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Abstract We review previous work of (mainly) Koelman, Haase and Schicho, and
Poonen and Rodriguez-Villegas on the dual operations of (i) taking the interior hull
and (ii) moving out the edges of a two-dimensional lattice polygon. We show how the
latter operation naturally gives rise to an algorithm for enumerating lattice polygons
by their genus. We then report on an implementation of this algorithm, by means of
which we produce the list of all lattice polygons (up to equivalence) whose genus is
contained in {1, . . . ,30}. In particular, we obtain the number of inequivalent lattice
polygons for each of these genera. As a byproduct, we prove that the minimal possible
genus for a lattice 15-gon is 45.
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1 Introduction

(1.1) A lattice polygon is a (nonempty) convex polygon in R
2 with vertices in Z

2.
Points of Z

2 are called lattice points. The dimension of a polygon Δ is the dimension
of the smallest affine subspace of R

2 containing Δ. The genus of a two-dimensional
lattice polygon is the number of lattice points in its topological interior (when
equipped with the subspace topology of R

2). The genus of a lower-dimensional lat-
tice polygon is considered 0. A Z-affine transformation of R

2 is a map of the form
ϕ : R

2 → R
2 : p �→ pA + b with A ∈ GL2(Z) and b ∈ Z

2. Two lattice polygons Δ

and Δ′ are called equivalent if and only if there exists a Z-affine transformation ϕ

such that ϕ(Δ) = Δ′.
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(1.2) We review a useful tool in the study of the combinatorics of lattice polygons.
The rough idea is to gradually peel off the lattice polygon by consecutively consider-
ing the convex hull of the interior lattice points. Although this ‘onion skin’ principle
dates (at least) back to the work of Rabinowitz [24] and Koelman [15], Haase and
Schicho [12] noticed that to each step of the peeling, one can associate a so-called
legal loop catching the corresponding global information. This allows one to apply a
remarkable theorem due to Poonen and Rodriguez-Villegas [23], in which the num-
ber 12 makes an intriguing appearance.

The interior hull of a lattice polygon and the associated legal loop

Whereas Haase and Schicho worked toward a refinement of a theorem by Scott [25],
our endpoint is a new and conceptual proof of a more precise conjecture due to Cole-
man [8].

Theorem 1 (Coleman’s conjecture, 1978) Let Δ be a lattice n-gon of genus g ≥ 1.
Let R be the number of lattice points on the boundary of Δ. Then R ≤ 2g + 10 − n.

The first complete proof was provided in 2006 by Kołodziejczyk and Olszewska
[17]. However, already in his 1991 Ph.D. thesis [15, Lemma 4.5.2(2)], Koelman must
have been unaware of the existence of this conjecture and was only one sentence left
from a proof. His argument heavily relies on another ‘12 theorem’ due to Oda [21,
Remark on p. 45], and can in fact be extended to cover a non-trivial part of Poonen
and Rodriguez-Villegas’ result, see (2.6). In their turn, Haase and Schicho must have
been unaware of this entire story: our proof will merely add a couple of lines to their
arguments. We therefore do not claim many credits, but hope that this proof gives an
indication of the unacknowledged potential of the machinery. At the same time, we
smoothen the theoretical and historical framework.

(1.3) We then reverse the process of gradually peeling off a lattice polygon by in-
stead consecutively moving out its edges, following ideas that were discovered by
Koelman [15, Sect. 2.2], Haase and Schicho [12], and Kołodziejczyk and Olszewska
[16]. This gives a natural and efficient way of enumerating lattice polygons by their
genus, up to equivalence. We will report on an implementation of this procedure
using the MAGMA computer algebra system [5], by means of which we produced
the list of all equivalence classes of lattice polygons of genus 1 ≤ g ≤ 30. This
comprises approximately 368 MB of data that we made available for download at
http://wis.kuleuven.be/algebra/castryck/. As a consequence, we can now answer vir-

http://wis.kuleuven.be/algebra/castryck/
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tually every reasonable question on lattice polygons of genus 1 ≤ g ≤ 30. In partic-
ular, we obtain the number of inequivalent lattice polygons for each of these genera.
Up to our knowledge, these numbers did not appear in the literature thus far, even for
g as small as 3. Among the other consequences, we find the following.

Theorem 2 The minimal genus of a lattice 15-gon is 45.

This fills in the smallest open entry of a list whose study was initiated by Arkinstall
[1] and that since invoked fair interest. E.g. only recently, it was proven that the
minimal genus of a lattice 11-gon is 17 (see [22]). Finally, we introduce the lifespan
of a lattice polygon, which measures how often its edges can be moved out without
tumbling off the lattice. We prove the following fact:

Theorem 3 A lattice n-gon has finite lifespan as soon as n ≥ 10.

For each 3 ≤ n ≤ 9, there exists an n-gon having infinite lifespan. Explicit exam-
ples are provided in (3.6) below.

2 Legal Loops Associated to a Lattice Polygon

(2.1) In 1976, Scott proved the following theorem [25].

Theorem 4 (Scott, 1976) Let Δ ⊂ R
2 be a lattice polygon having g ≥ 1 lattice points

in its interior. Let R be the number of lattice points on the boundary of Δ. Then
R ≤ 2g + 7.

Moreover, Scott proved that equality holds if and only if Δ is equivalent to
Conv{(0,0), (3,0), (0,3)}. Two years later, Coleman conjectured that the refinement
mentioned in Theorem 1 of (1.2) should hold. The usage of the word ‘theorem’ is now
justified, due to a recent proof by Kołodziejczyk and Olszewska [17]. However, as al-
ready mentioned, it should be attributed in part to Koelman [15, Lemma 4.5.2(2)]:
see (2.6).

In 2009, Haase and Schicho revisited Scott’s bound and provided an alternative
proof. Implicitly, though, they gave a new proof of Coleman’s conjecture, along with
a substantial refinement of the statement. An explicit version of this proof will be
given in (2.5). Along the way, we give an overview of the machinery used, adapt
certain definitions, and prove a number of facts that were merely sketched in the lit-
erature before.

(2.2) The following two basic operations on lattice polygons will be crucial through-
out.

Definition (Moving out the edges) Let Δ ⊂ R
2 be a two-dimensional lattice polygon.

Then each of its edges τ ⊂ Δ corresponds to a unique half-plane

Hτ = {
(x, y) ∈ R

2 |aτ x + bτ y ≤ cτ

}
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jointly satisfying Δ = ⋂
τ Hτ . In this set, aτ , bτ , cτ ∈ Z are uniquely determined by

the condition gcd(aτ , bτ ) = 1. Then we define

Δ(−1) :=
⋂

τ

H(−1)
τ ,

where

H(−1)
τ = {

(x, y) ∈ R
2 |aτ x + bτ y ≤ cτ + 1

}
.

We say that Δ(−1) is obtained from Δ by moving out the edges.

Definition (Interior hull) Let Δ ⊂ R
2 be a two-dimensional lattice polygon of genus

at least 1. Then we define Δ(1) as the convex hull of the lattice points in the interior
of Δ. We say that Δ(1) is the interior hull of Δ.

We will abuse notation and write Δ(k) for Δ(1)(1)...(1) (the interior hull taken k

times consecutively), given that this is well-defined: note that Δ(1) need not have in-
terior lattice points. Likewise, we will write Δ(−k) for Δ(−1)(−1)...(−1) (moving out
the edges k times consecutively). Again, this may not be well-defined since Δ(−1)

need not be a lattice polygon: it may take vertices outside Z
2. It is sometimes conve-

nient to write Δ(0) for Δ.

Examples where Δ(2) resp. Δ(−2) would not be well-defined

A crucial property of lattice polygons is the following.

Theorem 5 (Koelman, 1991) Let Δ ⊂ R
2 be a two-dimensional lattice polygon, such

that Δ(1) is again two-dimensional. Then Δ(1)(−1) is a lattice polygon containing Δ.

Proof See Koelman [15, Lemma 2.2.13] or Haase–Schicho [12, Lemma 11]. �

Note that this theorem gives a criterion for a two-dimensional lattice polygon Γ to
satisfy that Γ (−1) is a lattice polygon: this will be the case if and only if there exists
a lattice polygon Δ such that Δ(1) = Γ . Although the notions of moving out the
facets and taking the interior hull straightforwardly generalize to higher dimensions,
Theorem 5 does not. This is the main reason why we restrict to dimension two in this
article.

Definition (Maximal polygon) A lattice polygon Δ for which Δ(1) is two-dimen-
sional is called maximal if Δ = Δ(1)(−1).
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(2.3) We now review the theory of legal loops, in the sense of [23]. Throughout, we
will write o for the origin (0,0) ∈ R

2.

Definition (Legal move) A legal move is a couple of points (p1,p2) with p1,p2 ∈ Z
2

such that Conv{o,p1,p2} ∩ Z
2 = {o} 
 (Conv{p1,p2} ∩ Z

2).

Note that p1 = p2 is a priori allowed. If p1 �= p2, then the condition reads that the
line connecting p1 and p2 lies at integral distance 1 from o, i.e. it has an equation of
the form aX + bY = 1 for (necessarily coprime) a, b ∈ Z.

Definition (Legal loop) A legal loop is a finite sequence P = (p0, . . . , pn−1), where
n ≥ 1, such that (pi,pi+1) is a legal move for all i = 0, . . . , n − 1. For any primitive
vector p0 ∈ Z

2, the legal loop (p0) will be called trivial.

In the above, indices should be considered modulo n, i.e. pn = p0. Such abuse of
notation will be repeated throughout.

Definition (Length) The length of a legal move s = (p1,p2) is defined to be

det

(
p1
p2

)

and will be denoted by �(s). The length of a legal loop P is the sum of the lengths of
its legal moves and will be denoted by �(P ).

A legal loop P = (p0, . . . , pn−1) gives rise to a closed curve γ (P ) in R
2 \ {o} by

‘connecting the dots’. One way of making this precise is

[0,1] → R
2 \ {o} : t �→ (

nt − �nt)p�nt+1 + (
1 − nt + �nt)p�nt,

although we will only be interested in γ (P ) up to homotopy.

Definition (Winding number) The winding number of a legal loop P is the winding
number of γ (P ) around o in the sense of algebraic topology, i.e. the image of its
homotopy class under the unique isomorphism π1(R

2 \ {o}) → Z mapping the class
of a counterclockwise loop around o to 1.

Definition (Inverse loop) Let P = (p0,p1, . . . , pn−1) be a legal loop. Then we de-
fine the inverse loop P −1 to be (pn−1,pn−2, . . . , p0).

Taking the inverse of a legal loop alters the sign of both the length and the winding
number.

Definition (Equivalence) We equip the set of legal loops with the smallest equiva-
lence relation satisfying



Discrete Comput Geom (2012) 47:496–518 501

1. (shifting) a legal loop (p0,p1, . . . , pn−1) is equivalent to (p1, . . . , pn−1,p0);
2. (merging and splitting moves) a legal loop (p0,p1, . . . , pn−1) is equivalent to the

legal loop (p0, q,p1, . . . , pn−1), where q is any lattice point on a line through p0

and p1 at integral distance 1 from o;
3. (orientation-preserving lattice equivalence) a legal loop (p0,p1, . . . , pn−1) is

equivalent to (p0A,p1A, . . . ,pn−1A) for any matrix A ∈ SL2(Z).

One easily verifies that equivalence preserves the length and the homotopy class
of the corresponding curve. For that reason, we can unambiguously talk about the
length and the winding number of an equivalence class of legal loops P . The former
will be denoted by �(P ).

A pathological remark is that all trivial legal loops are equivalent. Indeed, if
p0,p1 ∈ Z

2 are primitive vectors, one can always find a distinct point p2 ∈ Z
2 such

that both the line through p0 and p2 and the line through p1 and p2 lie at integral dis-
tance 1 from o. By merging and splitting, (p0) ∼ (p0,p2) ∼ (p2) ∼ (p2,p1) ∼ (p1).
The corresponding equivalence class will be called the trivial class.

Definition (Dual class) Let P be an equivalence class of legal loops. Take a repre-
sentant P = (p0, . . . , pn−1) for which pi �= pi+1 for all i = 0, . . . , n − 1. Define

qi = pi+1 − pi

det
( pi+1

pi

) .

Then the dual class P ∨
is defined to be the class of (q0, . . . , qn−1).

The reader can check that this is well-defined. Note that the trivial class is self-
dual. In the non-trivial case, one can take a representant having no two consecutive
moves along the same line, by means of which one easily verifies that P ∨∨ = P .

The above series of figures illustrates the construction of the dual class. The notation
P ∨ should in principle be read as ‘a representant of P ∨

’, but since P does not contain
any moves of length 0 we can unambiguously write P ∨. Note that the length of P is
1 − 3 + 1 + 3 + 1 + 1 = 4, whereas the length of P ∨ is 1 + 1 + 3 + 1 − 1 + 3 = 8

Theorem 6 (Poonen and Rodriguez-Villegas, 2000) Let P be a legal loop of winding
number ω. Then �(P ) + �(P ∨

) = 12ω.
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Proof This is hinted at in the paper by Poonen and Rodriguez-Villegas [23], which
contains the details of the case where P is the boundary of a lattice polygon of genus
1, ran through counterclockwise. Since the necessary adaptations for the general case
are not entirely trivial, we include the details here.

The only external fact we need concerns the set S̃L2(Z), an element of which is
a pair (M, [γ ]). Here M = (

a b
c d

) ∈ SL2(Z) and γ is a homotopy class of paths in

R
2 \ {o} from (0,1) to (c, d). If (c, d) �= (0,−1), one can consider a straight-line

path γ from (0,1) to (c, d). In that case, we simply write M̃ instead of (M, [γ ]). The

set S̃L2(Z) is turned into a group by the rule

(
M1, [γ1]

) · (M2, [γ2]
) = (

M1M2,
[
γ2 ∗ γ

M2
1

])
,

where ∗ is the concatenation of paths sharing an endpoint, and where γ
M2
1 is the path

obtained by composing γ1 with (a, b) �→ (a, b)M2. A prominent role is played by
the element (I, loop), where I is the identity matrix and ‘loop’ is the homotopy class

of a counterclockwise loop around the origin. Namely, the property of S̃L2(Z) that

we need is the existence of a group homomorphism Φ : S̃L2(Z) → Z under which
(I, loop) is mapped to 12. This can be achieved in various ways; see [23, Sect. 8.4]
for a fancy proof in which the ‘12’ appears as the weight of the modular discriminant.

By merging, splitting and switching to P −1 if necessary, we may assume that
P = (p0, . . . , pn−1) consists of moves of length 1 or −1 only, and that the move
(p0,p1) has length 1. Then an orientation-preserving lattice transformation brings us
to the case where p0 = (1,0) and p1 = (0,1). For i = 0, . . . , n − 1, let si denote the
legal move from pi to pi+1, and let Mi ∈ SL2(Z) be defined inductively by

Mi · Mi−1 · · ·M0 =
(

�(si+1) · pi+1
pi+2

)
.

In particular Mn−1 · · ·M0 = I, but note that one even has

M̃n−1 · · · M̃0 = (
I,

[
γ (P )

])
.

It follows that

n−1∑

i=0

Φ
(
M̃i

) = 12ω.

Now there are two types of Mi :

either Mi =
(

0 1
−1 di

)
or Mi =

(
0 −1
1 di

)
,

depending on whether �(si+1) = 1 or �(si+1) = −1. Using that Φ((I, loop)) = 12,
one accordingly finds that

Φ
(
M̃i

) = 3 − di resp. Φ
(
M̃i

) = di − 3.
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Thus we conclude
n−1∑

i=0

�(si+1) · (3 − di) = 12ω. (1)

On the other hand, if we define qi as in the above definition, and if we let s∨
i be

the legal move from qi to qi+1, then di contains information about �(si) + �(s∨
i ).

Namely,

1. if �(si) = �(si+1) = 1, then �(si) + �(s∨
i ) = 3 − di ;

2. if �(si) = �(si+1) = −1, then �(si) + �(s∨
i ) = di − 3;

3. if �(si) = 1 and �(si+1) = −1, then �(si) + �(s∨
i ) = di − 1;

4. if �(si) = −1 and �(si+1) = 1, then �(si) + �(s∨
i ) = 1 − di .

Since a closed loop must switch as many times from being positively oriented to
being negatively oriented as conversely, we find that

n−1∑

i=0

�(si) + �(s∨
i ) =

n−1∑

i=0

�(si+1)(3 − di).

Together with (1), this concludes the proof. �

Remark In case P is the boundary of a genus 1 polygon, Theorem 6 can be easily
proven by exhaustively verifying it for the 16 representants of Theorem 10(b). In a
quest for explaining the ‘12’, Poonen and Rodriguez-Villegas gave three alternative
proofs. One of these is, essentially, the proof produced above. Of the four approaches,
it seems best-suited for addressing the general case. A fifth proof manages to deal
with the intermediate case where P has winding number 1 and consists of positively
oriented moves only, and is implicitly contained in the work of Koelman [15]; this is
briefly elaborated in (2.6) below.

Remark The notion of a legal loop can be generalized by dropping the condition
that the endpoints should coincide. Such curves have been studied by Karpenkov in
the context of lattice trigonometry, where they are called o-broken lines [14, Def-
inition 3.1]. In the same trigonometric philosophy, Poonen and Rodriguez-Villegas
suggested a connection between Theorem 6 and the Gauss-Bonnet theorem. See [23,
Sect. 10].

(2.4) Let Δ be a lattice polygon such that Δ(1) is two-dimensional. To Δ(1), we can
associate in a natural way two legal loops, up to shifting.

Definition (Edge-moving loop) Let p0,p1, . . . , pn−1 be the vertices of Δ(1), enu-
merated counterclockwise. Let τi and τ ′

i be the edges adjacent to pi , so that pi is

the top of the cone Hτi
∩ Hτ ′

i
. Let p

(−1)
i be the top of the cone H(−1)

τi
∩ H(−1)

τ ′
i

. The

edge-moving loop P (Δ(1)) is defined to be (p
(−1)
0 − p0, . . . , p

(−1)
n−1 − pn−1). This is

well-defined up to shifting.
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Definition (Normal fan loop) Let t0, . . . , tn−1 be the primitive generators of the rays
of the normal fan of Δ(1), enumerated counterclockwise. Along with o, two con-
secutive primitive generators always span a triangle having no interior lattice points.
Therefore, N (Δ(1)) := (t0, . . . , tn−1) is a legal loop, well-defined up to shifting. It
will be called the normal fan loop of Δ(1).

Remark If, conversely, the primitive generators of the normal fan of a two-
dimensional lattice polygon Γ span a legal loop, then this does not guarantee that
Γ = Δ(1) for some lattice polygon Δ. However, it does guarantee that kΓ = Δ(1) for
some lattice polygon Δ and some Minkowski multiple kΓ . In other words, there are
two distinct reasons why a lattice polygon Δ can fail to be interior to a larger lattice
polygon: either its normal fan is not a legal loop (i.e. the fan is not Gorenstein using
the terminology of (4.2)), or the polygon is just too small.

The following lemma gives relationships between P (Δ(1)) and N (Δ(1)). We call a
legal loop P = (p0,p1, . . . , pn−1) convex if every move has positive length and each
pi lies on an edge of Conv{p0,p1, . . . , pn−1}. We call P strictly convex if moreover
each pi appears as a vertex. Note that convexity nor strict convexity are properties of
the equivalence class: they are not invariant under merging and splitting. Observation
(d) below is crucial and is essentially due to Haase and Schicho.

Lemma 1

(a) N (Δ(1)) has moves of strictly positive length only.
(b) The following are equivalent.

– P (Δ(1)) has moves of positive length only,
– P (Δ(1)) is convex,
– P (Δ(1)) is strictly convex,
– N (Δ(1)) is convex.

(c) The following are equivalent.

– P (Δ(1)) has moves of strictly positive length only,
– N (Δ(1)) is strictly convex.

(d) P (Δ(1))
∨ = N (Δ(1))

Proof We only include the details for (d). Instead of N (Δ(1)), we will consider the le-
gal loop T (Δ(1)) obtained by considering the consecutive counterclockwise direction
vectors of the edges of Δ(1). Since T (Δ(1)) is obtained from N (Δ(1)) by applying a
90◦ counterclockwise rotation, both legal loops are clearly equivalent.

If P (Δ(1)) contains no legal moves of length 0, it follows by construction that

P (Δ(1))
∨ = T (Δ(1)). In general, the situation is more subtle, and it is convenient to

start from T (Δ(1)) instead. The latter has no moves of length 0, so it makes sense to
talk of the dual T (Δ(1))∨ of T (Δ(1)), rather than of its class.
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An example where P (Δ(1)) has several moves of length 0

After an orientation-preserving lattice transformation and a translation over an inte-
gral vector if necessary, we may assume that

p0 = (a,0), p1 = (0,0), p2 = (p, q),

for integers a > 0 and coprime p,q < 0 such that q ≤ p < 0. Because moving out the
edges should result in a lattice polygon again, we must have p = −1. Then p

(−1)
1 −

p1 = (0,1). On the other hand, the corresponding move of T (Δ(1)) is from (−1,0)

to (−1, q). This gives a vertex (0,−1) on the dual T (Δ(1))∨. One concludes that
T (Δ(1)) equals P (Δ(1)) modulo a 180◦ rotation (and modulo shifting). �

Lemma 2 Let Δ be a lattice polygon such that Δ(1) is two-dimensional. Suppose that
Δ is maximal. Let R be the number of lattice points on the boundary of Δ and let R(1)

be the number of lattice points on the boundary of Δ(1). Then �(P (Δ(1))) = R−R(1).

Proof Using a normalization as above, one easily verifies that the length of (p
(−1)
i −

pi,p
(−1)
i+1 − pi+1) equals the difference between the number of lattice points on the

face (edge or vertex) of Δ = Δ(1)(−1) connecting p
(−1)
i and p

(−1)
i+1 and the number of

lattice points on the edge of Δ(1) connecting pi and pi+1. �

Remark As pointed out in [27], there is a natural way of associating a legal loop
to any lattice polygon Δ for which Δ(1) is two-dimensional, in such a way that its
length still measures R − R(1): for each vertex p

(−1)
i of Δ(1)(−1), let ai and bi be

the nearest-by lattice points on the adjacent edges of Δ(1)(−1) that are contained in Δ

(considered counterclockwise). Then in the definition of P (Δ(1)), one should replace
p

(−1)
i − pi by ai − pi, bi − pi .

(2.5) We are now ready to prove Coleman’s conjecture.

Proof of Theorem 1 Using the classification given in Theorem 10 below, the state-
ment is easily verified in case Δ(1) is not two-dimensional. So suppose to the contrary
that Δ(1) is two-dimensional. Then a second observation is that it suffices to give a
proof for the case where Δ is maximal, i.e. Δ = Δ(1)(−1). Indeed, if not, Δ is ob-
tained from Δ(1)(−1) by repeatedly clipping off a vertex. At each step, the number
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of lattice points on the boundary is reduced by one, whereas the number of vertices
increases by at most one. Hence the validity of Coleman’s conjecture for Δ follows
from its validity for Δ(1)(−1).

Now let n(1) be the number of vertices of Δ(1) and let R(1) be the number of
lattice points on its boundary. From the definition of moving out the edges, we see
that n ≤ n(1). From Lemmata 1 and 2, it follows that

R − R(1) = �
(

P
(
Δ(1)

)) = 12 − �
(

N
(
Δ(1)

)) ≤ 12 − n(1) ≤ 12 − n.

The statement then follows from R(1) ≤ g and g ≥ 2. �

Note that the proof yields the much stronger statement that

R ≤ R(1) + 12 − n (2)

as soon as Δ(1) is two-dimensional (regardless of whether Δ is maximal or not).

(2.6) Building on work of Oda [21, Remark on p. 45], Koelman proved a statement
which immediately implies Coleman’s conjecture. Let Δ be a lattice polygon with
two-dimensional interior Δ(1). Let η be number of rays of the smooth completion of
the normal fan of Δ. Let R resp. R(1) be the number of lattice points on the boundary
of Δ resp. Δ(1). Then [15, Lemma 4.5.2(2)] states

R(1) = R + η − 12. (3)

Since η ≥ n, with n the number of vertices of Δ, Coleman’s conjecture follows.
Equality (3) even implies the ‘12 theorem’ for legal loops of winding number 1,

all of whose segments are positively oriented (and for their duals, of course). Indeed,
let P = (p0, . . . , pn−1) be such a legal loop, then the pi can be thought of as the
generators of the rays of a fan. This fan can always be realized as the normal fan
of a certain two-dimensional lattice polygon. By the legal-loop-properties of the fan,
a sufficiently large Minkowski multiple Δ of this lattice polygon will be such that
Δ(−1) takes vertices in Z

2. Applying (3) to Δ(−1) then implies the theorem, by not-
ing that η = �(T (Δ)). Digging into Oda’s work, one sees that this proof is somehow
related to Poonen and Rodriguez-Villegas’ second proof [23, Sect. 6] and the exer-
cises in Fulton’s book [11, Sect. 2.5] to which they refer. Using work of Hille and
Skarke [13], it should be possible to generalize the above to arbitrary winding num-
bers.

(2.7) We end this section by briefly commenting on Haase and Schicho’s ‘onion skin
theorem’ [12, Theorem 8]. Using n ≥ 3, inequality (3) yields R ≤ R(1) + 9, which is
the above-mentioned refinement of Scott’s bound that Haase and Schicho obtained.
In this case, one additionally checks that equality holds if and only if Δ is equivalent
to dΣ for some integer d ≥ 4. Here Σ = Conv{(0,0), (1,0), (0,1)} is the standard
2-simplex. By recursively applying R ≤ R(1) + 9, while gradually ‘peeling off’ the
lattice polygon, one obtains an inequality relating R to the genus g of Δ and to the
‘number of onion skins’. This led Haase and Schicho to introducing the notion of
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level. Let n ≥ 0 be the maximal integer for which Δ(n) is defined. The level of Δ

is (i) equal to n if Δ(n) is a point or a line segment, (ii) equal to n + 1/3 if Δ(n) is
equivalent to Σ , (iii) equal to n + 2/3 if Δ(n) is equivalent to 2Σ , and (iv) is equal
to n + 1/2 if Δ(n) is any other two-dimensional lattice polygon of genus 0. Then the
onion skin theorem reads as follows.

Theorem 7 (Haase and Schicho, 2009) Let Δ be a convex lattice polygon of level
� ≥ 1 and genus g, containing R lattice points on the boundary. Then (2� − 1)R ≤
2g + 9�2 − 2.

However, although the proof is beautiful, the resulting statement is not as deep as
one might hope. The reason is that applying R ≤ R(1) + 9 at each step is too rough; it
would be more powerful to include the number of vertices in the argument, although
we did not find an elegant way of doing so.

An alternative, more classically flavored measure for the number of onion skins
is the lattice width of Δ, which is the minimal integer s ≥ 0 for which there is a Z-
affine transformation mapping Δ into the strip {(x, y) ∈ R

2 |0 ≤ y ≤ s}; it is denoted
lw(Δ). Indeed, one can prove (see [6, Theorem 4] or [19, Theorem 13]) that for
every lattice polygon Δ of genus at least 1 one has lw(Δ) = lw(Δ(1)) + 2, unless Δ

is equivalent to dΣ for some integer d ≥ 3, in which case lw(Δ) = lw(Δ(1))+3 = d .
Then by redoing the onion skin argument, using the lattice width rather than the level,
one obtains a closely related statement:

Theorem 8 Let Δ be a two-dimensional lattice polygon of genus g, containing R

lattice points on its boundary. Then (lw(Δ) − 1) · R ≤ 2g + 2 · (lw(Δ)2 − 1).

Proof If Δ is a lattice polygon which has genus 0, or for which Δ(1) is not two-
dimensional, then the inequality can be verified by hand (using, e.g. Theorem 10
below). Therefore, suppose that the lemma holds for all lattice widths up to k − 1,
k ≥ 3. Let Δ be a lattice polygon with lw(Δ) = k. If Δ is equivalent to kΣ , then
the inequality holds by explicit verification (use lw(Δ) = k, g = (k − 1)(k − 2)/2,
R = 3k). If not, then the result easily follows by induction, using R ≤ R(1) + 8. �

As said, this is not a deep statement. Indeed, imagine Δ being caught in a
horizontal strip {(x, y) ∈ R

2 |0 ≤ y ≤ lw(Δ)}. Assume for ease of exposition that
both Δ ∩ {y = 0} and Δ ∩ {y = lw(Δ)} are line segments of length a ≥ 3 and
b ≥ 3, respectively. By focusing on the interior lattice points of these, one sees that
R ≤ (a − 1) + (b − 1) + 2 · (lw(Δ) + 1). Applying Pick’s theorem to the trapezoid
spanned by these interior lattice points then yields

R ≤ 2

lw(Δ) − 1
· g + 2 · (lw(Δ) + 1

)

which is indeed a rephrasing of Theorem 8.
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3 Consecutively Moving Out the Edges

(3.1) Although it is not entirely clear whom it should be attributed to, the following
fact is well-known.

Theorem 9 Let g be a positive integer. If g ≥ 1 then there exists only a finite number
of equivalence classes of lattice polygons of genus g.

The classical argument works by noting that a lattice polygon of genus g ≥ 1
satisfies Vol(Δ) ≤ 2g + 5

2 (using Scott’s bound from Theorem 4 along with Pick’s
theorem) and that a lattice polygon with volume V can always be caught in a lattice
square of side length 4V —see Lagarias and Ziegler for an account that deals with
arbitrary dimension [18]. This yields an algorithm for enumerating all equivalence
classes of lattice polygons of genus g: consider all lattice polygons that are contained
in

[0,8g + 10] × [0,8g + 10]

and filter out unique representants of each conjugacy class. However, this is too slow
to be of any practical use.

(3.2) We present an alternative proof of Theorem 9 that leads to a more efficient
algorithm. The idea is to proceed by induction on g, based on Theorem 5. We call
a lattice polygon elliptic if it contains a unique lattice point in its interior. A lattice
polygon of genus g ≥ 2 is called hyperelliptic if its interior lattice points are contained
in a line.

Proof of Theorem 9 Suppose that the theorem holds for 0,1, . . . , g − 1, where g ≥ 1.
We partition the set of (equivalence classes of) lattice polygons of genus g as

(i) {elliptic or hyperelliptic lattice polygons}
(ii) 
 {lattice polygons Δ for which Δ(1) is two-dimensional of genus 0}

(iii) 
 {lattice polygons Δ for which Δ(1) has genus ≥ 1}

and prove the finiteness of each subset. For set (i), this follows from Theorem 10(b–c)
below. For set (ii), Theorem 10(a) shows that there is only a finite number of possibil-
ities for Δ(1); for each Δ(1), Theorem 5 states that Δ ⊂ Δ(1)(−1), hence there is only
a finite number of possibilities for Δ. Finally, for set (iii), the induction hypothesis
shows that there is only a finite number of possibilities for Δ(1), and again Theorem 5
shows that there is only a finite number of possibilities for Δ. �
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Theorem 10 (Koelman, 1991)

(a) Every two-dimensional lattice polygon of genus 0 having R ≥ 3 lattice points on
the boundary is equivalent to exactly one of the following �R/2 polygons:

for i ∈ {0, . . . , �R/2 − 1}, except if R = 6, where in addition one has the possi-
bility

(b) Every lattice polygon of genus 1 is equivalent to exactly one of the following 16
polygons:

(c) Every hyperelliptic lattice polygon of genus g ≥ 2 is equivalent to exactly one of
the following 1

6 (g + 3)(2g2 + 15g + 16) polygons:

g ≤ i ≤ 2g 0 ≤ i ≤ g & 0 ≤ j ≤ i

g < i ≤ 2g + 1 & 0 ≤ j ≤ 2g − i + 1

0 ≤ k ≤ g + 1 & 0 ≤ i ≤ g + 1 − k & 0 ≤ j ≤ i

0 ≤ k ≤ g + 1 & g + 1 − k < i ≤ 2g + 2 − 2k & 0 ≤ j ≤ 2g − i − 2k + 2.
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Proof A complete proof can be found in Chap. 4 of Koelman’s Ph.D. thesis [15], but
since there are no surprising ingredients, the proof could also be left as a patience-
involving exercise. Note that (a) and (b) have been (re)discovered multiple times
before and since. �

For our alternative proof of Theorem 9, a strongly simplified version of Theo-
rem 10 only involving finiteness statements would have been sufficient.

(3.3) Our proof of Theorem 9 results in the following algorithm for enumerating all
lattice polygons of genus at most g up to equivalence.

INPUT: an integer g ≥ 1.
OUTPUT: a list [L1,L2, . . . ,Lg] where each Li is a list containing a unique repre-
sentant of each equivalence class of lattice polygons of genus i.

In fact, the algorithm produces a list L = [L1,L2, . . . ,Lg], where each Li is a list

[�i,3, �i,4, . . . , �i,2i+7],
and each �i,R is a list containing a unique representant of each equivalence class of
lattice polygons of genus i having R lattice points on the boundary. The lists Li are
then obtained by concatenating the �i,R’s for R = 3, . . . ,2i + 7. Remark that the
number of lattice points on the boundary of a genus i ≥ 1 lattice polygon is indeed at
most 2i + 7 by Theorem 4.

1. L := [ [ ], [ ], . . . , [ ] ] (g entries, indexed by 1, . . . , g);
2. for i = 1, . . . , g do;
3. L[i] := [ [ ], [ ], . . . , [ ] ] (2i + 5 entries, indexed by 3, . . . ,2i + 7)
4. for R = 3, . . . ,2i + 7 do
5. L[i][R] := list of (hyper)elliptic polygons of genus i

6. with R boundary points (using Theorem 10(b–c));
7. end for;
8. for all two-dimensional Δ of genus 0 having i boundary points
9. (using Theorem 10(a)) do

10. L := [unique representants of all polygons with interior Δ ];
11. for Γ ∈ L do
12. L[i][#∂Γ ∩ Z

2] cat:= [Γ ];
13. end for;
14. end for;
15. for all (j,R) such that j + R = i and 3 ≤ R ≤ 2j + 7 do
16. for all Δ ∈ L[j ][R] do
17. L := [unique representants of all polygons with interior Δ ];
18. for Γ ∈ L do
19. L[i][#∂Γ ∩ Z

2] cat:= [Γ ];
20. end for;
21. end for
22. end for;
23. end for;
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The three disjoint for-loops correspond, respectively, to the cases (i), (ii), (iii) of our
proof of Theorem 9. The operation ‘cat:=’ abbreviates ‘concatenate with’. Listing
all polygons with interior Δ (see steps 10. and 17.) is done using Theorem 5: one
checks whether Δ(−1) is a lattice polygon. If not, then the resulting set L is empty.
If yes, then L consists of all lattice polygons Γ that can be obtained from Δ(−1) by
taking away boundary points without affecting the interior. Each time a lattice poly-
gon is to be added, one checks whether or not it is equivalent to a polygon that is
already contained in the list. In our implementation below, checking the equivalence
of two lattice polygons Γ and Γ ′ is done very naively: we simply try for all triples
of consecutive vertices v1, v2, v3 ∈ Γ (ordered counterclockwise) and v′

1, v
′
2, v

′
3 ∈ Γ

(ordered either clockwise or counterclockwise) whether there is a Z-affine transfor-
mation ϕ taking vi to v′

i (for i = 1,2,3); if yes, it is necessarily unique. We then
check whether ϕ(Γ ) = Γ ′. The algorithm can be sped up by instead keeping track
of the automorphisms of Δ (i.e., Z-affine transformations ϕ for which ϕ(Δ) = Δ):
indeed, if there is a Z-affine transformation taking Γ to Γ ′, it must be an automor-
phism of Δ = Γ (1). For almost all polygons, this automorphism group will consist of
the identity map only, resulting in a substantial speed-up.

While much more efficient than the naive method suggested in (3.1), note that the
problem is in itself exponential and that one cannot expect being able to push the
computation very far: if N(g) denotes the number of equivalence classes of lattice
polygons of genus g, then one can show that logN(g) grows like 3

√
g, although it

is unknown whether limg→∞ logN(g)/ 3
√

g exists. See Bárány’s survey paper [2] for
some discussions on this matter.

We finally remark that Koelman already briefly described and implemented a sim-
ilar algorithm for enumerating lattice polygons by their total number of lattice points,
rather than their genus—see [15, Sect. 4.4].

(3.4) We have implemented the above algorithm in MAGMA [5], along with several
basic functions for dealing with lattice polygons, such as functions for computing
the genus, the number of boundary points, the interior hull, the polygon obtained by
moving out the edges, . . . We have also implemented an algorithm due to Feschet
[10, Sect. 3] for computing the lattice width of a lattice polygon Δ. The code can be
found at http://wis.kuleuven.be/algebra/castryck/. The intention is to make the code
cleaner and more efficient in the future. We have executed our current implementa-
tion on the input g = 30. This took roughly one month of computation, although it
is likely that keeping track of the automorphism groups, as explained at the end of
(3.3), would have shortened this span considerably. The resulting output is stored in
a file of approximately 368 MB, which has also been made available for download.
We include some summarizing data here—see Table 1, but of course our output can
be used to answer virtually every reasonable question on lattice polygons of genus
≤30. Many of these questions have been asked explicitly in the literature before, see
e.g. [16, 24]. It is somewhat remarkable that the merit of exhaustive computation in
tackling these questions has not been fully acknowledged thus far, with the exception
of the Ph.D. thesis of Koelman and some preliminary attempts by Rabinowitz.

(3.5) We now focus on one particular problem: for every positive integer n, what is the
minimal genus g(n) of a lattice n-gon? Arkinstall [1], Rabinowitz [24], Simpson [26],

http://wis.kuleuven.be/algebra/castryck/
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Table 1 A superscript (1)

denotes that the corresponding
invariant was obtained by
restricting the count to those
polygons that are interior to
another polygon (which can be
easily checked using
Theorem 5). Then for each
integer 1 ≤ g ≤ 30, the table
shows the number of
equivalence classes (N ) of
polygons of genus g, the
maximal resp. minimal number
of vertices (nmax resp. nmin),
the maximal lattice width
(lwmax) and the minimal
number of lattice points on the
boundary (Rmin) that are
possible for that genus. Note
that nmin and Rmin without
superscript are always equal to
3, hence not included in the
table. The maximal number of
points on the boundary (in both
settings) is 2g + 6 except if
g = 1 (where it is 9) by
Theorem 4, so again we did not
include this

g N N(1) nmax n
(1)
max n

(1)
min lwmax lw(1)

max R
(1)
min

1 16 16 6 6 3 3 3 3

2 45 22 6 6 4 2 2 5

3 120 63 6 6 3 4 4 5

4 211 78 8 8 3 4 4 6

5 403 122 7 7 3 4 4 7

6 714 192 8 8 3 5 5 6

7 1023 239 9 9 3 4 4 7

8 1830 316 8 8 4 4 4 8

9 2700 508 8 8 3 5 5 8

10 3659 509 10 10 3 6 6 8

11 6125 700 9 9 4 5 5 8

12 8101 1044 9 9 4 6 6 8

13 11027 1113 10 10 3 6 6 9

14 17280 1429 10 10 4 6 6 9

15 21499 2052 10 10 3 7 7 9

16 28689 1962 10 10 3 6 6 9

17 43012 2651 11 11 4 6 6 9

18 52736 3543 10 10 4 7 7 10

19 68557 3638 12 12 3 8 8 9

20 97733 4594 12 11 4 7 7 9

21 117776 5996 12 12 3 8 8 10

22 152344 6364 11 11 4 8 8 10

23 209409 7922 11 11 4 8 7 10

24 248983 9693 12 12 4 8 8 10

25 319957 10208 12 12 3 8 8 10

26 420714 12727 12 12 4 8 8 11

27 497676 15431 13 12 4 8 8 9

28 641229 15918 12 12 3 9 9 10

29 813814 20354 12 12 4 8 8 11

30 957001 23874 13 12 4 9 9 11

and Olszewska [22] elaborated this for various small values of n, leaving n = 15 as
the smallest open entry. Up to n = 13, their results are immediately confirmed by our
computation. E.g. using Table 1, one can check that g(11) = 17, a case which has
provoked particular interest in the past and was settled in 2006 only [22]. In fact, our
output shows that there are three inequivalent 11-gons realizing the bound:
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Note that the second polygon is obtained from the third by clipping off the right-most
of the lower-most vertices. This is a general phenomenon: every lattice n-gon having
minimal genus can be transformed to a lattice n-gon having minimal genus and all of
whose boundary lattice points are vertices. This implies that the minimal genus g(n)

and the minimal volume V (n) of a lattice n-gon are related through Pick’s theorem
by V (n) = g(n) + n/2 − 1. These are the contents of [26, Theorem 1]. In our case, it
yields that every lattice 11-gon has an area of at least 43/2. This bound is achieved
by (and only by) the first two of the above polygons.

Using a refined search, we managed to settle the case n = 15.

Proof of Theorem 2 We first make some general observations. Let Δ be a lattice n-
gon such that Δ(1) is two-dimensional. Write Δmax = Δ(1)(−1), let n(1) resp. nmax be
the number of vertices of Δ(1) and Δmax, and let R, R(1) resp. Rmax be the number
of lattice points on the boundaries of Δ, Δ(1) and Δmax. One obviously has

nmax ≤ n(1).

We also have

Rmax ≥ nmax + 2
(
n − nmax),

which follows because Δ is obtained from Δmax by taking away a number of bound-
ary points (indeed, Δ ⊂ Δmax by Theorem 5), and that each introduction of a new
vertex requires the existence of two lattice points on the boundary of Δmax that are
not vertices. From the proof of Theorem 1 in (2.5) we see that

Rmax ≤ R(1) + 12 − n(1).

Then combining the three inequalities yields

R(1) ≥ 2n − 12,

while it is also clear that

n(1) ≥ �n/2�.
Now let Δ be a lattice 15-gon of genus g = g(15). Note that by Theorem 10(c), Δ is
non-hyperelliptic, thus the above applies. In particular, we have

n(1) ≥ 8 and R(1) ≥ 18. (4)

Now since
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Table 2 Known values for g(n); values marked with an asterisk are new contributions

n 3 4 5 6 7 8 9 10 11 12

g(n) 0 0 1 1 4 4 7 10 17 19

n 13 14 15 16 17 18 19 20 21 22

g(n) 27 34 45∗ 52 [66,72∗] 79 [96,105∗] 112 [133,154] 154

is a lattice 15-gon of genus 45, it follows that g ≤ 45. We also know that g ≥ 43
by [26, Corollary 11(c)]. So suppose that g ∈ {43,44}. Then with g(1) the genus of
Δ(1) we have g(1) ≥ 1 because of Theorem 10(a) (note that n(1) ≥ 8), and g(1) ≤ 26
because of (4). In particular, Δ(1) must be contained in our list produced in (3.4).

The remainder of the proof is computational. Out of our list, we have selected
those lattice polygons Γ that are of the form Δ(1), i.e. for which Γ (−1) takes vertices
in the lattice (following Theorem 5), that have at least eight vertices, that contain at
least 18 lattice points on the boundary, that have genus at most 26, and for which the
sum of the latter two invariants is contained in {43,44}. This resulted in 1929 poly-
gons. For each such polygon Γ , we enumerated all polygons Δ for which Δ(1) = Γ ,
in a similar way as described in (3.3), and checked whether any of these has 15 ver-
tices. In each case, the answer was no. �

Finally, the picture below proves that g(17) ≤ 72 (Simpson’s previous upper
bound was 79) and that g(19) ≤ 105 (versus 112). Our guess is that these bounds
are not yet optimal.

A summarizing update of the currently known values of g(n) can be found in Table 2.
We conclude by remarking that the asymptotic behavior of g(n) is well-understood.
It is known that for all n ≥ 3

1

8π2
<

V (n)

n3
≤ 1

54

(
1 + o(1)

)

and that

lim
n→∞

g(n)

n3
= lim

n→∞
V (n)

n3



Discrete Comput Geom (2012) 47:496–518 515

exists and lies close to (but is not equal to) 1/54. See [3] and the references therein.

(3.6) A notion dual to the level, as introduced by Haase and Schicho and reviewed in
(2.7), is the lifespan of a two-dimensional lattice polygon Δ ⊂ R

2, which is defined
to be the maximal k ∈ Z≥0 for which Δ(−k) is well-defined and takes vertices in
Z

2, provided such a k exists. If no such k exists, the lifespan is said to be infinite.
Theorem 3 claims that an infinite lifespan can only occur if the number of vertices n

is at most 9.

Proof of Theorem 3 Suppose that Δ has infinite lifespan. It suffices to prove that all
moves of the edge-moving loop P (Δ) have positive length. Indeed, by Lemma 1 this
implies that the normal fan loop N (Δ) is convex. Then the convex hull of its prim-
itive generators (which are in 1-to-1 correspondence with the edges of Δ) must be
contained in the list of Theorem 10(b). In particular, the maximal number of primitive
generators is 9, hence so is the maximal number of edges (equalling the number of
vertices).

So suppose by contradiction that there are two consecutive vertices pi and pi+1 of
Δ such that the move (p

(−1)
i − pi,p

(−1)
i+1 − pi+1) has negative length. As explained

in Lemma 2, this means that the edge of Δ(−1) connecting to p
(−1)
i and p

(−1)
i+1 must

have become shorter, unless it has even disappeared, i.e. p
(−1)
i+1 = p

(−1)
i . If no edge

disappears, then it is easy to see that P (Δ) = P (Δ(−1)). By repeating the argument,
one eventually must have p

(−k)
i+1 = p

(−k)
i for some k ∈ Z≥1 (where (−k) abbreviates

(−1)(−1)...(−1)). We claim that Δ(−k−1) takes at least one vertex outside Z
2.

To see this, choose i such that p
(−k)
i+1 = p

(−k)
i , but p

(−k)
i+2 �= p

(−k)
i+1 . Modulo a Z-

affine transformation we may assume that p
(−k+1)
i+1 = (0,0), that p

(−k+1)
i = (a,0) for

some integer a > 0, and that p
(−k)
i+1 = p

(−k)
i = (0,1).

Let τleft be the edge of Δ(−k) that is left adjacent to p
(−k)
i+1 = p

(−k)
i , and let Lτleft be

its supporting line. Move it out (in the sense of (2.2)) to obtain a line L
(−1)
τleft . Because

of our choice of i, L
(−1)
τleft contains the point (0,2). Now similarly define Lτright and

L
(−1)
τright . The slope σ of Lτright (hence of L

(−1)
τright ) satisfies 0 > σ > −1. Since (1,1) is a

lattice point that is not contained in Δ(−k), the lines L
(−1)
τleft and L

(−1)
τright must intersect

in a point that lies strictly between y = 1 and y = 2. �

Note that the above proof actually gives a criterion for a two-dimensional lattice
polygon Δ to have infinite lifespan. This will be the case if and only if Δ(−1) is a
lattice polygon and N (Δ) is convex. Examples of n-gons (for n = 3, . . . ,9) having
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infinite lifespan are given in the picture below.

4 Concluding Comments

(4.1) Coleman’s conjecture (or at least parts of the proof given in (2.5)) can be ex-
tended to certain non-convex lattice polygons. By a non-convex lattice polygon we
mean a closed region in R

2 that can be bounded by a closed non-self-intersecting
curve that is piece-wise linear, with the endpoints of the linear parts contained in Z

2.
For such a non-convex lattice polygon Δ, it makes sense to define Δ(−1) by extending
the corresponding notion of (2.2). Suppose it takes vertices in Z

2 and let R be the
number of lattice points on its boundary. Then with R(1) the number of lattice points
on the boundary of Δ, we will again have R = R(1) + 12 − �(T (Δ)), with T (Δ) the
legal loop spanned by the direction vectors of the piece-wise linear boundary com-
ponents of Δ.

(4.2) Much (if not all) of the foregoing can be related to toric geometry. It lies beyond
the scope of this article to go into much detail here, but we briefly mention a few facts.
We fully rely on the according references for the background. For a two-dimensional
lattice polygon Δ, we denote the according toric surface over C by X(Δ), which we

assume to be naturally embedded in P
#(Δ∩Z

2)−1
C

.

(i) If the primitive generators of the normal fan of Δ span a legal loop (see the cor-
responding remark in (2.4)), then by definition this is a Gorenstein fan, which
is equivalent to saying that X(Δ) has only Gorenstein singularities [4, Proposi-
tion 2.7]. In particular, if Δ is the interior hull of another lattice polygon, then
X(Δ) has only Gorenstein singularities. The converse is not true.

(ii) If this legal loop is moreover convex, then X(Δ) is weak Fano, meaning that the
anticanonical bundle −KX(Δ) is nef and big. If it is strictly convex, then X(Δ)

is Fano, meaning that −KX(Δ) is ample. See [20, Sect. 2.3]. In particular, if a
lattice polygon Δ has infinite lifespan, then X(Δ) is Gorenstein and weak Fano.
In this case, the converse holds as well.

(iii) Since convex legal loops (of winding number 1) have length at most 9, the
above implies that in the weak Fano case, Δ can have no more than 9 edges
and vertices. This also follows from a well-known degree bound for weak Fano
surfaces X (namely, (−KX)2 ≤ 9).

(iv) If Δ(1) is well-defined and two-dimensional, then X(Δ(1)) is the so-called ad-
joint of X(Δ). That is, X(Δ(1)) is obtained from X(Δ) by taking its image
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under the map corresponding to OX(Δ)(1) + KX(Δ). See [9, 12] for more de-
tails.

(v) Conversely, if Δ is two-dimensional and Δ(−1) has the same number of edges
as Δ, then X(Δ(−1)) ∼= X(Δ). The former is then embedded by the ample line
bundle OX(Δ)(1) − KX(Δ). Similarly, for k ≥ 0, if Δ(−k) has the same number
of edges as Δ, then X(Δ(−k)) corresponds to the ample line bundle OX(Δ)(1)−
kKX(Δ). If this works for arbitrary k, −KX(Δ) must be nef (and big, which is
automatic), i.e. X(Δ) is weak Fano. Along with (iii), this gives some geometric
insight in Theorem 3.

(vi) If Δ(1) is well-defined and two-dimensional, then the dimension of the automor-
phism group Aut(X(Δ)) is determined by the number of lattice points that lie in
the interior of a positively oriented move of P (Δ(1)). See [7, Lemma 10.5] and
[15, phrase following (2.99)]. This was used in [7] to determine the dimension
of the moduli space of generic hyperplane sections of X(Δ).

(vii) The genus of a two-dimensional lattice polygon Δ is equal to the genus of a
generic hyperplane section of X(Δ). Such a generic hyperplane section will
be (hyper)elliptic if and only if Δ is (hyper)elliptic. See [15, Sect. 3.2] or [7,
Lemma 5.1].
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