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Moving Shadow and Object Detection in Traffic Scenes 

Ivana MikiC, Pamela C. Cosman, Greg T. Kogut, Mohan M. Trivedi 
Department of Electrical and Computer Engineering, University of California, San Diego, USA 

e-mail: ivana, pcosman, gkogut, trivedi @ece.ucsd.edu 

Abstract 

We present an algorithm for segmentation of traffic 
scenes that distinguishes moving objects from their 
moving cast shadows. A fading memory estimator 
calculates mean and variance of all three color 
components for each background pixel. Given the 
statistics for a background pixel, simple rules for 
calculating its statistics when covered by a shadow are 
used. Then, MAP classification decisions are made ,for 
each pixel. In addition to the color features, we examine 
the use of neighborhood information to produce smoother 
classification. We also propose the use of temporal 
information by modibing class a priori probabilities 
based on predictions from the previous fi-ame. 

1. Introduction 

This work is motivated by the need for a robust 
segmentation algorithm to be used in a traffic monitoring 
and incident detection system [ 11. Of course, extracting 
positions of moving objects in image sequences is an 
important component for many other applications. 
Background subtraction is a common approach to this 
problem. The background model is built from the data and 
objects are segmented if they appear significantly 
different from the background. Unfortunately, moving 
shadows are usually extracted along with the objects. This 
can result in large errors in object localization and can 
cause serious problems for algorithms that use 
segmentation results as their basic measurements. 

Many algorithms that detect shadows take into account 
the location of the light source, geometry of the scene and 
models of moving objects [2]. Our aim was to avoid using 
any such knowledge in detecting shadows. One such 
algorithm, proposed by Strauder et al. [3], instead 
assumes that static edges caused by background texture 
remain in regions covered by shadows and that shadows 
have penumbra, a soft luminance transition at the contour 
of the shadow. However, this is rarely true for outdoor 
scenes, where shadows usually have sharp edges and 
background is often non-textured. Even with textured 

background, our experience is that texture is almost 
invisible in the shadow regions due to the properties of 
the imaging process. 

Without using scene models and assumptions mentioned 
above, we can identify three sources of information that 
can help in detecting objects and shadows. The first is 
local, based on the appearance of the individual pixels. A 
point covered by a shadow gets darker compared to its 
appearance when illuminated. The second source of 
information is spatial: objects and shadows inhabit 
compact regions in the image, and the third is temporal: 
object and shadow positions can be predicted from 
previous frames. 

We propose an algorithm that uses all three sources of 
information to classify pixels into the shadow, object and 
background classes. In Section 2 we present the 
segmentation algorithm based on pixel appearance, in 
Section 3 we examine the use of spatial information, and 
in Section 4 the results are presented. We propose a way 
of incorporating temporal information and other 
directions of future work in Section 5. 

2. Pixel appearance based segmentation 

If we assume that a pixel in a given frame belongs to 
either the background, shadow or vehicle, we need the 
estimates of probability density functions of the three 
classes (i.e. the parameters of the three-component 
mixture pdf) for reliable classification. 

Friedman and Russell [4] used the incremental version of 
the EM algorithm to estimate the parameters of a three- 
component mixture pdf for each pixel. We implemented 
this algorithm to classify pixels using a three component 
feature vector (the three color components) and found that 
parts of cars that appear darker than the background get 
classified as shadows. Since the EM algorithm 
automatically “groups” measurements, those pixels that 
belong to dark cars contribute to the component of the 
mixture that represents shadows, resulting in inaccurate 
parameters of the mixture. 
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We believe that a more accurate estimate of the pdf of a 
shadowed pixel can be computed using a model of the 
change in appearance of a pixel when shadowed given its 
appearance when illuminated. Using this approach, the 
pdf of an illuminated background pixel is estimated from 
the data, and the parameters of the pdf of the same pixel 
when shadowed are derived from it using the model of 
appearance change. In the following section, we describe 
the estimation of such a model from the labeled example 
sequence. 

2.1. Color change under shadow 

The effects of surface reflectance and properties of the 
illuminant on the appearance of a surface in an image 
have been successfully modeled [5]. Since a shadowed 
pixel represents the same surface under different 
illumination, we are interested in the effects of 
illumination on pixel appearance. We have found the 
approximation of this effect by a diagonal matrix to be 
satisfactory. See [6, 71 for details. In other words, if v = 
[R G BIT is the camera response for a point on a surface 
when illuminated, then Dv is the camera response for the 
same point when shadowed, where D is a diagonal matrix. 

Figure 1 shows the appearance change for manually 
segmented background and shadow pixels in one traffic 
video sequence. The slopes of lines fitted to plots for 
three color components shown in the figure determine the 
values of corresponding coefficients in the matrix D. In 
this example, D = diug (0.48, 0.47, 0.51). The parameter 
that corresponds to the blue color component is the 
largest, which agrees with our observation that shadowed 
surfaces appear bluer in traffic video scenes. D is 
approximately constant over flat surfaces. If the 
background is not flat over the entire image, we can 
divide the image into subregions where this assumption is 
more likely to hold and model each subregion separately. 

With this model of appearance change under shadow, we 
easily derive the rules for estimating means and variances 
for the three color components under shadow 

the same pixel when illuminated 

have: 

( &", , ,U:", ,,us", , o,", , o:", , osH >, given those parameters for 

( / ! 4 ! ~ , , L L g , ~ ~ , ~ ~ , o ~ , o ~ ) -  If D = diag(dR, dG9 dB), we 

PiH 
oiH = o L d , ,  i E { R , G , B }  (1) 

2.2. Pixel classification 

the current frame shadowed by a moving object. Gaussian 
distributions are assumed for illuminated and shadowed 
states of a pixel, since the only reason their appearance is 
not constant is noise, which we assume is Gaussian. 
Uniform distribution is assumed for a pixel covered by a 
moving vehicle since there is no particular reason to 
prefer one color over any other. 

RED 

BLUE 

Figure 1. Plots of background vs. shadowed color components 
for a set of example data and the linear approximation to the 
data. The slope of the line determines the corresponding element 
of matrix D, red: dR=0.48, green: dpO.47, blue dB=0.51 

The feature vector for each pixel contains the three color 
components. A fading memory estimator [ 81 calculates 
background means and variances for all pixel locations. 
Using the rules presented in the previous section, we 
derive statistics for same pixels when shadowed. We start 
the segmentation by comparing the feature vector for each 
pixel to the mean at that location in the background 
model. If not significantly different (difference less than 
10% of the mean), the pixel is classified into the 
background class. Otherwise, we assign to that location 
the a priori probabilities PBG, pSH, and p F ~  of belonging to 
background, shadow and foreground classes, respectively. 
We use PEG = 0.3, PSH = 0.4, and PFG = 0.4 Then, we 
classify each pixel by maximizing the a posteriori 
probability of the class membership (C, = background, C, 
= shadow and C, = foreground): 

where v is the feature vector for a given pixel, p(Ci) the a 
priori probability of occurrence of the i-th class at that 
location and p(v/CJ the probability of the observed 
feature values given that the pixel belongs to the i-th 
class. 

We call the three classes background, shadow and 
foreground. It should be noted, however, that shadow 
pixels also belong to static surfaces in the scene but are at 
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3 Imposing spatial constraints 

The majority of the pixels are classified correctly by the 
described appearance-based algorithm (73%, when 
compared to the hand-segmented images). However, 
object and shadow regions are very noisy due to 
misclassified pixels (See Figure 3a). The results can be 
significantly improved by imposing spatial smoothness. 
We investigated two approaches. First is simple post- 
processing by spatial filtering of the segmented images. 
We eliminate small gaps in foreground regions by 
performing one vertical and then one horizontal scan and 
assigning an encountered small line segment of non- 
foreground pixels to foreground if it is surrounded by 
foreground pixels in the direction of the scan. This is 
followed by morphological opening. 

The second approach we investigated was performing an 
iterative probabilistic relaxation to propagate 
neighborhood information. In the first step, the a 
posteriori probability computations based on color are 
performed for all pixels. This is a local, appearance based 
computation. In the second step, we perform spatial 
propagation where the new class membership 
probabilities are computed for each pixel based on the 
results of the first step on the neighboring pixels. These 
are then used for a new computation of a posteriori 
probabilities in the first step and so on (Figure 2). The 
scheme converges quickly, and there is no noticeable 
change beyond the second iteration. 

no 

I 
The pixel (x,y) is 
assigned the 
membership 
prohabilitiec based on 
the probabilities of its 

i 

c = argmax p(c,/v) 
classification 

Figure 2. Iterative procedure that integrates appearance based 
and spatial information 

We have found that the probabilities have to be 
dramatically changed in the spatial propagation step to 
change the final classification of a given pixel. We got the 
best results by assigning to the central pixel in a window 
the probabilities associated with its neighbor with the 
highest membership probability for the class that 
dominates the neighborhood. We found that the results 
are slightly improved (78% of pixels correctly classified - 
see Figure 3b). However, there is still a need for post- 
processing that is of similar complexity to the post- 
processing described in the previous paragraph, which we 
used on original segmentation results. The final result is 
very similar (around 90% of pixels classified correctly - 
see Figure 3c). Also, performing these iterations reduces 
the speed and increases the memory requirements. We 
therefore conclude that the spatial smoothness is imposed 
most efficiently by a simple post-processing. 

Figure 3. Imposing spatial smoothness. (a) result of the color 
based segmentation. (b) result of adding a smoothing component 
to the iteration loop. (c) Result of post-processing of (a). 

4 Results 

Figure 4 shows segmentation results for one frame from 
the video of a traffic scene. The pixels colored with red, 
blue and green are those that differed more than 10% 
from the means of the background pdf's. By correctly 
classifying shadows and flickering background pixels that 
simple background subtraction would classify as 
foreground, the accuracy of the calculated object locations 
is greatly improved, especially in scenes with long 
shadows. Note that static shadows are considered to be 
part of the background. Segmented shadows also provide 
an important clue for separating objects that are so close 
that they are segmented as one object. Often in those 
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cases, the shadows of such objects will be distinct and 
help us separate the objects (see Figure 4d). Figure 5 
shows results on several video frames. 

(c) (4 
Figure 4. Moving shadow and object detection. (a) the original 
image frame. (b) Classification results. Red pixels are classified 
as foreground, blue as shadow and green as background. (c) 
Same as in (b), with background pixels not shown. (d) final 
result after post-processing by a spatial filter 

Figure 5. Five frames from the video of a traffic scene. Top row 
shows the raw video data and the bottom row shows the results 
of the algorithm 

5 Conclusions and future work 

We have presented a real time algorithm for segmentation 
of moving objects and cast shadows in image sequences. 
Our final aim is to have a deployable algorithm able to 
operate over extended periods of time and provide robust 
measurements for a traffic monitoring system. 

We propose several improvements and areas of further 
study. First, including temporal information could 
significantly improve the performance of the algorithm 
without much speed degradation. We could use predicted 
object locations to select a priori probabilities in the 
current frame. Locations where we expect objects of one 
class would be assigned high corresponding a priori 
probabilities. 

Another important direction of future work is analysis of 
the relationship between the scene illumination and the 
matrix D. As the algorithm adapts background statistics to 
the slow changes in the scene conditions, it could also 
collect statistics for shadow pixels identified with high 
confidence and modify matrix D accordingly. By 
measuring illumination of the scent:, we should be able to 
build a lookup table for the components of D indexed by 
the scene illumination and use it to recover from sudden 
changes in scene conditions. 
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