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Abstract

The objective of this article is to propose data processing from laser range finder that will provide simple, fast, and reliable

object recognition including moving objects. The whole method is based on four steps: segmentation, simplification,

correspondence between consequent measurements, and object classification. Segmentation uses raw data from laser
range finder and it is significant in logical connection of related segments. The most important step is simplification which

provides data reduction and acceleration of object classification. The output of simplification is an object represented by

significant points. Correspondence between consequent measurements is based on kd-tree nearest neighborhood search.

The object is then classified by its spatial changes. These changes are evaluated by position of correspondent significant

points. Input of proposed procedure is a probabilistic model of laser range finder. In this article, versatile probabilistic

model of Hokuyo URM-30 LX was used. The method was verified by simulations and by tests in real environment. The

results show that proposed method is reliable and with small modifications (of parameters), it is usable with any other

planar laser range finder.
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Introduction

Common mobile robots work in environments, which are

not separated from humans. This means they need to be

able to detect not only static parts of environments but

they also need to react to the moving obstacles, for exam-

ple, different moving objects such as robots, humans,

doors, and so on. That is why they need to scan this envi-

ronment with powerful and reliable sensors, which can

provide sufficient amount of data.1 A laser range finder

(LRF) is a commonly used example of such sensor. The

development of LRFs begun at the end of the 60s, but their

widespread use was only enabled by the fast integrated

circuits. Due to continual decrease in price, they are

already being used in hobby robotics or in domestic ser-

vice robots.2

Research in sensorial elements is focused on three-

dimensional (3-D) sensing of the environment. The first

RedGreenBlue-Depth (RGB-D) cameras have already

appeared on the market, which make them easily accessible

for the wide public.3 However, they lack the necessary

parameters for the navigation of robots in a dynamically

changing environment. On the contrary, the high price of 3-
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D LRFs puts severe limitations on the number and the type

of applications it can be used in. 3-D LRF can be con-

structed as a rotating two-dimensional (2-D) version; how-

ever, this solution is limited by its mechanical speed and

thus can effectively only be used for the mapping of envi-

ronment in static positions of the robot.4 For these reasons

primarily, 2-D LRFs are used in the robot navigation in

dynamically changing environment.

When working with LRF, it is necessary to know sen-

sor’s measurement principles and properties. They are as

follows5,6:

� triangulation,

� time of flight,

� frequency modulation continuous wave, and

� phase shift measurement.

These measurement principles are well known and can

be found and discussed in detail by Konolige et al.2 or

Nejad and Olyaee.5 However, the measurements of each

LRF type are corrupted by various errors. Therefore, mod-

els were devised for accurate data interpretation.7–19

Segmentation and feature detection in LRF data is used

in various tasks, for example, detection of moving obsta-

cles. Segmentation is the fundamental element of data pro-

cessing. Its aim is to divide the measurements into parts,

which represent a consistent segment of the measured

space—that is, an object. As for LRF measurements, the

majority of objects are described by several measurements

(data points). Based on this, their shape can be estimated

and the amount of recorded data may be reduced. The

results of such algorithms are usually segments, which are

composed of data points or characteristic features.

Often, segmentation is based on the distance between

the data points. This segmentation compares two subsequent

data points from the LRF measurements. If their distance is

greater than the threshold, the measurement is divided into

two segments at this border.18 The threshold is usually deter-

mined as a constant or it is adapted to the measurements.20

This adjustment of threshold can be based on the shape18,21

or on the orientation of the detected obstacles.22

The segmentation of LRF data can also be based on the

straight line searching. These algorithms are sequential and

they evaluate whether a data point belongs to the previous

segment or it is a new one. This evaluation is also based on

the threshold. Each straight line is created from two points. If

the evaluated point belongs to the previous segment, this

point will be the new end point of the line segment. Other-

wise, a new line segment is added. The advantage of this

algorithm is that it is easily applicable in polar coordi-

nates.23,24 Similar principle is used in the algorithm of line

tracking.25 This method can be used with other geometrical

shapes, which can be described by the analytical geometry.18

Segmentation based on lines can also be performed by

recursive algorithms.23,24,26 These algorithms search for

the segments on the whole data set from LRF. If there is

a point, which does not fulfill the criterion, the data set is

divided into two subsets. The algorithm consequently per-

forms the procedure on both subsets. This is done until all

the points from the data set fulfill the criterion. Usually,

the criterion is based on thresholds like in the previous

algorithms. Norouzi et al.27 proposed modification with

Hough transformation. Hough transformation divided the

data points into nearby segments—rough approximation

of linear segments. Recursive algorithm is afterward

applied on each nearby segment.

Split and merge algorithms divide the data points into

individual lines. This first step may be performed by sequen-

tial algorithms,25 recursive algorithms,26,28,29 or by extended

Kalman filtering (EKF).30 The second step consists of line

merging. Only lines with similar parameters are merged.

Significant shapes (segment) in the data points can be

searched by Local Curvature Scale.31 This algorithm deter-

mines the rate of curvature for each data point. Rate is

expressed as neighborhood where the segment does not

change the shape significantly. If the rate is higher, the

segment can be considered as line segment.32 Similar

principle is used in the curvature function. In this method,

the rate of curvature is determined from direction deriva-

tives and it is expressed in degrees. Corners are then local

maximums and straight segments are evaluated by values

near to 0. This method also enables the detection of

rounded objects.33

LRF measures the distances in polar coordinates and

the majority of mentioned methods work in Cartesian coor-

dinates.34 Therefore, it is often necessary to perform addi-

tional calculations. However, the measurements in polar

coordinates can be considered as distance histogram, that

is, one-dimensional (1-D) curve. Searching in such 1-D

space significantly reduces the computational complexity.

This is applied in gradient search algorithm in polar coordi-

nates.35 Basic assumption of this algorithm is that the sig-

nificant features are located where there is a change of the

measured distance. In these points, the gradient crosses zero.

The segmentation of data points from LRF measure-

ments is the basic assumption of each algorithm used for

the detection of moving obstacles. The identification of

moving obstacle usually involves the pairing of segments

from two consecutive data points and looking for the

changes in the position of each segment with respect to the

own robot’s motion. Segments representing the objects in

the environment can be described as follows:

� occupancy grid,36–39

� geometrical shape,40–42

� significant features,21,41,43,44and

� point cloud.45,46

Each of these representations has its own advantages

and the correspondence searching (pairing of segments) is

based on it. Generally, the majority of mentioned methods

are based on some type of distance searching (Euclidean
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and Mahalanobis36) or on the object similarity. The largest

source of error is the coverage of moving objects, sudden

changes in the shapes of objects between two consequent

measurements, and the position error of the robot.

If the correspondence between two segments is found,

then it is possible to determine whether the object is moving

or static. For this purpose, it is possible to use simple regres-

sive methods based on EKF47 or particle filter.48 Advanced

methods work with the information about the object’s type.

The detection of moving obstacles in the occupancy grid

requires the modification of occupancy grid itself. One

option is to create the new occupancy grid for each mea-

surement and the detection of moving obstacles can be

performed by image processing algorithms, such as optical

flow.37 The disadvantage of these algorithms is that they

also process the places in the occupancy grid with no object

present. Therefore, these methods require extensive com-

puting power. Another option is the extension of occupancy

grid with the information, when the cell was changed last

time. This can help to determine, if the new measurement is

a moving obstacle.36 Another modification of occupancy

grid divides it into two grids—static and dynamic.38

Extending this algorithm onto several occupancy grids,

each containing information about a single moving object,

may lead to the acquisition of accurate information about

individual objects.45,49

All objects measured by LRF can be represented by

basic geometrical shapes. The advantage of this represen-

tation is the possibility to use analytical geometry to deter-

mine the distance and similarity between two objects.41,42

The disadvantage of these algorithms is the loss of infor-

mation about the real shape of the objects, which is why the

information about similarity of two objects has low infor-

mation value. Objects can also be described by convex hull,

which better reflects the shape of the object.40

The detection of moving obstacles based on significant

features requires at least one significant feature on each

object. These features can be characterized as edges,43

points,21 or combined features as corners (two edges and

one point).41 The significant feature of an object can also be

apparent, that is, it does not belong to any point of a real

object.21

Point clouds represent the object in the least distortive

fashion. Point clouds can be easily extended with points

from the follow-up measurements.50 Correspondence

searching on point clouds can be implemented by iterative

algorithms.51 The mobility of the object can be determined

by the change in shape of the point cloud.45 Moreover, point

clouds can be classified to various type of objects.46,52

From knowledge of the algorithms and methods men-

tioned above, a simple segmentation algorithm was pro-

posed. The goal was to propose such algorithm, which

can be computed by cheap electronics (e.g. Raspberry PI,

manufactured by element14) and the data may be obtained

be not too expensive LRF. Therefore, the proposed meth-

odology can be used in any robot (e.g. robotic vacuum

cleaners as Roomba, manufactured by iRobot) and it will

provide additional data in real time. Proposed algorithm

uses standard thresholding and it also generates the con-

nection of segments, which were disconnected by small

objects (similar to split and merge algorithms). The algo-

rithm is proposed for the probabilistic model of Hokuyo

UTM-30LX,53 but it is possible to modify it for any other

LRF, especially the cheaper ones (e.g. RPLidar, manufac-

tured by slamtec). Moreover, algorithm uses unique data

simplification and the method of environment representa-

tion. Such method of segmentation allows a significant

decrease of memory demands as well as computing

demands on subsequent processing. The whole system is

parametrized and it allows modifying the rate of simplifi-

cation for the purposes of each application. This simplified

representation of environment also allows simple signifi-

cant points tracing. And based on this pairing of objects

between two scans is performed and dynamic properties of

each object are evaluated. Generally, the advantage of

whole system is that it is not computationally demanding,

while being easy to implement at the same time.

The article is organized as follows. “Segmentation of

data points” section describes the principle of segmenta-

tion. “Moving obstacle detection” section introduces the

proposed technique of moving obstacle detection. Finally,

“Verification and experiments” section demonstrates the

functionality of the proposed algorithms by practical ver-

ification and experiments.

Segmentation of data points

The basic task of segmentation is to segment the data into

regions that have strong correlation with real environment

properties. In the case of LRF measurements, these proper-

ties are characterized as objects in the environment. There

are two main types of the data points segmentation measured

by LRF. The first is characterized as complete segmentation.

In this case, a single object is characterized by a single seg-

ment. The second type is described as partial segmentation

and it means that one object can be characterized by two or

more segments (e.g. chair legs). Because the LRF used in

this study (Hokuyo UTM-30LX) measures only in one

plane, the proposed segmentation is characterized as partial.

The algorithm of the proposed segmentation is based on

standard thresholding, which is often used in image pro-

cessing.54 Basic principle can be seen in Figure 1, and an

example of such thresholding on real data points is shown

in Figure 2.

In many cases, large segments, such as walls, are inter-

rupted by small gaps. This produces the larger number of

segments than there are real objects. A small gap is defined

as one that does not consist of more than three data points.

Therefore, such gap is not considered to be an object.

Such case is shown in Figure 3, where small gap (black color)

divides one large segment into two smaller segments. Hence,

the algorithm was enhanced to account for such cases.

Dekan et al. 3



The enhancement of the algorithm involves the connec-

tion of two segments, which are separated by small gap.

This connection can be done if two conditions are met.

The difference in measured distances of boundary points

(points from the large segment, which are adjacent to the

small gap) cannot exceed the threshold.

Both boundary points have to lie in specific surround-

ings (Figure 4).

The data point lies in the surrounding area of a boundary

point, when its coordinates (xb, yb) are located inside of an

ellipsis created around the boundary point (xc, yc) and its

semiaxes are equal to a ¼ 1.5sy and b ¼ 1.5sx. This means

that it has to meet this condition

xb � xc

a
þ yb � yc

b
< 1 (1)

The example of such enhanced segmentation can be

seen in Figure 5. Such segmentation is computationally

undemanding. However, if the gap is longer than three data

points, the algorithm is unable to connect two segments

belonging to the same object.

From the previous examples, it is clear that some objects

could be represented by smaller amounts of data. For exam-

ple, a box in Figure 5 (green segment) is represented by 22

data points. The box consists of relatively flat surfaces and

it can be represented by smaller amount of data. The basic

idea of the proposed algorithm is to represent any shape by

a set of line segments. The number and length of the line

segments is directly dependent on the complexity of the

measured shape and the required accuracy of representa-

tion. Given that the goal of the algorithm is to achieve the

simplification of data, it is desirable that the object is rep-

resented by no more data than was necessary for its repre-

sentation before the simplification. From the analytical

geometry point of view, a line segment can be described

by various forms. However, when working with objects, it

Figure 1. The principle of segmentation using threshold. Two
segments are shown, the first one is marked by blue color and the
second one is marked by red color. The distance between these
segments is D.

Figure 2. The example of segmentation using the threshold on
real data points. Three segments are distinguishable by color.

Figure 3. The example of small gap, which divides one large
segment (wall) into two smaller ones.

Figure 4. The second condition, which have to be fulfilled for the
connection of two segments.
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is suitable to describe them by coordinates of end points.

Hereby, line segments are expressed as a sequence of

points, where the end point of one line segment is the

starting point of the following line segment. Hence, a sim-

plified object, which consists of n points, can be described

at most by n-1 line segments. The principle of this algo-

rithm is shown in Figure 6.

The angle between the data points was chosen as a measure

of whether it is possible to exclude any data point

�i;j ¼ a cos
lj � li cosð�j�iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2i þ l2j � 2lilj cosð�j�iÞ
q

0

B

@

1

C

A
(2)

where �j-i is the angle between two consecutive mea-

surements (Figure 7).

Measurements are corrupted by noise. This noise could

cause that some data points fail to represent a real object

precisely. Therefore, a threshold was proposed. Thus, the

accuracy of object’s representation is affected by the thresh-

old’s value. The conditionwhich determineswhether the data

point will represent a new object is defined as follows

FvðliÞ ¼ ðj�i�1�k;i � �i;iþ1jÞ < p (3)

where p is the threshold, k is the index of last point, which

is considered as object, �i-1-k,i is the angle pertaining to

the data point li-1-k, and �i,iþ1 is the angle pertaining

to the data point li. If the condition is fulfilled, the data

point is rejected from the representation of the object.

Consequently, the value k is increased by 1 and next point

liþ1 is evaluated. If the condition is not fulfilled, the data

point is considered as the boundary point of the line seg-

ment and the value k is set to 0. In this case, the data point is

marked as the starting point of a line segment, and from this

point, the condition is evaluated for the following data

points. This algorithm was implemented along with the

enhanced segmentation described earlier and the result of

such segmentation is shown in Figure 8. In this case, the

threshold p has the value 25�.
It is clear that the threshold affects both the accuracy of

object’s representation as well as the number of skipped

data points. The results for a simple object’s segmentation

with various threshold values are shown in Figure 9.

There are some shapes of objects, that is, objects with

rounded edges, where the threshold between two data

points is not exceeded; however, there is a significant

change of angle. The proposed segmentation will not

represent this object correctly (Figure 10). That is why

two additional parameters were included. The first para-

meter describes the maximum number of data points that

may be skipped in a row. The second parameter identi-

fies the number of data points, from which the angle �i,j
is computed. While the first parameter improves the

representation of the object’s shape, the second para-

meter increases the number of skipped points. As can

be seen in Figure 11, the proposed algorithm now better

represents the shape of the object in comparison with the

results shown in Figure 10.

The resulting algorithm has this form

FðliÞ ¼
0 ^ k ¼ k þ 1

��

j�0
i�ð1þkÞm;i � �

0
i;iþmj < p

�

_ ðk < MÞ
�

^ ði mod mÞ 6¼ 0

1 ^ k ¼ 0
��

j�0
i�ð1þkÞm;i � �

0
i;iþmj � p

�

^ ðk � MÞ
�

_ ði mod mÞ ¼ 0

8

>

<

>

:

(4)

Figure 5. The example of enhanced segmentation—segment one
consists of two subsegments, which are divided by small gap.

Figure 6. The principle of algorithm used for simple represen-
tation of objects.
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where M is the maximum number of skipped points, m

is the number of data points, from which the angle �i,j is

computed, p is the threshold, and angle �
0
i;j is computed as

�
0
i;j ¼

1

j� i

X

j�i�1

h¼0

�iþh;iþ1þh (5)

F takes the zero value for a point that is skipped from an

object’s representation and value 1 for a point that remains

in the representation. The results for various settings of

both parameters are shown in Figures 12 and 13.

The proposed algorithm allows reduction of the number

of points needed to represent objects. It also reduces the

Figure 7. The definition of angles used in data points exclusion.

Figure 8. The result of the algorithm, which applies the enhanced
segmentation with threshold.

Figure 9. The segmentation of a simple object with various
threshold values.

Figure 10. The incorrect segmentation of object with rounded
edges.

Figure 11. Enhanced segmentation with threshold 25� and with
the restriction of maximum skipped data points equal to 5.
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amount of memory and computing power needed. The

degree of an object’s simplification can be set by various

parameters. The first parameter is threshold, which deter-

mines the accuracy of the shape representation. The sec-

ond parameter is the maximum number of skipped data

points, which provides tracking of slowly changing

shapes. The third parameter is the number of data points

that serve in calculating the angle, which is used to eval-

uate whether the threshold was exceeded. With this para-

meter, it is possible to set the minimum amount of the

object’s shape simplification. The disadvantage of this

algorithm is the fact that the resulting simplification will

be slightly different from the original shape with repeated

measurements. It follows that it is not possible to com-

pare two objects described by this algorithm. Therefore,

another algorithm was proposed. This algorithm deter-

mines only those points that uniquely characterize

objects. Such significant points are, for example, corners

(Figure 14) or interruptions at the edges. These points

represent extremes in measurements.

Since the LRF measurements are generated from one

point, some objects are hidden by other objects and

therefore some significant points are not recorded.

Another consequence is the occurrence of apparent sig-

nificant points—false extremes. These false extremes

occur when the object in the foreground covers the object

behind it. Consequently, the object in the background

seems to be finished in the measurement (Figure 15).

In reality, this is not true. False extremes are not stable

in a time, because the object in the foreground may move

or the LRF may move itself. This will also cause the

movement of false extreme itself (Figure 16). Therefore,

it is needed to distinguish whether it is apparent or real

significant point.

Proposed algorithm works with simplified objects, as it

was mentioned earlier. The aim of the algorithm is to find

real as well as apparent significant points. Each object is

created at least from two significant points. Usually these

points are outline points. Besides these outline points,

each object may contain any number of significant

points. Each apparent significant point must be also

apparent outline point. Therefore, the first step of algo-

rithm is the evaluation of outline points. If the outline

point is real significant point, then the following function

takes the value 1

FzðliÞ ¼
1 9l 2 HðliÞ; l > li

0 8l 2 HðliÞ; l < li

�

(6)

where the function H is the set of points l in the surround-

ings of the outline point li. Since there is always object

from the one side for the outline point, the set is different

for both outline points. Set for the first outline point con-

tains these members

HðliÞ ¼ ½li�5; li�4; li�3; li�2; li�1� (7)

And for the second outline point contains these members

HðliÞ ¼ ½liþ1; liþ2; liþ3; liþ4; liþ5� (8)

Outline point is considered as apparent significant

point if its whole surrounding is closer to LRF and there-

fore it exists probably another real significant point,

which is covered by nearer object. Another step of algo-

rithm searches for significant points in inner parts of

objects. Significant points in inner parts of objects are

defined as real points, in which the object significantly

changes its shape. Such changes are detected by the

mutual position of line segments inside the objects.

Following function is defined as

Figure 12. Enhanced segmentation with threshold 25� and for
the varying number of maximum skipped data points for a simple
object.

Figure 13. Enhanced segmentation with threshold 25� and for
the varying number of data points, from which the angle �i,j is
calculated.
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Ftðli; kÞ ¼

0; k ¼ 0 jjli � li�1jj < mLen

0; k ¼ 0 jjli � li�1jj > mLen ^ jjli � ljjj > mLen ^ gi;j=2hdm; dMi
Ftðli; k ¼ k þ 1Þ jjli � li�1jj > mLen ^ jjli � ljjj < mLen

1; k ¼ 0 jjli � li�1jj > mLen ^ jjli � ljjj > mLen ^ gi;j 2 hdm; dM i

8

>

>

>

<

>

>

>

:

(9)

Figure 14. Significant points in LRF measurement. LRF: laser range finder.

Figure 15. The occurrence of apparent significant points due to the covering of two objects.
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where

j ¼ iþ 1þ k

gi;j ¼ 180� � ð�i�1;j þ �iÞ þ �i;j

(10)

where mLen is minimal distance between points, dm and dM
are lower and upper limit of angle g, gi,j is angle between

two line segments, and �i,j is angle between points li and

lj, which is computed by equation . As it can be seen,

algorithm compares angles between the line segments

with the length greater than parameter mLen. In the case

if the point li is too close to the previous point from

simplified object, it will not be considered as significant

point. If such point is not too close to the previous point

from simplified object, and moreover the angle between

the line segments is from the selected interval, this point

will be evaluated as significant point. Special case may

occur when the first point fulfills the distance condition,

but the second point does not. In this case, the evaluation

for the point li is repeated with the following point. The

output of the algorithm applied on the simplified objects

can be seen in Figure 17. Other experiments are shown in

Figures 18 and 19.

As it can be seen, proposed algorithm finds the signifi-

cant points on the objects, which have meaning change in

their shape. However, there may be objects, which do not

contain such changes, but from the global point of view, the

change is significant. Such objects have usually rounded

shape. Therefore, another step in algorithm was proposed.

This step is characterized as test of object’s eccentricity. If

the object does not contain any inner significant point, the

farthermost point from the object’s borders is the input to

the test. If the distance of this point is greater than thresh-

old, it is marked as significant point (Figure 20). The

threshold is empirically stated and it is equal to 1/5 of

distance between the border points of object.

Proposed algorithm enables the description of objects

by significant points. This algorithm is based on simpli-

fied object, whose principle was described above. The

output of the algorithm may be modified by several

thresholds, for example, minimal distance between

object’s representation, minimal and maximal angle

between the data points, or eccentricity of the object.

The key aspect of the algorithm is distinguishing

between real and apparent significant points. Such

description of objects reduces memory demands without

the loss of information.

Figure 16. The movement of false extremes within the movement of LRF itself. LRF: laser range finder.

Figure 17. Significant points after applying of the proposed
algorithm.

Dekan et al. 9



Moving obstacles detection

Mobile robots are used in environments, which are dyna-

mically changing and containing a lot of moving

objects, for example, humans or other robots. Therefore,

successful control (SLAM, navigation, etc.) of robot

needs to take into consideration such objects. The pro-

posed algorithm is based on the segmentation described

in the previous section. Algorithm itself may be divided

into three steps:

� localization—formulated as a laser odometry based on

the implementation of iterative closest point (ICP),55

� object matching—formulated as the correspondence

searching of significant points based on kd-trees

(Figure 21), and

� moving obstacles detection.

Moving obstacles detection is based on assumption that if

the object moves, significant points of this object are moving

too. Therefore, direction and distance of how far the object is

moved are determined by the displacement of its significant

points. The first step of the algorithm is looking for the

correspondence between the significant points of particular

objects in two consequent measurements. It is assumed that

there is no notable change in the object’s shape, and the

correspondence is determined by these steps as follows:

� the construction of kd-tree from the significant

points of the first measurement;

� finding the two closest points in the second mea-

surement for each significant point from the first

measurement;

� the arrangement of pairs of significant points by the

shortest distance; and

� the removal of pair, in which one significant point is

contained in pair with shorter distance.

Figure 18. Significant points after applying of the proposed
algorithm (dm ¼ 40� and dM ¼ 140�).

Figure 19. Significant points after applying of the proposed
algorithm (dm ¼ 20� and dM ¼ 160�).

Figure 20. The significant points of rounded object after another
enhancement of the proposed algorithm.

Figure 21. The correspondence searching of significant points
based on kd-trees.
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In the case that both significant points in pair are real,

then the displacement of significant point in x- and y-axes is

determined by the difference in coordinates

P½x; y� ¼ P½vx2 � vx1; v
y
2 � v

y
1� (11)

where v1 and v2 represent the significant points in pair and

indexes x and y are the coordinates of these points. In the

case that at least one point in the pair is apparent, the dis-

placement is determined as a difference between apparent

point and its perpendicular projection on the line. This

connects the second significant point from the pair and

adjacent significant point (Figure 22).

Then the displacement of significant point is defined as

P½x; y� ¼ P½vx2 � ox; vy2 � oy� if v 2 is apparent significant point

P½ox � vx1; o
y � v

y
1� if v 1 is apparent significant point

�

(12)

where o represents the point situated on the line, which

connects the second significant point from the pair and

adjacent significant point. If v1 is apparent significant

point, then the coordinates of o are defined as

ox ¼ vx1 þ ðvy2 � vypÞs
oy ¼ v

y
1 þ ðvxp � v

y
2Þs

(13)

where vp is adjacent significant point and s is defined as

s ¼
vx2 � vx1 þ ðvxp � v

y
2Þ:

ðvy
2
�v

y
pÞðvy1�v

y

2
Þþðvxp�v

y

2
Þðvx

2
�vx

1
Þ

ðvyp�v
y

2
Þðvy

2
�v

y
pÞ�ðvxp�v

y

2
Þ2

ðvy2 � v
y
pÞ

(14)

Resultant displacement of the object is calculated as the

average from every displacement of each significant point

of the object

T ½x; y� ¼ 1

n

X

n

i¼1

Pi½x; y� (15)

where n is the number of significant points.

For the needs of mobile robots, it is needed to detect

moving obstacles approximately with the same speed as the

speed of the robot. Used robot is capable to achieve the

speed up to 1 m/s. Commonly used LRFs are working with

frequencies up to several dozen hertz. When the speed of

the robot reaches 1 m/s, the difference between two con-

sequent measurements may reach 50 mm. However, this

difference can appear in the measurements of static objects.

Therefore, it is not possible to distinguish if the object is

static or it is moving. From this reason, the detection of

moving obstacle is based on several consequent measure-

ments. In the case of static obstacle, the displacement

should be rated with zero mean variance of measurement.

In the case of moving obstacle, this value should increase in

time. The condition, moving obstacle is identified, is

defined as

FðOÞ ¼
0 dimðOÞ < 5

0 dimðOÞ � 5 ^ jjT ½x; y�jj < t

1 dimðOÞ � 5 ^ jjT ½x; y�jj > t

8

>

<

>

:

(16)

where dim represents the dimension of object O, that is,

how many times it was measured. The value jjT ½x; y�jj
defines the overall displacement of the object and t repre-

sents threshold. If it is exceeded, the object is considered as

moving. This threshold was determined experimentally and

it is equal to 200 mm. As the resultant displacement of the

object is calculated as the average from every displace-

ment, one wrong calculation of displacement may impair

the overall displacement. Therefore, the maximal conse-

quent measurements taken into account were defined. This

value was equal to 10.

Verification and experiments. Simulated environment with

several types of objects (e.g. circular object) was chosen

to verify proposed segmentation. LRF was placed into

the origin of coordinate system. Selected parameters of the

algorithm are shown in Table 1. These parameters are

derived on the basis of LRF’s probabilistic model. Partic-

ular model of Hokuyo UTM-30LX was defined by Dekan

et al.53 All the parameters mentioned in Table 1 are deter-

mined on the basis of LRF’s resolution and accuracy. And

they are not dependent on the type of environment, which

was proven by Dekan et al.53

Figure 22. The principle of displacement determination in the
case of apparent significant point.

Table 1. Parameters of proposed algorithm.

Object’s simplification Value of parameter

Threshold p 25�

Minimal skipped data points 1
Maximal skipped data points 5

Significant points of objects
dm 40�

dM 140�

Dekan et al. 11



As it was expected (Figure 23), simulated environment

was divided into several objects. Mentioned object’s

boundary points represent apparent significant points.

As it can be also seen, the points of simplified segments

are tracing significant points. However, for better evalua-

tion of such tracing, some numerical formulations have to

be mentioned. For this purpose, root mean square error

was chosen as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i¼k

cosðl�i Þ:li:aþ sinðl�i Þ:li:bþ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

� �2

m� k

v

u

u

u

t

(17)

where k and m represent indexes of two consequent signi-

ficant points from the simplified object and li stands for

ideal measurement in polar coordinates. Parameters a, b,

and c represent parameters of the line obtained from

significant points of simplified object k and m

a ¼ � sinðl�m Þ:lm � sinðl�k Þ:lk
cosðl�m Þ:lm � cosðl�k Þ:lk

b ¼ 1

c ¼ �
sinðl�k Þ:lk �

�

sinðl�m Þ:lm � sinðl�k Þ:lk
�

: cosðl�k Þ:lk
cosðl�m Þ:lm � cosðl�k Þ:lk

(18)

Results are shown in Table 2. As it can be seen, RMSE

for simplified objects is comparable with RMSE for filtered

measurements. Significant worse results emerged within

circular object (Figure 24). Despite this, the level of data

degradation is negligible for the needs of mobile robotics.

The compression rate is 1:45 and therefore the data degra-

dation for such type of objects is acceptable. In this case,

the number of recorded points was reduced from 1080

points to 24 points.

Proposed algorithms enable significant simplification of

data based on sensed environment. This simplification does

not cause loss of information, such as corners of objects and

so on. Proposed segmentation can also be used in cases

where the high accuracy is required (SLAM, detection of

moving obstacles, etc.).

Proposed detection of moving obstacles depends on the

segmentation of data points, the detection of significant

points, and the localization of mobile robot. The localiza-

tion of mobile robot was proposed in the form of laser

odometry with ICP implemented.55 The accuracy of seg-

mentation and the detection of significant points depend on

the quality of data preprocessing. Therefore, it can be stated

that the accuracy of object’s correspondence between two

consequent laser scans is depending on proposed algo-

rithms. However, numeric expression of this accuracy is

not possible to evaluate, because correspondence between

Figure 23. The principle of displacement determination in the
case of apparent significant point.

Table 2. RMSE for measurement with noise, filtered measurement,
and simplified objects.

Object number
RMSE noise

(mm)
RMSE filtered

(mm)
RMSE simplified

(mm)

1 8.7854 5.1281 0.8164
2 7.2041 4.2920 2.9088
3 6.7285 3.9081 8.6145
4 9.1140 5.2429 3.2143
5 8.4811 3.9524 3.9433
6 8.5842 4.4363 1.8828
7 7.2627 4.3350 3.9111
8 7.0128 4.1360 5.6573
9 7.8536 4.4771 15.5939
10 6.2734 3.5564 4.2818

RMSE: root mean square error.

Figure 24. The measurement of circular object and corre-
sponding simplification of such object.
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the individual measurements vary in time. This is because

the objects may be segmented in different ways due to the

robot’s motion. However, even if the object is segmented

inappropriately, this can be later corrected and for example

two wrong segmented objects may be correctly connected

into the single one. This inaccuracy is proportional to the

complexity of mapped environment. If the environment

contains several bigger homogenous objects, the overall

accuracy of proposed algorithms will be better than in the

case with small and densely placed objects (e.g. chair legs).

Moreover, the overall accuracy will be significantly chang-

ing under the influence of moving obstacles and the motion

of robot itself. Namely, these motions will cause the change

of objects’ shape, because the mutual overlay of objects

will change. Following four tests were made to demonstrate

these claims:

� static robot and static environment,

� moving robot and static environment,

� static robot and single moving obstacle, and

� moving robot and single moving obstacle.

All the tests were performed in laboratory with tables,

chairs, paper boxes, and other nonhomogenous objects.

Such environment is quite challenging and variable for data

processing. Moreover, LRF was not fixed, whereby the

systematic errors of odometry were simulated.

The result of the first test (static robot and static envi-

ronment) is shown in Figure 25. As it can be seen, despite

the robot does not change its position, the number of

objects vary in time. This is caused by noise, which causes

different segmentation and identification of significant

points. Consequently, correspondence between two conse-

quent measurements contains some wrong paired objects. It

can be also seen that the laser odometry partially suppresses

these small variations, but it will also generate incorrect

change in the robot’s position.

The result of the second test (moving robot and static

environment) is shown in Figure 26. As it can be seen, there

is a significant difference in the number of objects between

usage of odometry and laser odometry. This was caused by

not fixed position of LRF. Consequently, small shift of

objects between measurements caused wrong objects’ pair-

ing. The number of objects was gently increased compared

to the previous test. This was caused by the change in the

position of apparent significant points introduced by the

motion of the robot.

The tests with moving obstacles (Figure 27) showed

growth in the number of objects in time. In the case of static

Figure 25. The number of identified objects (segments) in envi-
ronment using odometry and laser odometry as localization
method (static robot and static environment).

Figure 26. The number of identified objects (segments) in the
environment using odometry and laser odometry as localization
method (moving robot and static environment).

Figure 27. The number of identified objects (segments) in the
environment using odometry and laser odometry as localization
method (single moving obstacle).

Dekan et al. 13



robot, the growth compared to the first test is minimal,

because moving obstacle affected only objects in its near

surrounding.On the contrary, themotionof the robot is affect-

ing the objects in the whole measuring range. However, it

must be said that many of these incorrectly identified objects

disappeared over several measurements and the number of

steady detected objects was the same for each test.

The important aspect of proposed algorithms is ability to

determine the object’s motion.

Figures 28 and 29 show the movement of objects

between individual measurements in the case with moving

obstacle. Significant difference can be seen in overall

movements of objects (Figures 30 and 31), where single

object significantly exceeds the limit, which can be consid-

ered as a noise.

The next step is to determine which object is moving.

Number of moving objects in the static environment is

shown in Figure 32, and the same parameter in environ-

ment with single moving obstacle is shown in Figure 33. As

it can be seen, in all the tests, except one, at least one object

was evaluated as moving. In the case of environment with

single moving obstacle, at least one moving obstacle was

identified approximately in the same time, and it retained

moving until the end of the test. Remaining incorrectly

identified moving obstacles remained evaluated as moving

only for a short time. It can be stated that the proposed

algorithms worked very well for this type of environment.

Worse results were obtained within the tests with no mov-

ing obstacles. The worst results were achieved in the case

of moving robot, whose position was determined from odo-

metry. This error was caused by loosely attached LRF,

which caused apparent movement of objects in the

Figure 28. Calculated movement of objects in the direction of
x-axis with single moving obstacle.

Figure 29. Calculated movement of objects in the direction of y-
axis with single moving obstacle.

Figure 30. Calculated overall movement of objects in the
direction of x-axis with single moving obstacle.

Figure 31. Calculated overall movement of objects in the
direction of y-axis with single moving obstacle.
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environment. However, before the method will be declared

as nonfunctional, it should be recognized what types of

objects are identified as incorrect (Figure 34, objects 21

and 49 highlighted in green). More or less, there are objects

in the background with very unstable shape and they are

influenced by many factors such as the occasional capture

of the legs of chairs and reflections from shiny surfaces in

the area. This incorrectly identified object does not create

any constant movement, but it creates only oscillations

around the mean value of its true position.

Conclusion

In the article, multiple algorithms for LRF data processing

were proposed. First algorithm was segmentation, which

considers small interruption in measured objects and thus

suppresses over-segmentation. Simplification algorithm

was then used on these segments. The advantage of this

proposed algorithm is that it does not change the data

structure of the measured space, yet it greatly reduces the

amount of points needed for its representation. The pre-

cision of the algorithm can be adjusted per the needs of

the application. Significant points were chosen from the

simplified segments, and algorithm for distinction of

apparent and real significant points was proposed. The

significant points were used as object description for

moving obstacle detection. Proposed detection of moving

obstacles based on the LRF measurements was verified by

the complex set of tests. Algorithm reliably identifies the

moving objects. However, provided tests show that if the

environment contains obstacles, with the shape at the

limit of LRF resolution, some static objects may be iden-

tified as moving. Such incorrect identification can be sup-

pressed by the additional processing of calculated

movements. Generally, the proposed algorithm can be

used in any type of robot and with cheap LRF already

available in the market. Another advantage of proposed

algorithm is simple implementation and overall low com-

putational complexity. This algorithm makes it easy to

use even in cheaper robots that have a wider application,

for example, in households, such as those found in labora-

tories. In the future work, we intend to use proposed mov-

ing obstacle detection algorithm as part of the Vector

Field Histogram with Time Dependent Tree (VFH*TDT)

proposed by Babinec et al.56 Moving obstacle detection

algorithm will be implemented as a support algorithm for

SLAM solutions in environment with dynamic objects.

SLAM algorithms should benefit from moving obstacles

refusal during the map creation especially in the case

where the amount of such objects is significant and stan-

dard SLAM fails.

Figure 32. The number of objects identified as moving obstacles
in the static environment.

Figure 33. The number of objects identified as moving obstacles
in the environment with single moving obstacle.

Figure 34. The part of experiment on the real robot.
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