74 0.65

D&T [19] 0.71 0.91 0.80 0.69 0.86 0.76 0.84 0.84 0.84 0.75 0.85 0.80 0.63 0.82 0.71 0.64 0.76 0.70 0.83 0.43 0.56 0.73 0.78 0.74

E-LSD [8] 0.71 0.83 0.77 0.75 0.88 0.81 0.64 0.67 0.65 0.61 0.86 0.72 0.57 0.92 0.70 0.55 0.82 0.66 0.58 0.61 0.60 0.63 0.80 0.70

WSNM-STTN 0.79 0.93 0.85 0.79 0.91 0.84 0.92 0.93 0.92 0.63 0.92 0.75 0.75 0.89 0.81 0.76 0.89 0.82 0.82 0.82 0.82 0.78 0.90 0.83

Video 001 (Groundtruth) WSNM-STTN w/o noises WSNM-STTN w/ noises

Video 008 (Groundtruth) WSNM-STTN w/o noises WSNM-STTN w/ noises

Figure 2. Demonstration on the importance of N in WSNM-STTN.

solve the over-shrink problem in low-rank estimation, which

is superior to noiseless modeling methods. Then, we optimize

our model by ADMM to detect objects. Extensive experiments

show that WSNM-STTN can achieve a high detection rate and

a low false alarms rate under complex background with heavy

noise. In addition, WSNM-STTN converges faster than the

matrix decomposition approach by a large margin.
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