
RESEARCH Open Access

Moving pictures of the human microbiome
J Gregory Caporaso1, Christian L Lauber2, Elizabeth K Costello3, Donna Berg-Lyons2, Antonio Gonzalez4,

Jesse Stombaugh1, Dan Knights4, Pawel Gajer5, Jacques Ravel5, Noah Fierer2,6, Jeffrey I Gordon7 and Rob Knight1,8*

Abstract

Background: Understanding the normal temporal variation in the human microbiome is critical to developing

treatments for putative microbiome-related afflictions such as obesity, Crohn’s disease, inflammatory bowel disease

and malnutrition. Sequencing and computational technologies, however, have been a limiting factor in performing

dense time series analysis of the human microbiome. Here, we present the largest human microbiota time series

analysis to date, covering two individuals at four body sites over 396 timepoints.

Results: We find that despite stable differences between body sites and individuals, there is pronounced variability

in an individual’s microbiota across months, weeks and even days. Additionally, only a small fraction of the total

taxa found within a single body site appear to be present across all time points, suggesting that no core temporal

microbiome exists at high abundance (although some microbes may be present but drop below the detection

threshold). Many more taxa appear to be persistent but non-permanent community members.

Conclusions: DNA sequencing and computational advances described here provide the ability to go beyond

infrequent snapshots of our human-associated microbial ecology to high-resolution assessments of temporal

variations over protracted periods, within and between body habitats and individuals. This capacity will allow us to

define normal variation and pathologic states, and assess responses to therapeutic interventions.

Background

As more attention is paid to viewing ourselves as a

supraorganism, comprising interacting microbial and

human cellular and genetic components, it is apparent

that much more precise understanding is needed of

what constitutes normal temporal variations in our

microbial community structures and functions. Variation

in the human microbiome within and between our var-

ious body habitats, lifecycle stages, and cultural settings

is largely unexplored. High-resolution time series studies

provide a foundation for discriminating between ‘nor-

mal’ perturbations and pathologic states, and between

organisms that are simply passing through a body habi-

tat or are entrenched residents of an ecosystem. Simi-

larly, these types of studies are needed to understand

the immigration and emigration patterns of microbes

between our body sites, between cohabitating indivi-

duals, and between ourselves and the myriad of environ-

ments we contact on a daily basis [1-3].

The densest human microbiome time series reported

to date studied the response of distal gut microbial com-

munities to the antibiotic ciprofloxacin across three

individuals, with sampling intervals varied from daily to

weekly. Eighteen timepoints were collected per indivi-

dual in an initial study [4], and between 52 and 56 time-

points were collected per subject in a follow-up study

[5]. In both studies, rapid decreases in alpha diversity

and a characteristic shift in community composition

were observed in association with antibiotic therapy, fol-

lowed by a rapid post-antibiotic increase in diversity as

the gut community returned to a state similar (but not

identical) to the pre-treatment state. Another dense

human microbiome time series studied 60 fecal samples

over the first 2.5 years of life for a single infant, and illu-

strated the successional pattern in the human gut

microbiota as a rapidly changing community that devel-

ops over time into a community characteristic of that

found in the adult human gut [2].

The availability of radically cheaper sequencing and

analysis, described here, eases constraints on the num-

ber of timepoints and body sites that can be compared

in a single study, and paves the way to a finer-grained
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understanding of how the human microbiota changes in

different body habitats (including much better estimates

of the relative variability of different body sites within a

subject). Understanding this intrinsic variability will be

crucial for performing power calculations to test

whether antibiotics, probiotics, or other drugs actually

affect the microbiome.

In this study, two healthy subjects, one male (M3) and

one female (F4), one of whom (M3) participated in an

earlier survey [6], were sampled daily at three body sites

(gut (feces), mouth, and skin (left and right palms)), for

15 months (M3) and for 6 months (F4) using an institu-

tional review board-approved protocol. Variable region

4 (V4) of 16S rRNA genes present in each community

sample were amplified by PCR and subjected to multi-

plex sequencing on an Illumina Genome Analyzer IIx

(GA-IIx; average read length after quality trimming, 123

± 17 (standard deviation (SD)) nucleotides; 32,266 ±

19,723 (SD) reads per sample; n = 1,422 (M3 samples);

n = 531 (F4 samples); average interval between sam-

pling, 1.12 days). To control for differences across

sequencing platforms and primer pairs, 331 of these

samples had variable region 2 (V2) sequenced on 454

(average read length after quality filtering, 228 ± 11

(SD) nucleotides; 1,072 ± 375 (SD) reads per sample;

n = 171 (M3 samples); n = 160 (F4 samples)). This

study thus provides a key counterpoint to recent studies

of one or a few subjects at tens of timepoints [2-5,7], or

studies that examine hundreds of individuals but only at

one or a few timepoints [6,8-12].

Results and discussion

Stable differences in microbial communities between

body sites over time

When the samples from Costello et al. [6] and the cur-

rent study are compared directly, the samples cluster by

body habitat, showing excellent concordance between

the studies (Figure 1a in [6]; Figure 1b in the current

study) despite differences in sequencing technology (454

and Illumina GA-IIx, respectively), mean read length

(229 ± 16 (SD) nucleotides and 123 ± 17 (SD) nucleo-

tides, respectively), and region of the 16S sequenced (V2

and V4, respectively). The UniFrac distances between

the 331 time series samples that were sequenced on

both Illumina and 454 were significantly correlated, as

determined by Procrustes analysis of unweighted Uni-

Frac principal coordinate matrices (M2 = 0.161; Monte

Carlo P < 0.001; Additional file 1) and Pearson correla-

tion of UniFrac distances for pairs of samples (r = 0.91;

P < 0.001). As observed by Costello et al. [6], gut, oral,

and skin bacterial communities were found to be com-

positionally distinct based on principal coordinates ana-

lysis of unweighted UniFrac distances between

communities (UniFrac measures community similarity

based on the degree to which they share branch length

on a phylogenetic tree). The long-term time series

shows for the first time that this body-site differentiation

is highly stable over greater than one year (Figure 1c),

but dynamic within sites over time (Additional files 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

Minimal evidence for a temporal core microbiome

between or within body sites

While overall compositional differences between body

sites and individuals were relatively stable, our data also

suggest a surprisingly small temporal ‘core human

microbiota’ within an individual’s body sites (Figure 2)

when we define the ‘core’ as those species-level phylo-

types in a given body habitat that were observed across

all sampling events. These data suggest a minimal core

microbiome across time, where the size of the core

decreases as: mouth > gut > right palm ≈ left palm >

across body sites within an individual > across body

sites and individuals.

At this depth of sequencing, many more OTUs are

either persistent community members, which appear in

a given body habitat and remain for an extended period

of time but are not present consistently enough to be

considered core members, or transient community

EAC

Hair

Oral cavity

Gut

Skin

Nostril

Oral cavity

Gut

Skin

M3 Gut

F4 Gut

M3 Tongue

F4 Tongue

M3 Left palm

F4 Left palm

M3 Right palm

F4 Right palm 

PC1 (26%)

PC2 (23%)

Time (d)

0

444

(b)(a)

(c)

Figure 1 Principal coordinates analysis of unweighted UniFrac

distances between samples. (a) Costello et al. [6] samples. (b) M3,

F4 time series samples. (c) M3, F4 time series, PC1 versus time

(days). Panels (a,b) and (c) show two independent principal

coordinates analyses. To compare the Costello et al. 454 data (a)

with the time series Illumina data (b), these data were generated in

a single principal coordinates analysis of UniFrac distances at 500

sequences per sample. Panel (c) does not contain the 454 data, so

makes use of the increased sampling depth possible on Illumina

(evenly sampled to 5,000 sequences per sample for UniFrac

calculations).
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members, which appear in a body habitat and disappear

soon after (Figure 3). The taxa composing these persis-

tent and transient categories are significantly different

(for example, M3 gut: Gindep, 84.78; P = 1.80 × 10-14). In

M3 gut, both the persistent and transient communities

are dominated by Clostridia, Bacteroidia, and to a lesser

extent Erysipelotrichi. The persistent community is,

however, also composed of Betaproteobacteria and Del-

taproteobacteria, while the transient community is com-

posed of Actinobacteria, Gammaproteobacteria,

Epsilonproteobacteria, and Verrucomicrobiae. Taxo-

nomic summaries of the persistent and transient groups

for all body sites from both individuals are presented in

Additional file 16.

We applied several techniques to control for the pos-

sibility of persistent groups being mistaken for transient

groups if they occasionally fell below the detection

threshold. First, in computing the maximum number of
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Figure 2 Temporal core microbiome. Fraction of species-level

operational taxonomic units (OTUs) composing the core microbiota

by number of samples in which an OTU must be present to be

considered part of the core.
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Figure 3 Community membership. Community membership summary for all OTUs in (a) M3 gut, (b) F4 gut, (c) M3 tongue, (d) F4 tongue, (e)

M3 left palm, (f) F4 left palm, (g) M3 right palm, and (h) F4 right palm. Points are OTUs colored by their median relative abundance computed

over all samples where they occur, and pie charts summarize the class-level taxa observed as persistent and transient OTUs.
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consecutive observations for an OTU, we counted a sin-

gle zero-count for an OTU as not interrupting a run of

consecutive observations, provided that both adjacent

timepoints achieved non-zero counts for that OTU. Sec-

ond, we re-sequenced 331 of the time series samples on

the 454 platform, and recomputed the persistent and

transient taxa summaries. We found that, for both indi-

viduals, the composition of the persistent gut and oral

communities were not significantly different between

454 and Illumina despite a nearly 40-fold difference in

sequencing depth. However, the persistent palm com-

munities were significantly different in both cases. A

possible confounding factor in this comparison is primer

bias, as the V2 region was sequenced on 454. We there-

fore performed 1,000 jackknife iterations of this analysis

by subsampling the Illumina data to 5,000 sequences

per sample and recomputing the composition of the

persistent group for each individual and body habitat. In

this analysis, seven of the eight individual/body site

pairs were never significantly different from the persis-

tent community composition on the full Illumina data

set. The one exception was the F4 gut community,

which was significantly different in approximately half of

the iterations. When re-sampled at a depth of 10,000

sequences per sample, the persistent F4 gut community

never achieved significant difference from that deter-

mined on the full Illumina data set. The full results of

these analyses are presented in Additional file 17. The

designation of groups as ‘persistent’ was thus highly

reproducible across sequencing platforms and ampli-

cons, although it is still possible that sequencing error

or very low abundance taxa occasionally falling below

the detection threshold could result in underestimated

size of the persistent group.

Temporally dynamic microbial communities and

correlations between body sites

Differences in UniFrac distances in the left and right

palms in adjacent timepoints of both individuals were

significantly correlated (Pearson correlation for M3, r =

0.69, P = 2.07 × 10-46; for F4, r = 0.64, P = 3.77 × 10-

16), possibly due to equilibration of microbial commu-

nities across palms by physical contact. We did not see

correlations between other body sites. While the magni-

tude and direction of change in phylogenetic dissimilar-

ity between adjacent timepoints were correlated between

the palm sites, the species-level microbial taxa present

on each hand were not significantly correlated, confirm-

ing previous observations that, at a single timepoint, the

left and right hand of a single individual may share rela-

tively few OTUs [13].

For single body sites, within-subject distances were

lower than between-subject distances, suggesting a

stable pattern, consistent across body sites, in between-

subject dissimilarities across time. For example, the

between-subject fecal sample distances were significantly

higher than the within M3 fecal sample distances (t =

15.52; P < 0.001; one-tailed, two sample t-test) and the

within F4 fecal sample distances (t = 33.45; P ≤ 0.001;

one-tailed, two sample t-test).

The microbial community dynamics are especially

apparent in principal coordinates analysis animations

(Additional files 2, 3, 4, 5, 6, 7) where the sample types

(subject, body site combinations) are represented as

moving traces against a background of the Costello et

al. data. The traces give an immediate picture of the

variability within each body site, the relative distinctive-

ness of the sites and the subjects, and the relative speed

of change in each site. Blooms of certain taxa contribute

to the within site dissimilarities over time, as with the

waning and waxing of the relative Proteobacteria abun-

dance in the gut of both M3 and F4 (Additional files 8

and 9, Phylum panel (teal)). Similar patterns are appar-

ent across all taxonomic levels and body sites (Addi-

tional files 8, 9, 10, 11, 12, 13, 14, 15). Such

visualizations of microbial community dynamics will add

another dimension to long-term studies of variable clini-

cal states, such as inflammatory bowel disease or drug

treatments, and changes in diet or lifestyle.

Conclusions

Dense, deeply sequenced microbiome time series studies

have been limited by the cost of sequencing, and the

computational power necessary to analyze such studies

has been expensive. Several technical advances made

this study possible. First, using the Illumina sequencer

and the protocol described in [14] reduced sequencing

cost per sample ($11 USD) to below the cost associated

with DNA extraction and PCR ($13). Second, cloud

computing using Amazon Web Services (AWS) allowed

us to perform the bioinformatics analysis for $200 using

open-source and freely available software running on

commodity services. This included the creation of a vir-

tual cluster on AWS composed of 20 eight-core systems

with 68 GB of RAM each (that is, 20 Amazon

m2.4xlarge instances) to cluster approximately 69 mil-

lion sequences into OTUs. This step alone would have

required 20 days of computation on a desktop machine

with 8 GB of RAM, but was performed on this virtual

cluster in 3 hours for $120.

Figure 2 illustrates the sensitivity of conclusions about

the core microbiome to the definition of the core micro-

biome: if an OTU is considered here to be a core mem-

ber only if it is present in all 130 samples, as compared

to 120 of the samples, the size of the core drops to

approximately 5% of OTUs from about 10% of OTUs.

This rapid change in slope beyond 120 samples on the

x-axis does not occur when considering all M3 gut or
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oral samples rather than only 130 (data not shown), sug-

gesting that this result likely stems from a few non-

representative samples, rather than representing an

interesting biological result. The definition of the core

microbiome is thus a crucial consideration, because

depth of sampling, PCR error, sequencing error, analysis

techniques (such as OTU picking method and similarity

threshold), among other factors, will affect whether an

OTU will be observed in a given sample. OTU picking

similarity threshold, in particular, will have a large affect

on the size of the observed core microbiome. As this

threshold is decreased, OTUs represent larger taxo-

nomic groups, and the observed core will increase in

size correspondingly. For example, there is clearly a

temporal core at the phylum level in the fecal samples

studied here composed of Bacteriodetes and Firmicutes

(Additional files 8 and 9). For this reason our results do

not necessarily contradict previous Denaturing Gradient

Gel Electrophoresis (DGGE)-based work in this area

[4,15-17], which is suggestive of a core gut microbiome

but at a coarser phylogenetic resolution and more lim-

ited dynamic range. Sampling depth will also consider-

ably affect the definition of the core, and although the

dynamic range of this study is large compared to other

studies of human body habitats, it is possible that

microbes we define as ‘non-core’ still persist at very low

abundance, perhaps in a manner analogous to a seed

bank. Determining the role, if any, of these low-abun-

dance microbes in responding to changes in diet, phy-

siological status, and so on will be a fascinating

challenge for future studies.

Taken together, our observations paint a picture of a

human microbiome that is highly variable over time

(Figures 2 and 3; Additional files 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15), but from which stable patterns

of similarities and differences among body habitats and

individuals emerge (Figure 1). This temporal variation

may arise from extrinsic factors, such as exposure to

different types of foods, medications, or physical envir-

onments (for example, due to travel), or from intrinsic

factors, such as the adaptive immune system. Under-

standing the influence of these factors on an indivi-

dual’s microbiota is an additional challenge for future

work.

Although some evidence was found for a high-abun-

dance core microbiome at the 97% OTU level within

body sites over time, particularly in the mouth and gut,

this core appears to represent less than 10% of the total

OTUs when defining the minimum number of samples

to be considered part of the core as 90% of the samples.

This observation does not, however, extend across body

sites, suggesting that a body-wide core temporal micro-

biome that bridges the habitat types surveyed here does

not exist.

The innovations in sequencing, cloud computing, and

visualization applied here, together with advances in

robust and inexpensive microfluidic sample preparation

techniques, support the development and democratiza-

tion of inexpensive, informative, and personalized

microbiome-based phenotyping. Specifically, the ability

to collect, process and analyze thousands of sequences

using increasingly available sequencing technologies and

using commercial computing infrastructure will make

the ability to trace changes in the microbiome within

each individual associated with drug administration, dis-

ease states, and environmental exposures routine.

Because of the immense subject-to-subject variability in

the microbiome, studies examining temporal variability,

which give a view of dynamics beyond the static pictures

previously available, have the potential to transform our

understanding of what is ‘normal’ in the human body,

and, perhaps, to develop predictive models for the

effects of clinical interventions.

Materials and methods

Sample preparation and sequencing

Sample collection and DNA isolation were performed as

described in Costello et al. [6]; and PCR, sequencing,

and quality filtering of reads were performed as

described in Caporaso et al. [14]. Samples were not col-

lected on days 422 through 437.

To facilitate massively parallel sequencing (1,967 sam-

ples), barcodes were reused across six lanes in a single

Illumina GAIIx, with 374, 372, 364, 271, 265, and 323

samples in lanes 1 through 6, respectively (differing

from Caporaso et al. [14], where samples were pooled

and run over seven lanes). Sixteen samples were ulti-

mately excluded from the analysis as fourteen samples

were identified as potentially mislabeled (discussed

below), and the barcodes for two samples were not

found in the sequencing output, likely indicating a pro-

blem with amplification for those two samples.

Data analysis

To directly compare these M3/F4 time series samples

with the samples presented in Costello et al. [6], which

sequenced a different variable region (V2) using a differ-

ent technology (454 FLX), a reference-based OTU pick-

ing protocol [18] was applied. After demultiplexing and

quality filtering sequences, 97% OTUs were picked

against the Greengenes database [19] (pre-filtered at

97% identity) using uclust [20]. Reads were assigned to

OTUs based on their best match to a Greengenes

sequence, and reads that did not match a Greengenes

sequence at 97% or greater sequence identity were dis-

carded. The Greengenes taxonomy associated with the

best match in Greengenes was assigned to each OTU,

and the Greengenes tree was used for phylogenetic
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diversity calculations. These steps and subsequent data

analysis were performed using Quantitative Insights Into

Microbial Ecology (QIIME) on AWS.

Identifying mislabeled samples

To identify potentially mislabeled samples, we used the

random forests classifier [21]. A 2,000-tree forest was

trained on the OTU × Sample Abundance matrix after

evenly sampling to 500 sequences per sample and

removing OTUs present in less than 1% of samples. The

posterior probability that a given sample came from

each of the body habitats (gut, oral cavity, skin) was esti-

mated using only those trees in the forest that did not

contain that sample in their training sets, to avoid over-

fitting. The classifier considers samples to be mislabeled

when their alleged environment labels have a low pos-

terior probability (<60%). Fourteen such samples were

identified, and these samples were removed from all

analyses.

Core microbiome calculation

The temporal core microbiome across body sites and

individuals (Figure 2) was computed by varying the

minimum number of samples in which an OTU must

be observed to be considered part of the core micro-

biome, and then determining the number and fraction

of total OTUs observed in each site (or combination of

sites) that are part of the core. To facilitate direct com-

parison across sample types that contained different

numbers of observations (for example, M3 (all) versus

M3 gut), we randomly subsampled to exactly 130 obser-

vations per sample type, corresponding to the sample

type for which we had the fewest observations.

Community membership calculations

The number of consecutive timepoints containing an

OTU (Figure 3) was calculated as the maximum number

of consecutive timepoints where an OTU was observed,

allowing a zero count at a single timepoint to be consid-

ered part of a continuous stretch of non-zero counts if

both adjacent timepoints had a non-zero count. This

controls for sampling error as, for example, a long con-

tiguous stretch of non-zero counts for an OTU inter-

rupted by a single zero count for that OTU would likely

indicate a bad sample, rather than a biologically relevant

fact about that OTU in relation to the community. Per-

sistent taxa were defined as those observed in 20% or

more of the timepoints, but with at least 90% of those

observations being consecutive (that is, they appear and

remain present). Transient taxa were defined as those

observed in at least 60% of the samples, but with at

most 75% of those observations being consecutive (that

is, they appear and disappear from the community

frequently).

Animated microbial community dynamics

Animations were created in inVUE [22] based on the

principal coordinate data presented in Figure 1a, b.

inVUE files can be created in QIIME from the principal

coordinate matrix and associated metadata file. After

installing and opening inVUE, the user can run, pause,

and stop the animations associated with different meta-

data categories.

Data availability

All sequence data and sample metadata are publicly

available under the ‘Moving Pictures of the Human

Microbiome’ project [MG-RAST:4457768.3-4459735.3].

Additional material

Additional file 1: Comparison of beta diversity results for 331

samples sequenced on both 454 and Illumina. Procrustes plot

comparing principal coordinates of unweighted UniFrac distances. Lines

connect paired samples sequences on 454 (white tip of line) and

Illumina (red tip of line). The Illumina samples were evenly sampled to

5,000 sequences per sample and the 454 samples were evenly sampled

to 500 sequences per sample.

Additional file 2: Animation tracing change in position in PC1 and

PC2 with time for all body sites across both individuals. The view

presented in this video is directly comparable with Figure 1a.

Background colors correspond to Figure 1a. The M3 time series is shown

as a red trace (with left palm in orange), and the F4 time series is shown

as a blue trace (with left palm in white).

Additional file 3: Animation tracing change in position in PC1 and

PC2 with time for all body sites across M3. The view presented in this

video is directly comparable with Figure 1a. Background colors

correspond to Figure 1a. The M3 time series is shown as a red trace

(with left palm in orange).

Additional file 4: Animation tracing change in position in PC1 and

PC2 with time for all body sites across F4. The view presented in this

video is directly comparable with Figure 1a. Background colors

correspond to Figure 1a. The F4 time series is shown as a blue trace

(with left palm in white).

Additional file 5: Animation tracing change in position in PC1, PC2

and PC3 with time for all body sites across both individuals.

Background colors correspond to Figure 1a. The M3 time series is shown

as a red trace (with left palm in orange), and the F4 time series is shown

as a blue trace (with left palm in white).

Additional file 6: Animation tracing change in position in PC1, PC2

and PC3 with time for all body sites across M3. Background colors

correspond to Figure 1a. The M3 time series is shown as a red trace

(with left palm in orange).

Additional file 7: Animation tracing change in position in PC1, PC2

and PC3 with time for all body sites across F4. Background colors

correspond to Figure 1a. The F4 time series is shown as a blue trace

(with left palm in white).

Additional file 8: Temporal variation in phylum, class, order, family,

and genus abundances (M3 gut). The x-axis scale differs between M3

and F4 plots.

Additional file 9: Temporal variation in phylum, class, order, family,

and genus abundances (F4 gut). The x-axis scale differs between M3

and F4 plots.

Additional file 10: Temporal variation in phylum, class, order,

family, and genus abundances (M3 tongue). The x-axis scale differs

between M3 and F4 plots.
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Additional file 11: Temporal variation in phylum, class, order,

family, and genus abundances (F4 tongue). The x-axis scale differs

between M3 and F4 plots.

Additional file 12: Temporal variation in phylum, class, order,

family, and genus abundances (M3 left palm). The x-axis scale differs

between M3 and F4 plots.

Additional file 13: Temporal variation in phylum, class, order,

family, and genus abundances (F4 left palm). The x-axis scale differs

between M3 and F4 plots.

Additional file 14: Temporal variation in phylum, class, order,

family, and genus abundances (M3 right palm). The x-axis scale

differs between M3 and F4 plots.

Additional file 15: Temporal variation in phylum, class, order,

family, and genus abundances (F4 right palm). The x-axis scale differs

between M3 and F4 plots.

Additional file 16: Taxonomic summary of the persistent and

transient OTUs for all individual, body site pairs.

Additional file 17: Detailed results of persistent versus transient

community compositions when compared on 454 time series and

jackknife analysis.
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